当前位置:文档之家› 圆辅助线的常用做法

圆辅助线的常用做法

圆辅助线的常用做法
圆辅助线的常用做法

浅谈圆的辅助线作法

在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。

1.有弦,可作弦心距

在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P ,

且AC=BD 。求证:PO 平分∠APD 。

分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE≌△OPF,得出PO 平分∠APD 。

证法1:作OE ⊥AB 于E ,OF ⊥CD 于F

AC=BD => = => = => AB=CD => OE=OF

∠OEP=∠OFP=90

° => △OPE≌△OPF 0OP=OP

=>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证

PO 平分∠APD ,即证 ∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线

即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OP A ≌△OP D 。

证法2:连结OA ,OD 。 ∠CAP=∠BDP

∠APC=∠DPB =>△ACP ≌△DBP

AB (

BD ,

(

CD (

D 图 1 AC (

AC (

BD (

AB (

CD

(

D 图1-1

AC=BD

=>AP=DP

OA=OD =>△OPA ≌△OPD =>∠OPA=

∠OPD =>PO 平分∠APD OP=OP

2.有直径,可作直径上的圆周角

对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。

例2 如图2,在△ABC 中,AB=AC ,

以AB 为直径作⊙O 交BC 于点D ,过D 作⊙O 的切线DM 交AC 于M 。求证 DM ⊥AC 。

分析:由AB 是直径,很自然想到其所

对的圆周角是直角。于是可连结AD ,得∠ADB=Rt ∠,又由等腰三角形性质可得∠1=∠2,再由弦切角的性质可得∠ADM=∠B ,故易证∠AMD=∠ADB=90°,从而DM ⊥AC 。

证明 连结AD 。

AB 为⊙O 的直径 =>∠ADB=Rt ∠

AB=AC

DM 切⊙O 于D => ∠ADM=∠B

=> ∠1+∠B=∠2+∠ADM =>∠AMD=∠ADB= Rt ∠ => DM ⊥AC 说明,由直径及等腰三角形想到作直径上的圆周角。 3. 当圆中有切线常连结过切点的半径或过切点的弦

例3 如图3,AB 是⊙O 的直径,点D 在AB 的延长线上,BD=OB ,DC 切⊙O 于C 点。求∠A 的度数。

分析:由过切点的半径垂直于切线, 于是可作辅助线即半径OC ,得Rt △, 再由解直角三角形可得∠COB 的度数, 从而可求∠A 的度数。

图 2

=>∠1=∠2

D

图 3

解:连结OC 。

DC 切⊙O 于C =>∠OCD=90

°

OC=OB=BD

=> ∠A=1/2∠COB=30°

例4 如图4,已知△ABC 中,∠1=∠2, 圆O 过A 、D 两点,且与BC 切于D 点。

求证 EF//BC 。

分析:欲证EF//BC ,可找同位角或内错角

是否相等,显然同位角相等不易证,于是可连结DE ,得一对内错角∠BDE 与∠DEF ,由圆的性质可知这两个角分别等于∠1和∠2,故易证EF//BC 。

证明 连结DE 。

BC 切⊙O 于D =>∠BDE= ∠1

∠2= ∠DEF =>∠BDE= ∠DEF =>EF//BC ∠1= ∠2

说明,由有切线且在同圆中等弧所对的圆周角相等想到连结弦。

4.当两圆相切,可作公切线或连心线 例5 已知:如图5,⊙O 1与⊙O 2外切 于点P ,过P 点作两条直线分别交⊙O 1与 ⊙O 2于点A 、B 、C 、D 。求证 PB ?PC=PA ?PD 。

分析:欲证PB ?PC=PA ?PD ,即证PA ∶PB=PC ∶PD ,

由此可作辅助线AC 、BD ,并证AC//DB ,要证平行,需证一对内错角相等,如∠C=∠D ,然后考虑到这两个角分别与弦切角有关,进而再作辅助线即两圆公切线MN ,从而问题迎刃而解。

证明 连结AC 、BD ,过P 点作两圆的内公切线MN

=>∠APM=∠C ,∠BPN=∠D

∠APM=∠BPN

A

C N B

D M P

O 1

O 2 .

