当前位置:文档之家› 手性催化剂(R) TTCA 金属配合物催化下环酮与α研究

手性催化剂(R) TTCA 金属配合物催化下环酮与α研究

手性催化剂(R) TTCA 金属配合物催化下环酮与α研究
手性催化剂(R) TTCA 金属配合物催化下环酮与α研究

高分子2014

第一章 1、大分子的微结构和几何构型? 结构单元(基本化学结构)CH2C 3 CH 3 在高分子链中,结构单元的化学组成相同时,连接方式和空间排列也会不同. 序列结构(结构单元的键接方式) 具有取代基的乙烯基单体可能存在头-尾、头-头或尾-尾连接,有取代基的碳原子为头,无取代基的碳原子为尾 如单体CH2=CHX聚合时,所得结构如下: 立体构型(由引发剂来控制) I. 手性构型 若高分子中含有手性C原子,则其立体构型可有D型和L型,据其连接方式可分为如下三种:(以聚丙烯为例) (1)全同立构高分子(isotactic polymer):主链上的C*的立体构型全部为D型或L 型, 即DDDDDDDDDD或LLLLLLLLLLL; (2)间同立构高分子(syndiotactic polymer):主链上的C*的立体构型各不相同, 即D 型与L型相间连接,LDLDLDLDLDLDLD; 立构规整性高分子(tactic polymer): C*的立体构型有规则连接,简称等规高分子。 (3)无规立构高分子(atactic polymer):主链上的C*的立体构型紊乱无规则连接。 II.几何异构 共轭双烯单体聚合时可形成结构不同的单体单元,如最简单的共轭双烯丁二烯可形成三种不同的结构单元(单体单元):

2、在高分子研究中获得诺贝尔奖的科学家有哪几个?他们的主要贡献各是什么? Staudinger (施陶丁格)1881年3月23日生于德国,1920年,发表“论聚合反应”的论文,提出高分子的概念;1953年获诺贝尔化学奖。 20世纪50年代中期,德国人Kal Ziegler(齐格勒)、意大利人Giulio Natta(纳塔)等人发现了金属有机络合引发体系,在较低的温度和压力下,制得了高密度聚乙烯和聚丙烯。他们两人因而在1963年获得了诺贝尔奖。 Flory(弗洛里) 1910年6月19日生于美国伊利诺伊州斯特灵;1953年当选为美国科学院院士;因在高分子化学、高分子物理性质与结构的研究方面的巨大成就,于1974年获得了诺贝尔化学奖 2000年,日本人白川英树,美国人Alan.J.Hegger(艾伦·黑格)和Alan.J.Macdiarmid (艾伦·麦克迪尔米德)因在导电高分子的发现和发展领域的杰出贡献获诺贝尔化学奖。 第二章 1、制备高分子线型缩聚物和体型缩聚物,各需要什么官能度物质? 线型缩聚:2官能度单体或2-2体系的单体进行缩聚反应,聚合过程中,分子链线形增长,最终获得线型聚合物的缩聚反应。2-2或2体系单体将聚合成线形聚合物,如聚酯、聚酰胺、聚砜等。 体型缩聚:有官能度大于2的单体参与的缩聚反应(至少一种单体官能度大于2),聚合过程中,先产生支链,再交联成体型结构,这类聚合过程称为体型缩聚。2-3、2-4等体系最终将缩聚成体形聚合物,如酚醛树脂、脲醛树脂、醇酸树脂等。 2、采用什么技术保证基团数相等?制备尼龙-66时将己二酸和己二胺成盐的主要目的是什

高分子名词解释

高分子化学试题 作者:admin 更新时间:2008-11-16 13:22:55 高分子化学(第四版)-潘祖仁、习题及答案-广东工业大学材料与能源高分子4班提供 点击下载 一、名词解释 1. 高分子:高分子也叫聚合物分子或大分子,具有高的相对分子量,其结构必须是由多个重复单元所组成。 2. 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子。 3. 结构单元:在大分子链中出现的以单体结构为基础的原子团称为结构单元。 4. 共聚物:由两种或两种以上的单体聚合而成的高分子则称为共聚物。 5. 加聚反应:烯类单体加成而聚合起来的反应称为加聚反应,反应产物称为加聚物。 6. 缩聚反应:是缩合反应多次重复结果形成聚合物的过程,兼有缩合出低分子和聚合成高分子的双重含义,反应产物称为缩聚物。 7. 高分子的聚集态结构:高分子的聚集态结构,是指高聚物材料整体的内部结构,即高分子链与链之间的排列和堆砌结构。分为晶态、非晶态、液晶态。 8. 官能度:一分子中能参加反应的官能团的数目叫官能度 9. 平均官能度:每一分子平均带有的基团数。 10. 反应程度:参加反应的基团数占起始基团数的分数。 11. 转化率:参加反应的单体量占起始单体量的分数 12. 两者区别: 转化率是指已经参加反应的单体的数目, 反应程度则是指已经 反应的官能团的数目, 如:一种缩聚反应,单体间双双反应很快全部变成二聚体,就单体转化率而言,转化率达100%;而官能团的反应程度仅50% 13. 凝胶化现象:体系粘度突然急剧增加,难以流动,体系转变为具有弹性的凝胶状物质,这一现象称为凝胶化。 14. 凝胶点:开始出现凝胶化时的反应程度(临界反应程度)称为凝胶点,用Pc表示,是高度支化的缩聚物过渡到体型缩聚物的转折点。 15. 引发剂:自由基聚合引发剂通常是一些可在聚合温度下具有适当的热分解速率,分解生成自由基,并能引发单体聚合的化合物。 16. 引发剂半衰期:引发剂分解至起始浓度一半所需要的时间。 17. 引发剂效率:引发剂用来引发单体聚合的部分占引发剂分解或消耗总量的分数。 18. 自动加速现象:随着反应进行,体系的粘度增大,活性端基可能被包埋,双基终止困难,速率常Kt下降,聚合反应速率不仅不随单体和引发剂浓度的降低而减慢,反而增大的现象。 19. 茏蔽效应:引发剂分子处在单体或溶剂的”笼子”中,在笼里分解成初级自由基,浓度高,若不及时扩散出笼子,引发笼子外的单体聚合,则初级自由基则易相互结合,歧化等反应,消耗引发剂 20. 动力学链长:平均每一个链自由基(活性种)从引发到终止过程中(包括链

