当前位置:文档之家› 专题复习 方程与函数的综合运用

专题复习 方程与函数的综合运用

专题复习 方程与函数的综合运用
专题复习 方程与函数的综合运用

专题复习 方程与图形的综合运用

◆考点分析

一元一次方程与一元一次方程组是初中有关方程的基础,在各地中考题中,多数以填空、选择和解答题的形式出现,大多考查一元一次方程及一次方程组的概念和解法。一元二次方程是二次函数的一种特殊 形式,两者有着密切的关系,实验区各地中考题主要以填充、选择、解答题、综合题的形式考查一元二次方程的概念、解法。方程和图形的综合应用题是中考的热门题,考查学生建模能力和分析问题和解决问题的能力,以贴进生活的题目为主。

◆典型例题

例1.下图是学校化学实验室用于放试管的木架,在每层长29 cm 的木条上钻有6个圆孔,每个圆孔的直径均为2.5 cm .两端与圆孔边缘及任何相邻两孔边缘之间的距离都相等并设为x cm ,则x 为 ( )

A .2

B .2.15

C .2.33

D .2.36

【解题分析】 考查列一元一次方程并解方程7x+2.5×6=29,选择A . 【同类变式】(2006·河北省)根据图提供的信息,可知一个杯子的价格是( )

A .51元

B .35元

C .8元

D .7.5元

例2.(2005年吉林)一条长64cm 的铁丝被剪成两段,每段均折成正方形。若两个正方形的面积和等于160cm 2,求两个正方形的边长。

【解题分析】 这个题目主要考查在计算几何图形面积时方程思想的应用。

共43元

共94元

【同类变式】 如图,在ΔABC 中,∠B=90o,AB=4cm ,BC=10cm ,点P 从点B 出发,沿BC 以1cm/s 的速度向点C 移动,问;经过多少秒后,点P 到点A 的距离的平方比点P 到点B 的距离的8倍大1?

例3.(2007四川眉山)黄金周长假推动了旅游经济的发展.下图是根据国家旅游局提供的近年来历次黄金周旅游收入变化图.

(1)根据图中提供的信息.请你写出两条结论;

(2)根据图中数据,求2002年至2004年的“十一”黄金周全国旅游收入平均每年增长的百分率(精确到0.1)

【解题分析】 这个是跟实际生活紧密结合的题目,首先要读懂图中各信息的含义,然后分析再联系生活总结出一些结论,另外还有运用所学的方程思想通过列出一元二次方程解决问题。

A

B

C

P

【同类变式】如图,正方形ABCD的边长为12,划分成12×12个小正方形格. 将边长

为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形. 如此摆放下去,最后直到纸片盖住正方形ABCD 的右下角为止.请你认真观察思考后回答下列问题:

(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,

请填写下表:Array(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.

①当n=2时,求S1∶S2的值;

②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.

(两张方格纸供作草稿用)

◆当堂反馈

1.(陕西省2004)在一幅长80cm ,宽50cm 的矩形风景画的

四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )

A .x 2+130x -1400=0

B .x 2+65x -350=0

C .x 2

-130x -1400=0 D .x 2

-65x -350=0

2.(2005泰州)如下图,正方形是由k 个相同的矩形组成,上下各有2个水

平放置的矩形,中间竖放若干个矩形,则k= .

3. (2007年河南省)如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少?10,设∠1,

∠2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是 ( )

A .???-==+10180y x y x

B .???-==+103180y x y x

C .???+==+10180y x y x

D .???-==10

3180

3y x y

4.(07重庆市)小王购买了一套经济适用房,他准备将地面

铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:

(1)用含x 、y 的代数式表示地面总面积;

(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍.若铺1m 2地砖的平均费用为80元,那么铺

地砖的总费用为多少元?