. 图 5

=> COS ∠COD=OC/OD=1/2 =>∠COB=60°

=> ∠C=∠D

=> AC//DB => PA ∶PB=PC ∶PD => PB ?PC=PA ?PD

说明,由需证弦平行且弦切角等于其所夹弧对的圆周角想到作公切线和作弦。

例6 已知:如图6,⊙O 1与⊙O 2内切于点T ,经过

切点T 的直线与⊙O 1与⊙O 2分别相交于点A 和B 。

求证 TA ∶TB=O 1A ∶O 2B 。

分析:欲证TA ∶TB=O 1A ∶O 2B ,可考虑证这四条线段

所在的三角形相似,即证△TO 1A ∽△TO 2B ,于是只需连结O 2O 1,并延长,必过切点,则产生△TO 1A 和△TO 2B ,由∠1= ∠2=∠T ,则O 1A// O 2B ,易证线段比相等。

证明 连结并延长O 2O 1 ⊙O 1 和 ⊙O 2内切于点T O 1A=O 1T =>∠1= ∠T O 2T= O 2B =>∠2= ∠T

=>△TO 1A ∽△TO 2B => TA ∶TB=O 1A ∶O 2B

说明,由连心线必过切点可构造三角形证全等想到作连心线。 5.当两圆相交,可作公共弦或连心线。 例7 如图7,⊙O 1与⊙O 2相交于A 、B 两点,过A 点作⊙O 2的切线交⊙O 1于点C , 直线CB 交⊙O 2于点D ,DA 延长线交⊙O 1 于点E ,连结CE 。求证 CA=CE 。

分析:欲证CA=CE ,考虑在三角形中证它们所对的角相等,即∠E=∠CAE ,

又由∠DAF=∠CAE ,想到弦切角∠DAF 与所夹弧对的圆周角相等,故需作辅助线:公共弦AB ,得∠E=∠DBA ,易证CA=CE 。

证明 连结AB 。

CA 切⊙O 2于A =>∠DAF=∠DBA

四边形ABCE 内接于⊙O 1 =>∠E=∠DBA

T B

A O

1 O 2

1

2

图 6

=> O 2O 1必过切点T

=> ∠1= ∠2 => O 1A// O 2B F

E

B

C

A

O 1 O 2

.

.

图 7

D

∠DAF=∠CAE

=>∠E=∠CAE => CA=CE

说明,由两圆相交及用到弦切角和圆内接四边形想到作公共弦。 例8 如图8,在梯形ABCD 中,以两腰 AD 、BC 分别为直径的两个圆相交于M 、N 两点, 过M 、N 的直线与梯形上、下底交于E 、F 。

求证: MN ⊥AB 。

分析:因为MN

是公共弦,若作辅助线O 1O 2,

必有MN ⊥O 1O 2,再由O 1O 2是梯形的中位线,得O 1O 2//AB ,从而易证MN ⊥AB 。

证明 连结O 1O 2交EF 于G => MN ⊥O 1O 2。

DO 1=O 1A ,CO 2=O 2B => O 1O 2是梯形ABCD 的中位线 => O 1O 2//AB =>∠EFA=∠EGO 1=Rt ∠ => MN ⊥AB

说明,由两圆相交连心线垂直于公共弦想到作连心线。 6.有半圆,可作整圆

例9 如图9,BC 为⊙O 的直径,AD ⊥BC 于D , = , AD 交BF 于E 。求证 AE=BE

分析:欲证AE=BE ,可考虑在三角形中证这两边

所对角相等。即∠ABF=∠BAE ,再考虑证这两个圆周角

所对的弧相等,故需补全⊙O ,可证 = ,故有 = 易证AE=BE.

证明 补全⊙O ,延长AD 交⊙O 于H ,

直径BC⊥AD => = => = =>∠ABF=∠BAH => AE=BE

说明,由平分弦的直径必平分弦所对的弧想到补全圆。

7.相交两圆中至少有一个圆经过另一个圆的圆心,遇到这类问题,常用的辅助线是连结过交点的半径

例10 如图10,⊙O 1与⊙O 2相交于

BA (

AF (

BA ( BH (

(

AF (

BH (

P A . F

A

B D O .

