当前位置:文档之家› 夏宇闻数字系统设计第一章

夏宇闻数字系统设计第一章

夏宇闻数字系统设计第一章
夏宇闻数字系统设计第一章

数字集成电路知识点整理

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

《verilog_数字系统设计课程》(第二版)思考题答案

绪论 1.什么是信号处理电路?它通常由哪两大部分组成? 信号处理电路是进行一些复杂的数字运算和数据处理,并且又有实时响应要求的电路。它通常有高速数据通道接口和高速算法电路两大部分组成。 2.为什么要设计专用的信号处理电路? 因为有的数字信号处理对时间的要求非常苛刻,以至于用高速的通用处理器也无法在规定的时间内完成必要的运算。通用微处理器芯片是为一般目的而设计的,运算的步骤必须通过程序编译后生成的机器码指令加载到存储器中,然后在微处理器芯片控制下,按时钟的节拍,逐条取出指令分析指令和执行指令,直到程序的结束。微处理器芯片中的内部总线和运算部件也是为通用目的而设计,即使是专为信号处理而设计的通用微处理器,因为它的通用性也不可能为某一特殊的算法来设计一系列的专用的运算电路而且其内部总线的宽度也不能随便的改变,只有通过改变程序,才能实现这个特殊的算法,因而其算法速度也受到限制所以要设计专用的信号处理电路。 3.什么是实时处理系统? 实时处理系统是具有实时响应的处理系统。 4.为什么要用硬件描述语言来设计复杂的算法逻辑电路? 因为现代复杂数字逻辑系统的设计都是借助于EDA工具完成的,无论电路系统的仿真和综合都需要掌握硬件描述语言。 5.能不能完全用C语言来代替硬件描述语言进行算法逻辑电路的设计? 不能,因为基础算法的描述和验证通常用C语言来做。如果要设计一个专用的电路来进行这种对速度有要求的实时数据处理,除了以上C语言外,还须编写硬件描述语言程序进行仿真以便从电路结构上保证算法能在规定的时间内完成,并能通过与前端和后端的设备接口正确无误地交换数据。 6.为什么在算法逻辑电路的设计中需要用C语言和硬件描述语言配合使用来提高设计效率? 首先C语言很灵活,查错功能强,还可以通过PLI编写自己的系统任务,并直接与硬件仿真器结合使用。C语言是目前世界上应用最为广泛的一种编程语言,因而C程序的设计环境比Verilog HDL更完整,此外,C语言有可靠地编译环境,语法完备,缺陷缺少,应用于许多的领域。比较起来,Verilog语言只是针对硬件描述的,在别处使用并不方便。而用Verilog的仿真,综合,查错等大部分软件都是商业软件,与C语言相比缺乏长期大量的使用,可靠性较差,亦有很多缺陷。所以只有在C语言的配合使用下,Verilog才能更好地发挥作用。C 语言与Verilog HDL语言相辅相成,互相配合使用。这就是即利用C语言的完整性又要结合Verilog对硬件描述的精确性,来更快更好地设计出符合性能要求的