C

A

B

1 2

25 题图

二次函数与方程、不等式综合问题

二次函数与方程、不等式综合问题 1、在平面直角坐标系xOy 中,直线m x y +- =65经过点()n A ,2-,??? ??21,1B ,抛物线1222-+-=t tx x y 与x 轴相交于点C 、D . (1)求点A 的坐标。 (2)设点E 的坐标为??? ??0,25,若点C 、D 都在线段OE 上,求t 的取值范围。 (3)若该抛物线与线段AB 有公共点,求t 的取值范围。 2、在平面直角坐标系xOy 中,抛物线c bx ax y ++=2的开口向上,且经过点?? ? ?? 23,0A 。 (1)若此抛物线经过点?? ? ?? -21,2B ,且与x 轴相交于点E 、F 。 ①填空:b = (用含a 的代数式表示)。 ②当2 EF 的值最小时,求抛物线的解析式。 (2)若2 1= a ,当10≤≤x ,抛物线上的点到x 轴的距离的最大值为3时,求 b 的值。 3、已知二次函数23)2(2)1(2++++=x t x t y ,当0=x 和2=x 时的函数值相等。 (1)求二次函数的解析式。 (2)若一次函数6+=kx y 的图像与二次函数的图像都经过点),3(m A -,求m 和k 的值。 (3)设二次函数的图像与x 轴交于点B 、C (点B 在点C 的左侧),将二次函数的图像在B 、C 点间的部分(含点B 和点C )向左平移n (0>n )个单位后得到的图像记为G ,同时将(2)中得到的直线6+=kx y 向上平移n 个单位,当平移后的直线与图像G 有公共点时,求n 的取值范围。 4、已知二次函数)12(221-+-=t tx x y (1>t )的图像为抛物线1C 。 (1)求证:无论t 取何值,抛物线1C 与x 轴总有两个交点。 (2)已知抛物线1C 与x 轴交点A 、B 两点(点A 在点B 的左侧),将抛物线1C 作适当的平移,得抛物线222)(:t x y C -=,平移后A 、B 的对应点分别为点),(n m D ,),2(n m E +,求n 的值。 (3)在(2)的条件下,将抛物线2C 位于直线DE 下方的部分沿直线DE 向上翻折后,连同2C 在DE 上方的部分组成一个新图形,记为图形G 。若直线b x y +- =2 1(3

函数与方程练习题.doc

圆梦教育中心高考数学专题 1. 若不等式x2+ax+1>0对于一切xe(O ,刃成立,则a的最小值是(). A. 0 B . — 2 C .—号 D . — 3 2. 已知函数f(x)=log a[&一?门对任意xw [二,+1时,f(x)的递减区间为(). 5_ 5_ A.[车,+8) B.(l , 4 ] 7_ 7_ C.[车,4-oo) D. ( 1 , T] 4. 已知f(x)=asinx+b^/^- +4 (a, beR),且f(lglog310)=5,则f(lglg3)的值是(). A. - 5 B. - 3 C. 3 D. 5 5?己知卫各上J=l(a, b, ce R),则有(). ja A. b2>4ac B. b2>4ac C. b2<4ac D. b2<4ac 6. 方程lgx+x=3的解所在的区间为_______ o A. (0,1) B. (1,2) C. (2,3) D. (3, + -) 7. f(x)定义在R 上的函数,f(x+1)=-缶,当xw[—2,T]时,f(x)=x, 则f(-3.5)为() A.—0.5 B. — 1.5 C.1.5 D.—3.5 PA丄平而丄平而0, A,B为垂足,PA = 4,PB = 2,则AB 8.设P是60°的二而角a-l-0内一点, 的长为( ) A. 2^3 B. 2^5 C? 2>/7 D?4迥 9. 若函数Xx)=(l-m)?-2/7U-5 是偶函数,则7U) () A.先增后减 B.先减后增C?单调递增D?单调递减 10. 对任意非负实数x,不等式厂一皿)Sa恒成立,処I实数a的最小值是(). 1 2 3 A. 2 B. 2 C. D.才

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

二次函数与方程和不等式的综合题

二次函数与不等式和方程的综合题 一、填空题 1、如图,二次函数y 1=ax 2 +bx+c 与一次函数y 2=kx+n 的图象相交于A (0,4),B (4,1)两点,下列三个结论: ①不等式y 1>y 2的解集是0<x <4 ②不等式y 1<y 2的解集是x <0或 x >4 ③方程ax 2 +bx+c=kx+n 的解是x 1=0,x 2=4 其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个 2、如图,已知反比例函数 x y 3 - =与二次函数 y=ax 2 +bx (a >0,b >0)的图象交于点P ,点P 的纵坐标为1,则关于x 的不等式ax 2 +bx >x 3 - 的解集为( ) A .x <1 B .x <-3 C .x <-3或x >0 D .-3<x <0