H

E C

图 9 C D

E M N

G A

B

O 2

O 1 F

图 8

BA (

BH (

AF , (

BH

( BA= AF ,

(

A、B两点,且O2在⊙O1上,点P在⊙O1上,

点Q在⊙O2上,若∠APB=40°,求∠AQB的度数。

分析连结O2A、O2B,在⊙O1中利用

圆内接四边形性质求得∠AO2B=140°,在⊙O2中,

∠AQB=1/2∠AO2B=70°。

证明过程略。

说明,由同圆内同弧所对的圆周角等于所对圆心角的一半想到连结过交点的半径。

几何辅助线的添加,是几何学习的一个难点,正确添加辅助线,是沟通题设和结论的桥梁,也是解题的重要手段。学生在做几何题时,明知需要引辅助线,但又不知如何引,而是乱加辅助线,反而使图形复杂,影响思路与问题的解决。因此,恰当添加辅助线,使问题迎刃而解,从而调动学生积极性,激发学习兴趣,开发智力,掌握解题技能与技巧,提高解题效率,培养思维能力。

参考文献

1.赵玉宽,《数理天地》中《圆内辅助线》

2.林运来,《数理天地》中〈〈圆的辅助线〉〉

3.伊红钟旭天陈士军〈〈初中数学教学案例专题研究〉〉

初中数学证明题常见辅助线作法规律.

初中数学证明题常见辅助线作法规律 初中数学证明题常见辅助线作法记忆歌诀;及几何规律汇编;人们从来就是用自己的聪明才智创造条件解决问题的,;初中几何常见辅助线作法歌诀;人说几何很困难,难点就在辅助线;辅助线,如何添?把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形;图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试 初中数学证明题常见辅助线作法记忆歌诀 及几何规律汇编 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 初中几何常见辅助线作法歌诀 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

2020年中考高频考点——圆中常用的辅助线作法

中考高频考点————圆中常用的辅助线作法 圆是中考的必考点,也是重难点,圆的题型难点很大一部分来源于圆中很多的隐藏条件,需要添加辅助线才能很好的理解,圆中常见的辅助线作法有如下几种:(1)遇弦作弦心距或半径;(2)遇直径作直径所对的圆周角;(3)已知切线,连半径,得垂直;(4)直线与圆交点明确,证切线时,连半径,证垂直;(5)直线与圆交点不明确,证切线时,作垂直,证半径. 一.知识梳理 圆的主要知识点: 1.垂径定理:垂直于弦的直径____________,并且平分弦所对的__________. 推论:平分弦(不是直径)的直径________于弦,并且_______弦所对的两条弧 圆的两条平行弦所夹的弧。 2.圆周角定理:一条弧所对的圆周角等于它所对的__________. 推论:1.同圆或等圆中,同弧或等弧所对的圆周角__________________. 2.半圆(或直径)所对的圆周角是_____,90°的圆周角所对的弦是______. 3、圆心角定理:同圆或等圆中,相等的圆心角所对的弦,所对的弧相等,弦心距 4.切线的性质与判定、 性质:圆的切线_________于过切点的半径或直径. 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 判定:1.已知半径,证垂直;2.作垂直,证半径. 二.常见辅助线做法 ?作法一作半径或直径

①作半径(或直径):构造等腰三角形或直角三角形 1.如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB =AB ,则P A 的长为( ) A .5 B.5 3 2 C .5 2 D .5 3 2.如图,△ABC 内接于⊙O ,∠A =60°,BC =63,则BC ︵ 的长为( ) A .2π B .4π C .8π D .12π 3.如图,△ABC 内接于⊙O ,∠A =60°,BC =2 3,则⊙O 的面积为( ) A .2π B .4π C .8π D .12π 4.如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________. 5.如图,⊙O 的半径为6,点A ,B ,C 在⊙O 上,且∠ACB =45°,则弦AB 的长是________.