数字电路与系统设计课后习题答案

(此文档为word格式,下载后您可任意编辑修改!) 1.1将下列各式写成按权展开式: (352.6)10=3×102+5×101+2×100+6×10-1 (101.101)2=1×22+1×20+1×2-1+1×2-3 (54.6)8=5×81+54×80+6×8-1 (13A.4F)16=1×162+3×161+10×160+4×16-1+15×16-2 1.2按十进制0~17的次序,列表填写出相应的二进制、八进制、十六进制数。 解:略 解:分别代表28=256和210=1024个数。 (1750)8=(1000)10 (3E8)16=(1000)10 1.5将下列各数分别转换为二进制数:(210)8,(136)10,(88)16 1.6将下列个数分别转换成八进制数:(111111)2,(63)10,(3F)16 解:结果都为(77)8 解:结果都为(FF)16 1.8转换下列各数,要求转换后保持原精度: (0110.1010)余3循环BCD码=(1.1110)2 1.9用下列代码表示(123)10,(1011.01)2: 解:(1)8421BCD码: (123)10=(0001 0010 0011)8421BCD (1011.01)2=(11.25)10=(0001 0001.0010 0101)8421BCD (2)余3 BCD码 (123)10=(0100 0101 0110)余3BCD (1011.01)2=(11.25)10=(0100 0100.0101 1000)余3BCD (1)按二进制运算规律求A+B,A-B,C×D,C÷D, (2)将A、B、C、D转换成十进制数后,求A+B,A-B,C×D,C÷D,并将结果与(1)进行比较。 A-B=(101011)2=(43)10 C÷D=(1110)2=(14)10 (2)A+B=(90)10+(47)10=(137)10 A-B=(90)10-(47)10=(43)10 C×D=(84)10×(6)10=(504)10 C÷D=(84)10÷(6)10=(14)10 两种算法结果相同。

数字系统设计大作业

2014 ~ 2015学年第1 学期 《数字系统设计》 大作业 题目:4×4阵列键盘键信号检测电路设计专业:电子信息工程 班级: 姓名: 指导教师: 电气工程学院 2015 年12月

摘要 人类文明已进入到高度发达的信息化社会。信息化社会的发展离不开电子信息产品开发技术、产品品质的提高和进步。电子信息产品随着科学技术的进步,其电子器件和设计方法更新换代的速度日新月异。实现这种进步的主要原因就是电子设计技术和电子制造技术的发展,其核心就是电子设计自动化(EDA,Electronic Design Automation)技术,EDA技术的发展和推广应用又极大地推动了电子信息产业的发展。为保证电子系统设计的速度和质量,适应“第一时间推出产品”的设计要求,EDA技术正逐渐成为不可缺少的一项先进技术和重要工具。目前,在国内电子技术教学和产业界的技术推广中已形成“EDA热”,完全可以说,掌握EDA技术是电子信息类专业学生、工程技术人员所必备的基本能力和技能。 本设计主要利用VHDL硬件描述语言在EDA平台xilinx.ise.7.1i上设计一个4×4阵列键盘扫描电路,将行扫描信号输入阵列键盘,读取列信号的值,输出按键编码,从而判断出按键按下的位置。并且使用Modelsim软件进行模拟仿真,下载到EDA实验箱进行硬件验证。 关键词:EDA VHDL语言 4×4阵列键盘扫描

目录 《数字系统设计》 (1) 数字系统设计.............................................................................. 错误!未定义书签。摘要 (2) 关键词:EDA VHDL语言 4×4阵列键盘扫描 (2) 1、实验目的 (4) 2、实验要求 (4) 3、实验原理 (4) 4、总体框图 (5) 4.1.1方案一 (5) 4.1.2方案二 (5) 4.2设计思路 (6) 5、功能模块介绍 (8) 5.1键盘消抖模块 (8) 5.2键盘模块 (8) 5.3VHDL部分程序 (8) 6、实验结果 (10) 6.1综合电路图 (10) 6.2时序仿真 (11)