3.已经函数y=(x-a)(x-b)-2(a<b),m、n是方程(x-a)(x-b)-2=0的两个根(m <n),则a,b,m,n的大小关系是() A.m<a<b<n B.a<m<b<n C.a<m<n<b D.m<a<n<b 3、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m 的结论正确的是() A.m的最大值为2 B.m的最小值为-2 C.m是负数 D.m是非负数 5、已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c-8=0的根的情况是() A.有两个不相等的正实数根 B.有两个异号实数根 C.有两个相等的实数根 D.没有实数根 6、二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是() A.k<-3 B.k>-3 C.k<3 D.k>3

函数与方程零点问题考点例题讲解

函数与方程 考纲解读 1.求常见函数的零点;2.判断基本初等函数零点所在区间;3.判断二次函数零点个数及分布;4.根据函数零点与方程根的关系求参数范围;5.根据具体函数的图象,能够用二分法求相应方程的近似解. [基础梳理] 1.函数的零点 (1)函数零点的定义 对于函数y =f (x ),把使f (x )=0的实数x 叫作函数y =f (x )的零点. (2)函数零点的判定(零点存在性定理) 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系 (x 0),(x 0) (x 0) 无交点 1.函数f (x )=lg x +x -3的零点个数为( ) A .0 B .1 C .2 D .3 答案:B 2.函数f (x )=e x - 1+4x -4的零点所在区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案:B 3.函数f (x )=ln x -2 x 的零点所在的大致范围是( ) A .(1,2) B .(2,3) C.????1e ,1和(3,4) D .(4,+∞) 答案:B

4.用二分法求f (x )=2x +3x -7的零点的近似解,若第一次零点区间为(1,2),则第二次的零点区间为________. 答案:(1,1.5) 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的零点为__________. 答案:-1 [考点例题] 考点一 判定函数零点区间|方法突破 [例1] (1)函数f (x )=2x +ln 1 x -1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(1,2)与(2,3) [解析] f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2 x >0,所以f (x )> 0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=2 3-ln 2=2-3ln 23=2-ln 83.∵8= 22≈2.828>e ,∴8>e 2,即ln 8>2,即f (3)<0.又f (4)=1 2-ln 3<0,∴f (x )在(2,3)内存在 一个零点. [答案] B (2)已知函数f (x )=2x +x ,g (x )=log 3x +x ,h (x )=x -1 x 的零点依次为a ,b ,c ,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c [解析] 在同一坐标系下分别画出函数y =2x ,y =log 3x ,y =-1 x 的图象,如图,观察它们与y =-x 的交点可知a

高考数学二轮专题复习-函数与方程思想

第1讲函数与方程思想 1.函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点 (1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解. (4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论. (5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用 例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3) 解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为 a ≥3x 2-1x 3. 设g (x )=3x 2-1 x 3,则g ′(x )=3(1-2x )x 4 ,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减, 因此g (x )max =g ???? 12=4,从而a ≥4; 当x <0即x ∈[-1,0)时, f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 设g (x )=3x 2-1 x 3,且g (x )在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. (2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数. 又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数. 因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3). 所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解. 已知函数f (x )=1 2 x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是() 2. 如果二次函数有两个不同的零点,则的取值范围是() 3. A. B. C. D. 4. 已知函数22)(m mx x x f --=,则)(x f () A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数? ??>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)( 2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大小不能确定 )3(2+++=m mx x y m ()6,2-[]6,2-{}6,2-()(),26,-∞-+∞

八年级数学 一次函数与方程、不等式综合专题复习讲义

一次函数与方程、不等式综合专题复习讲义 一、一次函数与一元一次方程的关系 直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b k - 就是直线y b kx =+与x 轴交点的横坐标。 二、一次函数与一元一次不等式的关系 任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。 三、一次函数与二元一次方程(组)的关系 一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。 一、一次函数与一元一次方程综合 【例1】 若直线(2)6y m x =--与x 轴交于点()60, ,则m 的值为( ) A.3 B.2 C.1 D.0 【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( ) A .2- B .2 C .1- D .0 知识点睛 中考要求 例题精讲

【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m , ,则a b +=______. 二、一次函数与一元一次不等式综合 【例3】 已知一次函数25y x =-+. (1)画出它的图象; (2)求出当3 2 x =时,y 的值; (3)求出当3y =-时,x 的值; (4)观察图象,求出当x 为何值时,0y >,0y =,0y < 【例4】 当自变量x 满足什么条件时,函数23y x =-+的图象在: (1)x 轴下方; (2)y 轴左侧; (3)第一象限. 【巩固】当自变量x 满足什么条件时,函数41y x =-+的图象在: (1)x 轴上方; (2)y 轴左侧; (3)第一象限.