初中数学圆的辅助线八种作法

中考数学圆的辅助线 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90° => △OPE ≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证 AB ( BD , ( CD ( D C B P O A E F P B 图 1 AC ( AC ( BD ( AB ( CD (

∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AC=BD =>AP=DP OA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP 2.有直径,可作直径上的圆周角 对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。 例2 如图2,在△ABC 中,AB=AC , 以AB 为直径作⊙O 交BC 于点D ,过D 作⊙O 的切线DM 交AC 于M 。求证 DM ⊥AC 。 分析:由AB 是直径,很自然想到其所 B D C M A O . A 2 1 图 2 D C B P O A P B 图1-1

初中几何常见辅助线作法口诀及习题大全

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。

作辅助线的方法一:中点、中位线,延线,平行线。如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。二:垂线、分角线,翻转全等连。如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。三:边边若相等,旋转做实验。如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。如条件中出现两圆相切(外切,切),或相离(含、外离),那么,辅助线往往是连心线或外公切线。七:切线连直径,直角与半圆。如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。八:弧、弦、弦心距;平行、等距、弦。如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。有时,圆周角,弦切角,圆心角,圆角和圆外角也存在因果关系互相联想作辅助线。九:面积找底高,多边变三边。如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。如遇多边形,想法割补成三角形;反之,亦成立。另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

九年级数学圆中常见辅助线作法

圆中常见辅助线的作法 典型例题: 例题1、如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是 弧AB 上 任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周长为12,则PA 长为______________ 例题2、如图所示,已知AB 是⊙O 的直径,AC ⊥L 于C ,BD ⊥L 于D ,且AC+BD=AB 。 求证:直线L 与⊙O 相切。 例题3、如图,AB 是⊙O 的直径,弦AC 与AB 成30°角,CD 与⊙O 切于C , 交AB?的延长线于D ,求证:AC=CD . 例题4、如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点, 那么OP 的长的取值范围是_________.

B A C B 1. 遇到弦时(解决有关弦的问题时) 1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 2. 遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3. 遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4. 遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点 作用:利用切线的性质定理可得OA ⊥AB ,得到直角或直角三角形。 (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。 5. 遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线 段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

圆辅助线的常用做法

浅谈圆的辅助线作法 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE≌△OPF,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90 ° => △OPE≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证 PO 平分∠APD ,即证 ∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OP A ≌△OP D 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AB ( BD , ( CD ( D 图 1 AC ( AC ( BD ( AB ( CD ( D 图1-1

几何中常见的辅助线添加方法

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

11第十一章 圆中的辅助线

第十一章 圆中的辅助线 且AB=OC ,求∠A 。 热搜精练 1.如图,AB 经过⊙O 的圆心,点B 在⊙O 上, 若AD=OB ,且∠B=54°。试求∠A 的度数。 2.如图,AB 是⊙O 的直径,弦PQ 交AB 于M ,且 PM=MO 。求证:弧13 AP =弧BQ 。 模型2 构造直角形 图①,已知AB 是⊙O 的直径,点C 是圆上一 点,连接AC 、BC ,则∠ACB=90°。 如图②,已知AB 是⊙O 的一条弦,过点O 作 OE ⊥AB ,则222OE AE OA +=。 模型分析 (1)如图①,当图形中含有直径时,构造直径所对的圆周角是解决问题的重 要思路,在证明有关问题中注意90°的圆周角的构造。 (2)如图②,在解决求弦长、弦心距、半径问题时,在圆中常作弦心距或连 接半径作为辅助线,利用弦心距、半径和半弦组成一个直角三角形,再利用勾股定理进行计算。 模型实例 例1.如图,已知⊙O 的直径AB 和弦CD 相交于点E , AE=2,BE=6,∠DEB=60°,求CD 的长。 例2.如图,AB 是⊙O 的直径,AB=AC ,BC 交⊙O 于点 AC 交⊙O 于点E ,∠BAC=45°。 (1)求∠EBC 的度数; (2)求证:BD=CD 。 热搜精练 1.如图,⊙O 的弦AB 、CD 互相垂直,垂足为E ,且 AE=5,BE=13,点O 到AB 的距离为O 到CD 距离,线段OE 的长及⊙O 的半径。 2.已知,AB 和CD 是⊙O 的两条弦,且AB ⊥CD 于点H ,连接BC 、AD ,作 OE ⊥AD 于点E 。求证:13OE BC =。 3.如图,直径AB=2,AB 、CD 交于点E 且夹角为45°, 则22CE DE += 。 模型3 与圆的切线有关的辅助线 (1)切线的性质; (2)切线的判定方法。 模型实例 例1.如图,OA 、OB 是⊙O 的半径,且OA ⊥OB ,P 是OA 上任意一点,BP 的延 长线交⊙O 于Q ,过Q 点的切线交OA 的延长线于R 。求证:RP=RQ 。 例2.如图,△ABC 内接于⊙O ,过A 点作直线DE ,当∠BAE=∠C ,试确定直线