《___数字系统设计___》试卷含答案

,考试作弊将带来严重后果! 华南理工大学期末考试 《数字系统设计》试卷 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷; 本试卷共大题,满分100分,考试时间120分钟 (每小题2分,共16分) 大规模可编程器件主要有FPGA、CPLD两类,下列对CPLD结构与工作原理 ( C ) CPLD即是现场可编程逻辑器件的英文简称; CPLD是基于查找表结构的可编程逻辑器件; 早期的CPLD是从GAL的结构扩展而来; 在Altera公司生产的器件中,FLEX10K 系列属CPLD结构; 在VHDL语言中,下列对时钟边沿检测描述中,错误的是( D ) then ...; then ...; then ...; 在VHDL语言中,下列对进程(PROCESS)语句的语句结构及语法规则的描述中,正确( A ) PROCESS为一无限循环语句;敏感信号发生更新时启动进程,执行完成后,等待下一. 敏感信号参数表中,应列出进程中使用的所有输入信号; 进程由说明部分、结构体部分、和敏感信号参数表三部分组成; 当前进程中声明的信号也可用于其他进程 基于EDA软件的FPGA / CPLD设计流程,以下流程中哪个是正确的:( C ) 原理图/HDL文本输入→适配→综合→时序仿真→编程下载→功能仿真→硬件测试 原理图/HDL文本输入→功能仿真→综合→时序仿真→编程下载→适配→硬件测试; 原理图/HDL文本输入→功能仿真→综合→适配→时序仿真→编程下载→硬件测试 原理图/HDL文本输入→适配→时序仿真→编程下载→功能仿真→综合→硬件测试。 关于综合,从输入设计文件到产生编程文件的顺序正确的是:(B) .逻辑综合→高层次综合→物理综合;

数字集成电路设计与分析

问答: Point out design objects in the figure such as :design, cell, reference, port, pin, net, then write a command to set 5 to net A Design: top Reference: ADD DFF Cell: U1 U2 Port: A B clk sum Pin: A B D Q Net: A B SIN Set_load 5 [get_nets A] why do we not choose to operate all our digital circuits at these low supply voltages? 答:1)不加区分地降低电源电压虽然对减少能耗能正面影响,但它绝对会使门的延时加大 2)一旦电源电压和本征电压(阈值电压)变得可比拟,DC特性对器件参数(如晶体管 阈值)的变化就变得越来越敏感 3)降低电源电压意味着减少信号摆幅。虽然这通常可以帮助减少系统的内部噪声(如串扰引起的噪声),但它也使设计对并不减少的外部噪声源更加敏感) 问道题: 1.CMOS静态电路中,上拉网络为什么用PMOS,下拉网络为什么用NMOS管 2.什么是亚阈值电流,当减少VT时,V GS =0时的亚阈值电流是增加还是减少? 3.什么是速度饱和效应 4.CMOS电压越低,功耗就越少?是不是数字电路电源电压越低越好,为什么? 5.如何减少门的传输延迟? P203 6.CMOS电路中有哪些类型的功耗? 7.什么是衬垫偏置效应。 8.gate-to-channel capacitance C GC,包括哪些部分 VirSim有哪几类窗口 3-6. Given the data in Table 0.1 for a short channel NMOS transistor with V DSAT = 0.6 V and k′=100 μA/V2, calculate V T0, γ, λ, 2|φf|, and W / L:

数字系统设计与verilogHDL课程设计

数字系统设计与v e r i l o g H D L课程设计设计题目:实用多功能数字钟 专业:电子信息科学与技术 班级:0313410 学号: 姓名:杨存智 指导老师:黄双林 摘要 本课程设计利用QuartusII软件VerilogVHDL语言的基本运用设计一个多功能数字钟,经分析采用模块化设计方法,分别是顶层模块、alarm、alarm_time、counter_time、clk50mto1、led、switch、bitel、adder、sound_ddd、sound_ddd_du模块,再进行试验设计和软件仿真调试,分别实现时分秒计时、闹钟闹铃、时分秒手动校时、时分秒清零,时间保持和整点报时等多种基本功能。 单个模块调试达到预期目标,再将整体模块进行试验设计和软件仿真调试,已完全达到分块模式设计功能,并达到设计目标要求。 关键字:多功能数字钟、Verilog、模块、调试、仿真、功能 目录