相转移催化在精细有机合成中进展

相转移催化在精细有机合成中地进展 摘要:相转移催化技术是一种重要地非均相反应方法,本文综述了相转移催化反应地概念,原理,杂多酸有机盐催化剂地作用.文中着重介绍了近年来该技术地新发展,同时讨论了其在精细有机合成领域地应用和存在地不足. 关键词:相转移催化技术;发展;有机合成 相转移催化(Phase transfer),简称PT,是20 世纪70 年代以来在有机合成中应用日趋广泛地一种新地合成技术. 在有机合成中常遇到非均相有机反应,这类反应地通常速度很慢,收率低.20 世纪70 年代初,相转移催化技术发展起来.泛应用于医药.农药.香料.造纸.制革等行业,带来了令人瞩目地经济效益和社会效益. 一.相转移催化地定义. 相转移催化作用是指:一种催化剂能加速或者能使分别处于互不相溶地两种溶剂(液-液两相体系或固-液两相体系)中地物质发生反应.反应时,催化剂把一种实际参加反应地实体(如负离子)从一相转移到另一相中,以便使它与底物相遇而发生反应. 相转移催化作用能使离子化合物与不溶于水地有机物质在低极性溶剂中进行反应,或加速这些反应.相转移催化剂把一种实际参加反应地化合物,从一相 转移到另一相中,以便使它与底物相遇而发生反应.

目前相转移催化剂已广泛应用于有机反应地绝大多数领域,如卡宾反应.取代反应.氧化反应.还原反应.重氮化反应.置换反应.烷基 化反应.酰基化反应.聚合反应,甚至高聚物修饰等,同时相转移催化 反应在工业上也广泛应用于医药.农药.香料.造纸.制革等行业,带来了令人瞩目地经济效益和社会效益. 二.相转移催化地原理. 是指在反应中使用一种能将反应实体从一相转移到另一相地相 转移催化剂,使实体与底物相遇而发生反应地一种方法.以卤代烷与 氰化钠地反应为例,相转移催化反应地过程大致如下:(1)水相反应NaCN+Q+X-→NaX+QCN(Q+X-为相转移催化剂);(2)QCN进入有机相;(3)有机相反应RX+QCN→RCN+Q+X-;(4)Q+X-返回水相.相转移催化剂在反应中并未损耗,只是起传递离子地作用,因此用量很少.常用地相转移催化剂是冠醚和季铵盐.相转移催化使许多用传统方法很难进行地反应或者不能发生地反应能顺利进行,而且具有选择性好.条 件温和.操作简单.反应速度快等优点,具有很好地实用价值. 相转移催化概括起来可以分为三类:液液相转移催化.固一液相转移催化和三相催化,后来随着技术地进步,还出现了气一液相转移催化和气一固相转移催化,但有用较少.其中液一液相转移催化地使用范匝最为广泛. 1.液一液相转移催化 液一液相转移催化反应是在一个互不混溶地两相系统中进行.其中一相(一般为水相)为碱或含起亲核试剂作用地盐类,另一相为有机

手性催化剂在有机合成中的应用

综述:手性催化剂在有机合成中的应用 摘要:手性salen金属络合物在烯丙醇类化合物的动力学拆分,环氧化合物的不对称开 环以及非官能化烯烃的不对称环氧化等反应中已得到了广泛的应用。手性催化剂控制不对称羟醛反应,从工业生产的角度来看,实用的有机合成反应要求高选择性,高反应速率,高产率,原子经济性,低成本,操作简单,环境友好以及低能耗。一个简单的手性催化剂分子可以决定上百万的手性产物分子的立体选择性,但只有当昂贵的与底物或试剂结合的手性助剂能被重复利用,反应才有实用价值,使得反应具备极高的生产力和经济效益 关键词:手性催化剂手性Salen-Co(Ⅲ)催化剂 正文: 众所周知有机化合物是含碳的化合物,一个碳原子的最外层上有四个电子,若以单键成键时,可以形成四个共价单键,共价键指向四面体的顶点,当碳原子连接的四个基团各不相同时,与这个碳原子相连接的四个基团有两种空间连接方式,这两种方式如同左右手,互为“镜像”,也是不能完全叠合在一起的,因此,这样的分子叫做“手性分子”。这种构成手性关系的分子之间,把一方叫做另一方的“对映异构体”。许多有机化合物分子都有“对映异构体”,即是具有“手性”。而催化剂会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性。一种催化剂并非对所有的化学反应都有催化作用,例如二氧化锰在氯酸钾受热分解中起催化作用,加快化学反应速率,但对其他的化学反应就不一定有催化作用。而手性催化剂就是含有手性C原子的催化剂,它在一些合成放应中具有举足轻重的作用。 手性催化剂按其反应类型又可以分为:不对称催化氧化,不对