圆中常用辅助线的作法

圆中常用辅助线的作法 1.圆中作辅助线的常用方法: (1)作弦心距,以便利用弦心距与弧、弦之间的关系与垂径定理。 (2)若题目中有“弦的中点”和“弧的中点”条件时,一般连接中点和圆心,利用垂径定理的推论得出结果。 (3)若题目中有“直径”这一条件,可适当选取圆周上的点,连结此点与直径端点得到90度的角或直角三角形。 (4)连结同弧或等弧的圆周角、圆心角,以得到等角。 (5)若题中有与半径(或直径)垂直的线段,如图1,圆O中,BD⊥OA于D,经常是:①如图1(上)延长BD交圆于C,利用垂径定理。 ②如图1(下)延长AO交圆于E,连结BE,BA,得Rt△ABE。 图1(上)图1(下) (6)若题目中有“切线”条件时,一般是:对切线引过切点的半径, (7)若题目中有“两圆相切”(内切或外切),往往过切点作两圆的切线或作出它们的连心线(连心线过切点)以沟通两圆中有关的角的相等关系。 (8)若题目中有“两圆相交”的条件,经常作两圆的公共弦,使之得到同弧上的圆周角或构成圆内接四边形解决,有时还引两连心线以得到结果。 (9)有些问题可以先证明四点共圆,借助于辅助圆中角之间的等量关系去证明。(10)对于圆的内接正多边形的问题,往往添作边心距,抓住一个直角三角形去解决。 例题1:如图2,在圆O中,B为的中点,BD为AB的延长线,∠OAB=500,求∠CBD的度数。 解:如图,连结OB、OC的圆O的半径,已知∠OAB=500 ∵B是弧AC的中点 ∴弧AB=弧BC ∴AB==BC 又∵OA=OB=OC ∴△AOB≌△BOC(S.S.S)图2 ∴∠OBC=∠ABO=500 ∵∠ABO+∠OBC+∠CBD=1800

九年级数学下册2圆小专题五圆中常见辅助线的作法习题新版湘教版

小专题(五)圆中常见辅助线的作法 圆中常见辅助线的添加口诀及技巧 半径与弦长计算,弦心距来中间站. 圆上若有一切线,切点圆心半径连. 要想证明是切线,半径垂线仔细辨. 是直径,成半圆,想成直角径连弦. 弧有中点圆心连,垂径定理要记全. 圆周角边两条弦,直径和弦端点连. 还要作个内切圆,内角平分线梦圆. 三角形与扇形联姻,巧妙阴影部分算. 一、连半径——构造等腰三角形 1.如图,在⊙O中,AB为⊙O的弦,C,D是直线AB上的两点,且AC=BD.求证:△OCD是等腰三角形. 二、半径与弦长计算,弦心距来中间站 方法归纳:在圆中,求弦长、半径或圆心到弦的距离时,常过圆心作弦的垂线段,再连接半径构成直角三角形,利用勾股定理进行计算.在弦长、弦心距、半径三个量中,已知任意两个可求另一个. 2.如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,求排水管内水的深度. 三、见到直径——构造直径所对的圆周角

方法归纳:构造直径所对的圆周角,这是圆中常用的辅助线作法,可充分利用“半圆(或直径)所对的圆周角是直角”这一性质. 3.如图,AB为⊙O的直径,弦C D与AB相交于点E.∠ACD=60°,∠ADC=50°,求∠CEB的度数. 四、有圆的切线时,常常连接圆心和切点得切线垂直于半径 方法归纳:已知圆的切线时,常把切点与圆心连接起来,得半径与切线垂直,构造直角三角形,再利用直角三角形的有关性质解题. 4.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于点F.切点为G,连接AG交CD于点K.求证:KE=GE.