一次函数知识点总结与常见题型

三乐教育名师点拔中心 学生姓名: 家长签名 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其 对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1 x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y = x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B . 23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0k C .1≤k D .1

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

函数方程不等式综合应用专题

2011年中考复习二轮材料 函数、方程、不等式综合应用专题 一、专题诠释 函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。而新课程标准中把这个联系提到了十分明朗、鲜明的程度。因此,第二轮中考复习,对这部分内容应予以重视。 这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。 二、解题策略和解法精讲 函数与方程、函数与不等式密不可分,紧密联系。 利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等。等式与不等式是两种不同的数量关系,但在一定条件下又是可以转化的,如一元二次方程有实数根,可得不等式Δ≥0等。 一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-b/a,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;?直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解. 一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标。 两条直线的位置关系与二元一次方程组的解: (1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2. (3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.在复习中,本专题应抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系,以期在综合运用中灵活把握。 三、考点精讲 考点一:函数与方程(组)综合应用 例1.(2010广西梧州)直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b =0的解是x=______ 【分析】∵直线y=2x+b与x轴的交点坐标是(2,0),则x=2时,y=0,∴关于x的方程2x+b=0的解是x=2。

(完整)初三二次函数常见题型及解题策略

二次函数常见题型及解题策略 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物 线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。

6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解?? ??==0 0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。

高一数学函数与方程练习题

函数与方程(1) 姓名________ 班级__________ 学号__________ 日期__________ 成绩_______ 1、函数f(x)=2x+5的零点是________ 2、已知关于x 的一元二次方程2x 2+px+15=0有一个零点是-3,则另一个零点是_______ 3、函数y=-x 2+8x-16在区间[3,5]上零点个数是____ 4、设函数?? ?-∞∈-+∞∈-=)1,(,2),1[,22)(2x x x x x x f ,则函数41)(-x f 的零点是______ 5、函数f(x)=ax+b 有一个零点是2,那么函数g(x)=bx 2-ax 的零点是_______ 6、定义在R 上的偶函数y=f(x)在[0,+∞)上单调递减,函数f(x)的一个零点为2 1,则不等式f(log 4x)<0的解集是_______ 7、求证:方程5x 2-7x-1=0的根在一个在区间(-1,0)上,另一个在区间(1,2)上。

8、已知函数f(x)=2(m-1)x 2-4mx+2m-1 (1)m 为何值时,函数的图象与x 轴有两个不同的交点; (2)如果函数的一个零点在原点,求m 的值。 函数与方程(2) 姓名________ 班级__________ 学号__________ 日期__________ 成绩_______ 1、函数f(x)=3x-16在区间[3,5]上有____个零点 2、已知f(x)的图象是连续不断的,有如下的x 与f(x)的对应值表: 则函数f(x)存在零点的区间是______ 3、函数x x x f 2)2ln()(-+=的零点所在区间是(n,n+1),则正整数n=______

函数与方程不等式相结合问题

问题4 函数与方程、不等式相结合问题 一、考情分析 函数与方程、函数与不等式都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与方程、函数与不等式是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数与方程、函数与不等式思想的运用是我们解决问题的重要手段. 二、经验分享 (1) 确定函数零点所在区间,可利用零点存在性定理或数形结合法. (2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数. (3) 已知函数零点情况求参数的步骤 ①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (4)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围. (5)“a=f(x)有解”型问题,可以通过求函数y=f(x)的值域解决. 三、知识拓展 1.有关函数零点的结论 (1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号. (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号. 2.三个等价关系 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 四、题型分析 (一) 函数与方程关系的应用 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图像与x 轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数

函数与方程知识点及题型归纳总结

函数与方程知识点及题型归纳总结 知识点精讲 一、函数的零点 对于函数()x f y =,我们把使()0=x f 的实数x 叫做函数()x f y =的零点. 二、方程的根与函数零点的关系 方程()0=x f 有实数根?函数()x f y =的图像与x 轴有公共点?函数()x f y =有零点. 三、零点存在性定理 如果函数()x f y =在区间[]b a ,上的图像是连续不断的一条曲线,并且有()()0

相关主题
文本预览
相关文档 最新文档