高分子金属配合物催化剂的合成(合成化学报告)解析

高分子金属配合物催化剂的合成 摘要:催化剂可以分为均相催化剂和多相催化剂。均相催化剂如金属配合物、有机金属配合物在最近几十年内受到催化科学界的广泛关注。新的均相催化体系的应用使得一些新的生产工艺应运而生。这些工艺操作条件温和,选择性高。然而,在大规模生产中均相催化剂存在着难回收、不稳定、有腐蚀性的缺点。大多数的多相催化剂在高温、高压下才能较好地发挥催化作用,并且其选择性、活性较弱。因此,人们开始设想通过高分子负载的方法转化均相催化剂使之兼具二者的优点。本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。 关键词:催化剂;配合物;高分子;合成;高分子效应 1、简介 近几十年来,均相催化剂由于其较高的催化活性受到了科学界和工业界的广泛重视与应用,但均相反应的催化剂一般来说存在价格昂贵、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,又使得反应的催化剂难于回收,导致均相催化剂在有机合成和工业上的应用受到了很大的限制。多相催化剂虽然回收简单,但是,机理研究比价复杂,选择性和活性较低。因此寻找能够重复使用且回收操作简单的催化剂成为有机催化反应领域的研究热点之一。1963年,Merrifield和Letstinger等人[1, 2]首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例。近年来,高分子负载型催化剂得到了迅猛发展。高分子催化剂集合了多相催化剂、均相催化剂的优点[3]。其具有较高的催化活性、立体选择性、较好的稳定性和重复使用性能,并且后处理简单,在反应完成后可方便地借助固-液分离方法将高分子催化剂与反应体系中其他组分分离、再生和重复使用,可降低成本和减少环境污染[4]。杨小暾与江英彦[3]指出,若将多相催化剂、均相催化剂视为第一代、第二代催化剂,那么高分子金属络合物催化剂就是第三代催化剂。 研究表明高分子不仅是负载金属催化剂的惰性载体,而且还可以对催化剂的活性中心进行修饰,并使催化剂的结构发生变化,形成通常在小分子配合物中很难看到的特殊结构,从而影响催化剂的催化反应过程,即同种金属使用不同的载体所得到的化剂其催化活性可能相差很大。此为高分子的基体效应。本文主要介绍高分子金属催化剂的合成、

手性催化剂

手性催化研究的新进展与展望 手性是自然界的基本属性之一,与生命休戚相关。近年来,人们对单一手性化合物(如手性医药和农药等)及手性功能材料的需求推动了手性科学的蓬勃发展。手性物质的获得,除了来自天然以外,人工合成是主要的途径。外消旋体拆分、底物诱导的手性合成和手性催化合成是获得手性物质的三种方法,其中,手性催化是最有效的方法,因为他能够实现手性增殖。一个高效的手性催化剂分子可以诱导产生成千上万乃至上百万个手性产物分子,达到甚至超过了酶催化的水平。2001年,诺贝尔化学奖授予了三位从事手性催化研究的科学家Knowles、Noyori 和Sharpless,以表彰他们在手性催化氢化和氧化方面做出的开拓性贡献,同时也彰显了这个领域的重要性以及对相关领域如药物、新材料等产生的深远影响。 我国对于手性催化合成的研究始于上世纪80年代,从90年代逐渐引起重视。1995年戴立信、陆熙炎和朱光美先生曾撰文呼吁我国应对手性技术特别是手性催化技术的研究给予重视[1]。国家自然科学基金委员会九五和十五期间分别组织了“手性药物的化学与生物学研究”(戴立信院士和黄量院士主持)[2]、“手性与手性药物研究中的若干科学问题研究”(林国强院士主持)[3]重大研究项目,同时中国科学院和教育部等也对手性科学与技术的研究给予了重点支持,极大地推动了我国手性科学和技术领域特别是在手性催化领域的发展,取得了一批在国际上有较大影响的研究成果,并培养了一支优秀的研究队伍,在手性催化研究领域开始在国际上占有一席之地。 本文结合国际上手性催化研究的最新进展,主要回顾了我国科学家近年来在新型手性配体、金属配合物手性催化、生物手性催化、有机小分子手性催化、负载手性催化剂、以及新概念与新方法等方面取得的重要研究进展[4],并展望了手性催化的未来发展趋势。 一、新型手性配体的设计合成 手性配体和手性催化剂是手性催化合成领域的核心,事实上手性催化合成的每一次突破性进展总是与新型手性配体及其催化剂的出现密切相关。2003年,美国哈佛大学Jacobsen在美国《Science》杂志的视点栏目上发表论文,对2002年以前发展的为数众多的手性配体及催化剂进行了评述,共归纳出八种类型的“优势手性配体和催化剂(Privileged chiral ligands and catalysts)”[5]。例如:2001年诺贝尔奖获得者Noyori发展的BINAP系列手性催化剂就是其中一例。BINAP与金属铑和钌形成的配合物已被证明是许多前手性烯烃和酮的高效催化剂,其中,BINAP的钌-双膦/双胺催化剂成功地解决了简单芳基酮的高效、高选择性氢化,催化剂的TOF高达60次/秒(即一个催化剂分子每秒可以催化转化60个底物分子),TON高达230万(即一个催化剂分子总共可以催化转化230万个底物分子),是目前最高效的手性催化剂体系[6]。 尽管已经有成百上千的优秀手性配体被合成出来,但没有任何一种配体或催化剂是通用的,因此新型手性配体的设计合成是手性催化研究中的永恒主题。近年来,在膦配体、氮膦配体、含氮配体、含硫配体、卡宾配体、以及二烯烃配体等的设计合成方面又取得了新的重要进展。例如:Pfaltz等人在Crabtree催化剂的基础上,将手性膦配体和手性氮配体结合起来,发展了一类新型的手性膦氮配体(如PHOX[7]),其铱配合物是目前唯一的能够高对映选择性催化氢化非官能化烯烃的手性金属催化剂体系。最近,他们利用这类手性铱催化剂成功实现了全烷基取代的非官能化烯烃的不对称氢化反应,并将其应用到维他命E主要成