圆中常见辅助线的作法

C 圆中常见辅助线的作法 1. 遇到弦时(解决有关弦的问题时) 1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 2 ,遇到有直径时 3.4.常常添加过切点的半径(连结圆心和切点 5. 遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径), 再 证其与直线垂直。 6. 遇到两相交切线时(切线长) 常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。 7. 遇到三角形的内切圆时 连结内心到各三角形顶点,或过内心作三角形各边的垂线段。 8. 遇到三角形的外接圆时,连结外心和各顶点 C B P

,E,F,求Rt△ABC的内心I ,若CF垂直于AD,AB=2,求CD 上一个动点,

8、已知:□ABCD的对角线AC、BD交于O点,BC切⊙O于E点.求证:AD也和⊙O相切. 9、如图,学校A附近有一公路MN,一拖拉机从P点出发向PN方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A周围100米以内受到噪音影响,问:当拖拉机向PN方向行驶时,学校是否会受到噪音影响?请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒? 10、如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,求阴影部分的面积. 11、如图,已知AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为 F.求证:DE=CF.

圆中常见辅助线的添加口诀及技巧知识交流

圆中常见辅助线的添加口诀及技巧 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 要想作个外接圆,各边作出中垂线。 还要作个内切圆,内角平分线梦园。 如果遇到相交圆,不要忘作公共弦。 若是添上连心线,切点肯定在上面。 二:圆中常见辅助线的添加: 1、遇到弦时(解决有关弦的问题时) (1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 (2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。

2、遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3、遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4、遇到有切线时 (1)常常添加过切点的半径(见切点连半径得垂直) 作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。 5、遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。 6、遇到三角形的内切圆时

连结内心到各三角形顶点,或过内心作三角形各边的垂线段。 作用:利用内心的性质,可得: (1)内心到三角形三个顶点的连线是三角形的角平分 线;(2)内心到三角形三条边的距离相等 7、遇到三角形的外接圆时,连结外心和各顶点 作用:外心到三角形各顶点的距离相等。 例题1、如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。 例题2、如图,弦AB的长等于⊙O的半径,点C在弧AMB上, 则∠C的度数是 ________. 例题3、如图,AB是⊙O的直径,AB=4,弦BC=2,∠ B= 例题4、如图,AB、AC是⊙O的的两条弦,∠BAC=90°, AB=6,AC=8,⊙O的半径 是

2020年中考数学复习: 圆中常见辅助线的作法 专题练习题

圆中常见辅助线的作法 1.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( ) A.15° B.18° C.20° D.28° 2.如图所示,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=23,OH=1,则∠APB的度数是( ) A.60° B.50° C.40° D.30° 3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( ) A.10 B.8 C.5 D.3 4.如图所示,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长是( ) A.2 5 B. 5 C.213 D.13 5.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( )

A.10 B.8 C.5 D.3 6. 如图所示,已知:AB是⊙O的直径,点C、D在⊙O上,∠ABC=50°,则∠D 为( ) A.50° B.45° C.40° D.30° 7.如图,半圆O的直径AB=10,弦AC=6,AD平分∠BAC,则AD的长为( ) A.8 B.5 5 C.5 D.45 8. 如图所示,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( ) A.3 B.4 C.3 2 D.42 9.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M、N分别是AB、BC的中点,则MN长的最大值是 . 10.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O 的切线,切点为F.若∠ACF=65°,则∠E= . 11. 已知:AB是⊙O的直径,点C,D在⊙O上,∠ABC=50°,则∠D= .