相转移催化在药物合成中的应用

相转移催化在药物合成中的应用 程方莉 摘要:介绍了相转移催化的基本原理,分别介绍了液-液相转移催化反应,固-液相转移催化反应和三相转移催化反应的特点。着重介绍了近年来相转移催化在药物合成中的应用进展,采用相转移催化技术具有操作简便、收率高、反应温和等特点,对于工艺技术的改进有重要的现实意义。 关键词:相转移催化;相转移催化剂;合成;应用 0 引言: 相转移催化(Phase Transfer Catelysis)简写是PTC,是六七十年代发展起来的有机合成新方法,也是目前药物合成和工艺改进中最具吸引力的一项新方法、新工艺,其使用范围涉及到有机合成的各种类型反应,并且能够缩短反应时间、提高反应收率和选择性。 该技术应用于非极性溶剂中具有反应条件温和、反应速度快、收率高、产品质量好等特点。因此,在近三十年来,该技术的研究与应用得到了迅速的发展。 1 相转移催化剂及反应原理 相转移催化是指一种催化剂能加速,或者能使分别处于两种互不相溶的溶剂中的物质发生反应,反应时,催化剂把一种实际参加反应的实体,从一相转移到另一相中,以便使它于底物相遇而发生反应。这种现象和过程叫相转移催化作用,这种催化剂叫相转移催化剂。 一般存在相转移催化的反应,都存在水溶液和有机溶剂两相,离子型反应物往往可溶于水相,不溶于有机相,而有机底物则可溶于有机溶剂之中。不存在相转移催化剂时,两相相互隔离,几个反应物无法接触,反应进行得很慢。相转移催化剂的存在,可以与水相中的离子所结合,并利用自身对有机溶剂的亲和性,将水相中的反应物转移到有机相中促使反应发生。 1.1 相转移催化剂 相转移催化剂有翁盐、聚醚和高分子载体催化剂三大类.其中常用的有三乙基苄基氯化铵(TEBA)、溴化四丁基铵(TBAB)、四丁基碘化胺(TBAI)、18一冠醚一6、二苯并一l8一冠醚一6、聚乙二醇一400 (PEG一400)、新洁尔灭、度米芬等。近年来,由于手性药物的大量应用,用于合成手性药物的手性相转移催化剂 成为相转移催化剂研究热点之一。例如,抗帕金森药物L一多巴类似物3,4-二羟

均相催化剂的突出特点

均相催化剂的突出特点 2016-04-17 13:08来源:内江洛伯尔材料科技有限公司作者:研发部 钯均相催化剂案例一则 均相催化剂是指能溶于非极性溶剂的有机金属络合物。它能溶于反应介质,分散均匀,起着独特的分子催化作用,是一种分子催化剂。随着新型均相催化剂的相继出现,均相催化的应用也日趋增多,在许多有机反应包括氢化、碳基化、加成、聚合、异构化、偶联、环合、氢硅化和不对称合成等都有应用。均相催化剂主要应用于碳碳不饱和化合物的选择性加氢反应和不对称合成。 均相催化剂具有以下特点: 1、氢化效率高。均相催化剂中的所有金属分子都能成为活性部位,不象多相催化剂只有少数活性中心在起作用,所以均相催化剂效率高。 2、反应条件温和。均相催化剂能形成活泼氢络合物,从而大大地降低H-R键的离解能,容易释放出活泼氢。不但提高氢化活性,而且也使反应条件变得极为温和,致使大多数反应可在室温和常压下进行。 3、选择性高。活性部位对能量分布很敏锐,所以均相催化剂具有相当高的选择性。 4、可以用于不对称合成。由于均相催化剂的金属中心的立体效应和电子环境容易调节,有利于创造手性环境。 5、容易制备多种配位体的均相催化剂,具有不同的性能,适用于不同底物的还原。 6、均相催化剂有确定的分子结构,对认识催化反应机理有重要意义,便于对催化氢化进行深入研究,而且制备的重现性好。 7、均相催化剂中,每个分子性能完全相同,它不象多相催化剂那样,表面各部分性质差异很大,所以副反应少。 8、均相催化剂避免了多相催化剂所存在的传质问题,使反应速度大大加快。 均相催化剂(金属配位催化剂)与催化是当代化学的前沿领域之一,它的发展最为活跃、最为迅速和最富有生命力。

高分子物理名词解释

高分子物理名词解释 1、近程结构:高分子重复单元的化学结构和立体结构合称为高分子的近程结构 2、远程结构:由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构 3、链段与链节:高分子链中能自由取向并在一定范围独立运动的最小单元称为链段。链节是指高分子链中不断重复的单元。 4、均方旋转半径:分子链质心与组成该分子链所有链段质心之间矢量距离的均方值。 5、大分子链的末端距:高分子链中由一端指向另一端的有向线段 6、构型与构象:构象系指由C-C单键内旋转而形成的空间排布。构型系指化学键连接的邻近原子或原子团之间的空间状态表征。 7、液晶态:某些物质的结晶受热熔融或被溶剂溶解之后,仍部分地保持晶态物质分子的有序排列,呈现各项异性的物理性质,形成一种兼有晶态和液态部分性质的过渡状态,称为液晶态。 8、取向函数: 9、高斯链:统计单元为一个链段且链段与链段之间自由结合,无规取向的高分子链称为等效自由结合链,因为其链段分布函数服从高斯分布,故也称为高斯链。 10、等规立构:聚合物一种或两种构型的结构单元以单一顺序重复排列。 11、无规立构:手性中心的构型呈无规排列。 12、柔顺性和刚性:高分子长链能以不同程度卷曲的特性。 13、UCST 和LCST :最高共溶温度和最低共溶温度。 14、凝胶和冻胶:凝胶是高分子链之间以化学键形成的交联结构的溶胀体,加热不溶不熔,既是高分子的浓溶液,又是高弹性的固体。 冻胶是由高分子间以分子间作用力形成的,加热时可以溶解。 15、高分子电解质:在侧链中有许多可电离的离子型基团的高分子称为高分子电解质。 16、溶解度参数δ: 1.高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。 2.近程结构:构成大分子链的结构单元的化学组成和物理结构。 3.远程结构:由数目众多结构单元构成的分子链的长短及其空间形态和结构。 4.凝聚态结构:从物理学角度界定聚合物的微观结构类型。