九年级数学圆中常见辅助线作法

九年级数学圆中常见辅助线作法

圆中常见辅助线的作法 典型例题: 例题1、如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是 弧AB 上 任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周长为12,则PA 长为______________ 例题2、如图所示,已知AB 是⊙O 的直径,AC ⊥L 于C ,BD ⊥L 于D ,且AC+BD=AB 。 求证:直线L 与⊙O 相切。 例题3、如图,AB 是⊙O 的直径,弦AC 与AB 成30°角,CD 与⊙O 切于C , 交AB?的延长线于D ,求证:AC=CD . A B C D E O

例题4、如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,那么OP的长的取值范围是_________. 1.遇到弦时(解决有关弦的问题时) 1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。O C B A

O C B A O C B A 2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 2.遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3.遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4.遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点 作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。(2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。 5.遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),

圆中常见的辅助线

圆中常见的辅助线 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

圆中常见辅助线的做法 一.遇到弦时(解决有关弦的问题时) 1.常常添加弦心距,或作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 例:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D二点.求证:AC = BD 证明:过O作OE⊥AB于E ∵O为圆心,OE⊥AB ∴AE = BE CE = DE ∴AC = BD 练习:如图,AB为⊙O的弦,P是AB上的一点,AB = 10cm,PA = 4cm.求⊙O的半径. 2.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角. 例:如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB,求证:AC BD = 证明:(一)连结OC、OD ∵M、N分别是AO、BO的中点 ∴OM = 1 2 AO、ON = 1 2 BO ∵OA = OB ∴OM = ON ∵CM⊥OA、DN⊥OB、OC = OD ∴Rt△COM≌Rt△DON ∴∠COA = ∠DOB ∴AC BD = (二)连结AC、OC、OD、BD ∵M、N分别是AO、BO的中点 ∴AC = OC BD = OD ∵OC = OD ∴AC = BD ∴AC BD = 3.有弦中点时常连弦心距 例:如图,已知M、N分别是⊙O 的弦AB、CD的中点,AB = CD,求证:∠AMN = ∠CNM 证明:连结OM、ON ∵O为圆心,M、N分别是弦AB、CD的中点 ∴OM⊥AB ON⊥CD ∵AB = CD ∴OM = ON ∴∠OMN = ∠ONM

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。 作法图形

平移腰,转化为三角形、平行四边形。 A B C D E 平移对角线。转化为三角形、平行四边形。 A B C D E 延长两腰,转化为三角形。 A B C D E 作高,转化为直角三角形和矩形。 A B C D E F 中位线与腰中点连线。 A B C D E F

圆中常见的辅助线的作法分类大全

O C B A 1. 遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。或者连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:1、利用垂径定理; 2、利用圆心角及其所对的弧、弦和弦心距之间的关系; 3、利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 4、可得等腰三角形; 5、据圆周角的性质可得相等的圆周角。 例:如图,AB是⊙O 的直径,PO ⊥AB 交⊙O 于P 点,弦PN 与AB 相交于点M , 求证:PM ?PN=2PO 2 . 分析:要证明PM ?PN=2PO 2 ,即证明PM ?PC =PO 2 , 过O 点作OC ⊥PN 于C ,根据垂经定理 NC=PC ,只需证明 PM ?PC=PO 2 ,要证明PM ?PC=PO 2 只需证明Rt △POC ∽Rt △PMO. 证明: 过圆心O 作OC ⊥PN 于C ,∴PC= 2 1PN ∵PO ⊥AB, OC ⊥PN ,∴∠MOP=∠OCP=90°. 又∵∠OPC=∠MPO ,∴Rt △POC ∽Rt △PMO. ∴ PO PC PM PO 即∴PO 2= PM ?PC. ∴PO 2= PM ?2 1PN ,∴PM ?PN=2PO 2 . 【例1】如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。 【例2】如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点, 那么OP 的长的取值范围是_________. 【例3】如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,

初中数学九年级下册解题技巧专题:圆中辅助线的作法

解题技巧专题:圆中辅助线的作法 ——形成思维模式,快速解题 ◆类型一遇弦添加弦心距或半径 1.如图,AB是⊙O的一条弦,直径CD⊥AB于点E.若AB=24,OE=5,则⊙O的半径为( ) A.15 B.13 C.12 D.10 第1题图第2题图 2.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是________cm. 3.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,求AC的长. ◆类型二遇直径添加直径所对的圆周角 4.如图,CD是⊙O的直径,已知∠1=30°,则∠2的度数为( ) A.30°B.45°C.60°D.70°

第4题图 第5题图 5.如图,BC 为半圆O 的直径,A ,D 为半圆上两点,AB =3,BC =2,则∠D 的度数为________度. 6.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E. (1)求证:BE =CE ; (2)若∠B =70°,求DE ︵的度数; (3)若BD =2,BE =3,求AC 的长. ◆类型三 遇切线连接圆心和切点 7.如图,四边形ABCD 内接于⊙O ,AB 是直径,过C 点的切线与AB 的延长线交于P 点,若∠P =40°,则∠D 的度数为________. 8.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,求DM 的长.