相转移催化在有机合成中的应用

相转移催化在有机合成中的应用 摘要:本文介绍了相转移催化的优点,相转移催化剂的种类以及在有机合成反应中的应用。主要介绍了相转移催化在亲核取代反应、亲核烃基化反应、烯烃与氢卤酸的加成反应、消去反应以及利用Hofmann重排制备异氰酸酯反应。 关键词:相转移催化,有机合成 Phase Transfer Catalysis in Organic Synthesis Abstract: This article describes the advantages of phase transfer catalysis, phase transfer of the type of catalyst, as well as in organic synthesis reactions. The phase transfer catalysis in nucleophilic substitution reactions, nucleophilic alkylation, the olefin and hydrohalic acid addition reaction, elimination reaction and the preparation of isocyanate-reactive using Hofmann rearrangement. Key words: Phase Transfer Catalysis, Organic Synthesis 1相转移催化简介 相转移催化作用是指一种催化剂能加速或者能使分别处于互不相溶的两种溶剂(液-液两相体系或固-液两相体系)中的物质发生反应。反应时,催化剂把一种实际参加反应的实体(如负离子)从一相转移到另一相中,以便使它与底物相遇而发生反应。相转移催化是20世纪六十年代后期出现的一项技术相转移催化的方法,不需要特殊的仪器设备,也不需要价格昂贵的无水溶剂或非质子溶剂。并且反应条件温和,操作简便,副反应少,选择性高,利用相转移催化,能使许多在一般条件下反应速度很慢或不能进行的反应,大大提高反应速度而顺利进行。相转移催化在烃基化、亲核取代、消大以及氧化还原等各种类型的有机反应中都有养广泛的应用。因此相转移催化力一法在科研和化工生产中越来越受到重视,应用范围不断扩大,在有机合成中显露出重大的重大的意义[1]。 2相转移催化的优点 (1)反应条件温和,不再需要昂贵的无水溶剂或非质子溶剂,可以用廉价、非毒性、能回收的溶剂。 (2)反应温度降低,减少能耗,节约能源。

手性催化

工业催化期末论文 ——手性催化研究方向 姓名: 学院: 班级: 学号:

手性催化研究发展 摘要:手性就是物质的分子和镜像不重合性。手性是自然界的基本属性之一,手性是物质具有旋光性和产生对映异构现象的必要条件。构成生命体的有机分子绝大多数是不对称的,手性是三维物体的基本属性,如果一个物体不能与其镜像重合,就称为手性物体。这两种形态称为对映体,互为对映体的两个分子结构从平面上看完全相同,但在空间上完全不同,如同人的左右手互为镜像,但不能完全重合,科学上称其为手性。人工合成是获得手性物质的主要途径。外消旋体拆分、底物诱导的手性合成和手性催化合成是获得手性物质的三种方法手性物质的获得,其中,手性催化是最有效的方法,因为他能够实现手性增殖。一个高效的手性催化剂分子可以诱导产生成千上万乃至上百万个手性产物分子,达到甚至超过了酶催化的水平。 关键字:手性催化催化剂影响 引言:我国关于手性催化研究的进程与发展 本文介绍了手性催化剂的基本特征,并结合国际上手性催化研究的最新进展,主要回顾了我国科学家近年来在新型手性配体、金属配合物手性催化、生物手性催化、有机小分子手性催化、负载手性催化剂、以及新概念与新方法等方面取得的重要研究进展[4],并展望了手性催化的未来发展趋势。 一、手性催化的简介 手性就是物质的分子和镜像不重合性,如分子具有手性,此物就具有旋光性,手性是物质具有旋光性和产生对映异构现象的必要条件。有机分子由于具有若干

相同组成原子而具有对称性。 (1)旋转对称性,如果一个分子围绕着通过这个分子的一条线旋转一定角度后,结果分的定向和原来的分子一样,则这个分子有一个对称轴。 (2)反射对称性,如果一个分子的所有原子都在同一个平面里,或者一个平面能够通过这个分子,从而把这个分子分为互为镜像的两半,一半反应着另一半,这个分子就有一个对称平面。 (3)中心对称性,如果所有能通过分子的中心的直线在以分子中心等距离的地方都遇到相同的原子,这个分子就有一个对称中心。 (4)象转对称性,如果一个分子围绕着通过分子的轴旋转一定角度,再用一面垂直于旋转轴的镜子反射经过旋转的分子,结果所得构型和原构型一样,这个分子就有一个象转对称轴。 “手性”(chirality,意思是“手征性”),是用来表达化合物构型的不对称性的术语, 它是指化合物分子或者分子中某些基团的构型可以排列成互为镜像但是不能重叠的两种形式。 手性化合物分子中的原子组成相同,但其中的原子三维空间排列不同,从而引起构型相反,互为镜像。这就好比人手的左右不对称性:右手和左手相互不能重叠,正如同实物和其镜像的关系。持这种对映关系的一对化合物称为对映体。由此看来,用“手性”这一术语来表达分子的对映关系显得既科学又形象。如果这对对映体是等量地混合在一起的,则称之为消旋体。如果只有一种对映体,则称为单一对映体。 如果在不对称合成反应中生成两个不等量的对映异构体时, 则不对称 合成的效率通常用对映体过量百分率(percent of enantiomeric excess

手性有机多孔材料在多相不对称催化中的应用研究进展

第37卷第6期 2015年11月泰山学院学报JOURNAL OF TAISHAN UNIVERSITY Vol.37NO.6Nov.2015手性有机多孔材料在多相不对称 催化中的应用研究进展 李延伟, 王昌安(泰山学院化学化工学院,山东泰安271000) [摘要]近年来,有机多孔材料成为研究的前沿和热点领域之一.有机多孔材料POPs (Porous Organic Polymers )包括非晶型有机多孔材料(比如CMP ,HCP ,PIM 等)和晶型有机多孔材料(比如COFs 等).由于其具有优异的孔性质、较大的比表面积、稳定性好、重量轻以及易与功能化等诸多优点,有机多孔材料被广泛应用于气体存储分离、传感、有机光电和多相催化等重要领域.伴随着均相催化尤其是不对称催化的巨大发展,将有机多孔材料与手性催化剂结合起来构建手性有机多孔材料,并将其应用于多相不对称催化的研究越来越受到重视.目前,关于手性有机多孔材料在多相不对称催化领域应用的研究工作主要有两类:一类是通过“bottom - up ”策略将手性配体-金属类催化剂嵌入有机多孔材料骨架来构建多相催化剂;一类是通过“bottom -up ”策略将不含金属的(metal -free )手性小分子催化剂嵌入材料骨架来构建手性有机多孔催化剂.由于有机多孔材料特殊的优越性,这些功能化的孔材料在多相不对称催化中表现出优异的催化性能. [关键词]有机多孔材料;“bottom -up ”策略;多相催化;不对称催化 [中图分类号]O643[文献标识码]A [文章编号]1672-2590(2015)06-0080-10 [收稿日期] 2015-09-07[基金项目]国家自然科学基金项目(21502136);山东省优秀中青年科学家奖励基金项目(BS2014CL035);山东省高等学校科 技计划项目(J15LC18);泰山学院2015年青年教师科研基金项目(QN -01-01) [作者简介]李延伟(1987-),女,山东济宁人, 泰山学院化学化工学院助教,理学硕士.1引言 多孔材料[1]由于具有较大的比表面积,在气体吸附[2]、 分离[3]和催化领域[4]具有重要的应用.依据孔径大小,国际纯粹和应用化学会(International Union of Pure and Applied Chemistry ,简称IUPAC )将多孔材料分为三类:孔径大于50nm 的为大孔材料(macroporous materials ),孔径在2nm 到50nm 之间的为介孔材料(mesoporous materials ),孔径小于2nm 的为微孔材料(microporous materials ).多孔材料的发 展经历了从传统的无机多孔材料(比如分子筛[5]等)到有机-无机杂化孔材料(比如PMO [6]、 MOF [7]等), 直到近年来研究兴起的有机多孔材料(比如CMP [8]、COF [9]等).相比传统无机多孔材料的难于功能化和有机-无机杂化多孔材料的不稳定性,有机多孔材料的出现很好的弥补了这些缺点.有机多孔材 料的优势[10]主要体现在:(1)有机多孔材料多是由一些较轻的化学元素组成,比如碳,氮,氧,氢等;(2) 有机材料通常采用共价键连接,材料的稳定性大大增强;(3)有机多孔材料在构建时就很容易引入一些 功能化基团, 实现其在某一领域的应用.所以,有机多孔材料的简单高效的合成方式、多策略的构筑手段、易与功能化及广泛的应用性使得对它的研究正处在一个高速发展的阶段. 不同于无机孔材料,有机多孔材料的孔道结构主要依靠单体的刚性结构支撑形成,而无需添加任何模板剂,所以构筑材料的单体一般都是刚性的有机分子(比如芳香环骨架).在有机多孔材料前期研究 中,主要是发展不同策略通过不同的有机化学反应实现材料的构建(图1).其中常用的构建手段有[11]:

手性催化剂

手性催化剂的综述 院系: 专业班级:学号: 姓名: 指导老师:

关于手性催化剂的探讨 目的: 这次任务我主要找关于手性催化剂的发展的研究,通过看这些专利可以看出这些年在手性物质方面研究的重点。以及推测今后手性物质研究的方向。 概念: 大家都知道有机化合物是含碳的化合物,一个碳原子的最外层上有四个电子,若以单键成键时,可以形成四个共价单键,共价键指向四面体的顶点,当碳原子连接的四个基团各不相同时,与这个碳原子相连接的四个基团有两种空间连接方式,这两种方式如同左右手,互为“镜像”,也是不能完全叠合在一起的,因此,这样的分子叫做“手性分子”。这种构成手性关系的分子之间,把一方叫做另一方的“对映异构体”。许多有机化合物分子都有“对映异构体”,即是具有“手性”。 通过查看下载的这些文章,自己进行了一下总结,主要有以下几方面吧。 一、C1- 对称性手性二胺席夫碱金属配合物的研究进展 不对称合成方法包括底物诱导的不对称合成和催化剂诱导的不对称合成, 而最具吸引力的就是手性催化剂诱导的不对称合成, 已成为有机合成化学研究的热点。其中, 具有C1 对称性的手性二胺席夫碱, 例如( 1R, 2R) - N, N.. - 3, 5- 双取代水杨醛- 1, 2- 环己二胺及其衍生物, 多年来其金属配合物的合成及其在不对称催化领域的应用研究异常活跃。这类手性席夫碱金属配合物被总称为Salen 型催化剂, 此外还有Sa lan型和Sa la len型的配体。A l、M o、Co、T i、C r、Nb、V、Cu等一系列金属的离子都能与( 1R, 2R) - N, N.. - 3, 5- 双取代水杨醛- 1, 2- 环己二胺及其衍生物形成配合物, 并被应用于有机不对称催化合成, 涉及包括不对称氢化、不对称氢转移、不对称氢硅化、不对称硅氰化和不对称氢氰化等重要反应[ 11] 。近年来还出现了无机或有机高分子负载的Sa len型催化剂, 以及以高分子共价键担载的聚Sa len型金属配合物[ 15] , 使催化剂可以循环使用。本文就近年来手性二胺席夫碱( 1R, 2R) - N, N.. - 3, 5- 双取代水杨醛- 1, 2- 环己二胺及其衍生物与不同金属形成的配合物研究作一简要介绍, 重点评述了这些配合物的合成方法以及作为手性催化剂在不对称合成中的应用。 1.. A l( ! )配合物的合成与应用 Katsuki等[ 16- 17] 从1, 2 - 环己二胺出发分步合成了一种新的光学活性Salen型配体1, 并且利用模板法与Et2A lC l反应制备出一种新的A l( ! ) 配合物2 (如图2)。X- 衍射分析表明配合物2具有扭曲的三角双锥构型, 而配位的叔胺的绝对构型被确定为S。N - 甲基则以syn形式取向于C l配体, 这一C l配体在配合物作为Lew is酸催化剂时可被底物所取代。配合物 2 可以作为醛类和醛亚胺类化合物羟基膦酸酯化(H ydrophosphonylation) 的高效催化剂, 分别以很高的对映选择性得到相应的..- 羟基膦酸

聚合物膜用于手性化合物拆分的研究进展

聚合物膜用于手性化合物拆分的研究进展 肖定书胡继文*王国芝 (中国科学院广州化学研究所广州 510650) 摘要对聚合物膜在对映体协助和直接拆分中的研究进展进行了综述,比较了传统和新型光学拆分膜的结构和性能,指出了吸附选择性和扩散选择性膜的优缺点以及它们进行规模生产的可能性,重点介绍了光学拆分膜的设计原则、制备方法、膜组建形式和分离方式以及手性识别机理,并对聚合物膜拆分技术在整个分离技术中的地位及其工业化发展前景进行了评述。 关键词对映体拆分聚合物膜手性 Research Progresses on Enantiomeric Resolution by Polymeric Membranes Xiao Dingshu, Hu Jiwen*, Wang Guozhi (Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650) Abstract Recent research progresses on indirectly and directly resolving enantiomers by polymeric membranes are reviewed. Structures and properties of the traditional and new type optical resolution membranes are compared. The pros and cons and possibilities of industrialization of selective-sorption or selective-diffusion membranes are pointed out. Some aspects, for examples: designing principles and methods, modules and resolving styles and recognition mechanisms on optical resolution membranes are mainly introduced. Statuses and affections of resolution techniques by polymeric membranes in chiral resolution and industrial prospects are commented. Key words Enantiomer resolution, Polymeric membrane, Chirality 实物与其镜像不相叠合的几何特性即为手性,其重要性体现在药物、食品、香料、建筑等诸领域。特别是对映体药物,生命体内的手性环境常使之表现出不同的药理和药代特性,外消旋体药物的使用可能导致完全相反的药代行为、作用模式以及药效学,因此,光学纯药物需求与日俱增,“手性经济”迅猛发展。然而,天然获取的单手性物质的种类和数量有限,不对称合成技术又面临产率低、成本高和手性源制约的挑战。比较而言,混旋体拆分在获取单手性物质种类、数量以及成本等方面均具优势。现已发展了痕量、微量甚至制备级分离的多种手性拆分技术[1]。 传统手性拆分技术(结晶法、化学法、色谱法等)多存在处理量少、成本高、拆分对象窄和衍生化繁琐限制[2]。近20年来,手性拆分研究工作集中在分析水平,其中以具有高效、快速、 肖定书女,27岁,硕士生,现从事手性膜拆分对映体研究工作。*联系人,E-mail:hujiwen@https://www.doczj.com/doc/148080416.html, 广东省自然科学基金资助项目(02174) 2003-06-14收稿,2003-10-15接受

手性和不对称催化问题研究毕业论文

手性和不对称催化问题研究毕业论文 第一章文献综述 1.1引言 1.1.1手性和不对称催化 手性chirality是指某些物质分子与其镜像虽然像左手、右手一样相似,但是不能重叠的特征。手性化合物在医药、食品、农药、香料、材料科学等领域中有着重要应用。生物体的重要分子(如DNA、蛋白质等)都是有手性的,体酶催化的反应都是立体专一性反应。而不同对映体的药物分子,有可能药效功能也不一样,例如左旋吗啡有明显的镇痛药效,右旋吗啡却没有;奥沙西泮右旋体的活性和毒性比左旋体强;右旋佐匹克隆药效好,左旋佐匹克隆则毒副作用相对较强[1];左旋的(S)-奥美拉唑比消旋体具有更好的临床治疗效果等等[2]。因而,1992年3月美国FDA颁布的手性药物指导原则,含手性因素的化学药物必须被说明两个对映体在体的不同生理活性、药理作用、代谢过程和药物动力学情况[3]。因此,手性对于自然界和人类具有十分重要的意义[4]。 不对称催化(asymmetric catalysis)是利用手性催化剂催化化学反应,使非手性的底物分子生成手性化合物的方法。不对称合成尤其是不对称催化合成已毫无疑义地成为现今获得手性化合物最重要的途径。因此,2001的诺贝尔奖授予了不对称催化技术的开发与应用[5]。 1.1.2有机小分子催化剂 德国化学家Langenback于1932年提出了“organocatalys t”的概念[6]。不对称有机