《圆中常见的辅助线的作法》教案

O C B A O C B A O C B A 圆中常见的辅助线的作法 1.遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的 端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求 有关量。 【例1】如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。【例2】如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点,那 么OP 的长的取值范围是_________. 2.遇到有直径时常常添加(画)直径所对的圆周角。作用:利用圆周角的性质,得到直角或直角三角形。 【例3】如图,AB 是⊙O 的直径,AB=4,弦BC=2, ∠B= 3.遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。

作用:利用圆周角的性质,可得到直径。 【例4】如图,AB、AC是⊙O的的两条弦,∠BAC=90°,AB=6,AC=8,⊙O的半径是 4.遇到弦时 常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一 点和弦的两个端点。 作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。【例5】如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是________. 5.遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。 【例6】如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB?的延长线于D,求证:AC=CD. (2)常常添加连结圆上一点和切点作用:可构成弦切角,从而利 用弦切角定理。

几种常用辅助线做法

常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全 等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利 用的思维模式是全等变换中的“旋转”. 3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是 三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中 的“平移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将 某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线法 有以线段中点为端点的线段、有三角形中线时,常延长加倍此线段,构造全等三角形。 例1. 在△ABC中,已知AD为△ABC的中线,求证:AB+AC>2AD 例2. CB,CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB.求证:CE=2CD。

E D F C B A 例3. 已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE 于点F,DF=AC.求证:AE平分∠BAC. 例4.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 二、截长补短法例1、如图,已知在ΔABC中,∠B=2∠C,AD平分∠BAC,求证:AC=AB+BD 练习、如图,在ABC ?中,60 BAC ∠=?,AD是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数. D C B A

圆中常见的辅助线的作法分类大全

1. 遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。或者连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:1、利用垂径定理; 2、利用圆心角及其所对的弧、弦和弦心距之间的关系; 3、利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 4、可得等腰三角形; 5、据圆周角的性质可得相等的圆周角。 例:如图,AB是⊙O 的直径,PO ⊥AB 交⊙O 于P 点,弦PN 与AB 相交于点M , 求证:PMPN=2PO 2. 分析:要证明PMPN=2PO 2,即证明PMPC =PO 2, 过O 点作OC ⊥PN 于C ,根据垂经定理 NC=PC ,只需证明 PMPC=PO 2,要证明PMPC=PO 2只需证明Rt △POC ∽Rt △PMO. 证明: 过圆心O 作OC ⊥PN 于C ,∴PC= 2 1 PN ∵PO ⊥AB, OC ⊥PN ,∴∠MOP=∠OCP=90°. 又∵∠OPC=∠MPO ,∴Rt △POC ∽Rt △PMO.

O C B A ∴ PO PC PM PO 即∴PO 2= PMPC. ∴PO 2= PM 2 1PN ,∴PMPN=2PO 2 . 【例1】如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。 【例2】如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点, 那么OP 的长的取值范围是_________. 【例3】如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上, 则∠C 的度数是________. 2. 遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形。 例 如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N . (1) 求证:BA ·BM=BC ·BN ; (2) 如果CM 是⊙O 的切线,N 为OC 的中点,当AC=3时,求AB 的值. 分析:要证BA ·BM=BC ·BN ,需证△ACB ∽△NMB ,而∠C=90°,所以需要△NMB 中有个直角,而BN 是圆O 的直径,所以连结MN 可得∠BMN=90°。 (1) 证明:连结MN ,则∠BMN=90°=∠ACB ∴△ACB ∽△NMB

相关主题
文本预览
相关文档 最新文档