催化(asymmetric organocatalysis)是指通过加入不含金属的亚化学计量的有机化合物来催化不对称化学反应的进行[7]。与金属有机催化剂不同,有机小分子催化剂是一类不含金属离子或金属离子不参与催化循环的有机化合物,分子中一般含有氮、磷等富电子中心或氨基、羟基等活性官能团,能与反应物通过化学键、氢键、静电或德华力等作用形成活化中间体或过渡态[8-11],同时利用本身的结构因素来控制产物的立体选择性。早在1904年,Marckwald[12]等报道了首例有机小分子催化的不对称反应,即用番木鳖碱不对称催化的丙二酸脱羧,得到了具有10%ee值的产物。虽然有机分子很早就被用来作催化剂,但是不对称有机小分子催化在最近十年才不断发展起来并引起人们的关注。 手性过渡金属催化剂催化价格昂贵,易产生污染,催化剂难回收,稳定性差。相比于金属催化剂,有机小分子催化剂具有容易制备、反应条件温和、稳定性好等优点。不对称有机小分子催化剂的研究发展已成为当代有机化学中最有挑战性和研究价值的领域之一[13-15]。 最近几年发展了很多有机小分子催化剂,包括脯氨酸及其衍生物、其它氨基酸和短肽、金鸡纳生物碱、联萘类化合物、卡宾以及TADDOL衍生物等[16-23]。可以催化不对称羟醛缩合反应、不对称Mannich反应、不对称Diels-Alder反应及不对称Michael反应等许多不同的反应[16-19]。其中金鸡纳生物碱及其衍生物具有特殊的刚性结构以及不对称氨基醇边链,是生物碱不对称有机催化剂中的典型代表,是多功能的的有机催化剂,在不对称合成领域,尤其是作为有机小分子催化剂,表现出了良好的催化效果[24-25]。 1.2 金鸡纳生物碱有机催化的不对称Michael反应 Michael加成反应是最重要的的构建碳-碳键的途径之一。通过Michael反应能合成多种官能团化的碳骨架[26-27],在药物合成化学和有机化学中具有重要意义。近年来,有机催化的不对称Michael加成,尤其是金鸡纳生物碱及其衍生物催化的不对称Michael加

相转移催化剂在有机化学中的应用

相转移催化剂在有机化学中的应用 摘要:在有机化学中,特别是有机合成中,经常会遇到非均相反应,比如说有机相与水相,液相与固相等。这类反应的缺点是速度慢、产率低。直到相转移催化剂的出现才解决了这一难题。它使非均相转化为均相反应,加快了反应速率,缓和反应条件,简化操作过程,提高了选择性,不论是实验室还是工业生产都得到广泛应用,得到人们越来越多的关注。本文简单介绍了相转移催化剂的种类及催化原理,重点介绍了各类相转移催化剂在有机化学中的应用,并介绍了相转移催化剂的新进展。 关键词:相转移催化剂;有机化学;应用 0前言 相转移催化剂可以使非均相转化为均相反应,加快了反应速率,缓和了反应条件,简化了操作过程,减少了副反应,从而提高了选择性,不论是实验室还是工业生产都很适用,受到人们越来越多的关注、研究和应用。随着相转移催化作用研究工作的不断深入,其应用日渐广泛。 1相转移催化剂的种类及催化机理 多数的相转移催化反应要求催化剂把阴离子转移到有机相中,除此之外,还有些催化剂是把阳离子或中性分子从一相中转移到另一相中,按此不同,赵地顺等人将催化剂分为以下几种:鎓盐类,如季铵盐等,它们发挥作用的是季鏻或季铵阳离子Q+,Q+离子和试剂阴离子Nu-络合成离子对Q+Nu-,并利用这些阳离子自身的亲油性将试剂阴离子带进有机相;包结物结构类的相转移催化剂,如环糊精、冠醚以及近年来发展的杯芳烃等,这类催化剂均含有分子内的空腔结构,通过与反应物分子形成氢键、范德华力等,从而形成包结物超分子结构并将客体分子带入另一相中释放,进而使两相中的反应得以发生;开链聚醚类相转移催化剂,如聚乙二醇及其醚类等,与冠醚、环糊精类相似,它们也可以与客体分子形成超分子结构,不同的是开链聚醚类是”柔性”的长链分子,可以折叠、弯曲成合适形状结构与大小不同的离子配合,从而应用更广泛;其他类,如反相相转移催化剂、三相催化剂、离子液体、杂多酸类等。相转移催化剂种类繁多,分类方法也是多种多样,其中以鎓盐类、包结物类、聚乙二醇类相转移催化剂为主。随着研究的不断深入,一些新型的相转移催化剂也随之出现,如吡啶及其衍生物、过渡金属配合物以及手性相转移催化剂等。 以季铵盐为例,说明相转移催化剂的催化机理。一个互不相溶的二相体系,其中一相为水相,含有亲核试剂的盐类M+Nu-,另一相为不溶于水的有机相,其中含有与上述盐类起反应的有机反应物RX。季铵盐Q+X-既可以溶于水相又可溶于油相,当它在水相中接触到分布在其中的盐类时,水相中过剩的阴离子Nu-便与催化剂中的阴离子进行交换,形成Q+Nu- 离子对。其交换过程如下: Q+X- + M+Nu- Q+Nu- + M+X-

相关主题
文本预览
相关文档 最新文档