课程设计的目的 通过课程设计的锻炼,要求学生掌握Verilog HDL语言的一般设计方法,掌握Verilog HDL语言的基本运用,具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,基于实践、源于实践,实践出真知,实践检验真理,培养学生的创新精神。 掌握现代数字逻辑电路的应用设计方法,进一步掌握电子仪器的正确使用方法,以及掌握利用计算机进行电子设计自动化(EDA)的基本方法。 课程设计的任务与要求 用Verilog HDL语言设计一个多功能的数字钟,具有下述功能: (1)计时功能。包括时、分、秒的计时; (2)定时与闹钟功能:能在设定的时间发出闹铃音; (3)校时功能。对时、分和秒能手动调整以校准时间; (4)整点报时功能;每逢整点,产生“嘀嘀嘀嘀一嘟”四短一长的报时音。 2.课程设计思路及其原理 数字计时器要实现时分秒计时、闹钟闹铃、时分秒手动校时、时分秒清零,时间保持和整点报时等多种基本功能,所有功能都基于计时功能。因此首先需要获得具有精确振荡时间的脉振信号,以此作为计时电路的时序基础,实验中可以使用的振荡频率源为50MHZ,通过分频获得所需脉冲频率1Hz。得到1hz脉冲后,要产生计时模块,必须需要加法器来进行加法,因此需要一个全加器,此实验中设计一个八位全加器来满足要求。 数字电路设计中,皆采用二进制加法,为实现实验中时分秒的最大功能,本实验中采用十六进制加法器,再进行BCD码进行转换来实现正常时钟显示。为产生秒位,设计一个模60计数器,利用加法器对1HZ 的脉冲进行秒计数,产生秒位;为产生分位,通过秒位的进位产生分计数脉冲,分位也由模60计数器构成;为产生时位,用一个模24计数器对分位的进位脉冲进行计数。整个数字计时器的计数部分共包括六位:时十位、时个位、分十位、分个位、秒十位和秒个位。基本的计时模块完成之后,整点报时、清零、校时、LED显示、闹铃模块可以相互实现,其中,闹铃模块与计时模块的显示相互并行。 清零功能是通过控制计数器清零端的电平高低来实现的。只需使清零开关按下时各计数器的清零端均可靠接入有效电平(本实验中是低电平),而清零开关断开时各清零端均接入无效电平即可。 保持功能是通过逻辑门控制秒计数器输入端的1Hz脉冲实现的。正常情况下,开关不影响脉冲输入即秒正常计数,当按下开关后,使脉冲无法进入计数端,从而实现计时保持功能。

verilog数字系统设计教程习题答案

verilog数字系统设计教程习题答案 第二章 1.Verilog HDL 既是一种行为描述语言,也是一种结构描述语言。如果按照一定的规则和风格编写代码,就可以将功能行为模块通过工具自动转化为门级互联的结构模块。这意味着利用Verilog语言所提供的功能,就可以构造一个模块间的清晰结构来描述复杂的大型设计,并对所需的逻辑电路进行严格的设计。 2.模块的基本结构由关键词module和endmodule构成。 3.一个复杂电路系统的完整Verilog HDL模型是由若干个Verilog HDL模块构成的,每一个模块又可以由若干个子模块构成。其中有些模块需要综合成具体电路,而有些模块只是与用户所设计的模块交互的现存电路或激励信号源。利用 Verilog HDL语言结构所提供的这种功能就可以构造一个模块间的清晰层次结构来描述极其复杂的大型设计,并对所作设计的逻辑电路进行严格的验证。 4.Verilog HDL和VHDL作为描述硬件电路设计的语言,其共同的特点在于:能 形式化地抽象表示电路的结构和行为、支持逻辑设计中层次与领域的描述、可借用高级语言的精巧结构来简化电路的描述、具有电路仿真与验证机制以保证设计的正确性、支持电路描述由高层到低层的综合转换、硬件描述与实现工艺无关(有关工艺参数可通过语言提供的属性包括进去)、便于文档管理、易于理解和设计重用。 5.不是 6.将用行为和功能层次表达的电子系统转换为低层次的便于具体实现的模块组 合装配的过程。 7.综合工具可以把HDL变成门级网表。这方面Synopsys工具占有较大的优势,它的Design Compile是作为一个综合的工业标准,它还有另外一个产品叫Behavior Compiler,可以提供更高级的综合。 另外最近美国又出了一个软件叫Ambit,据说比Synopsys的软件更有效,可以 综合50万门的电路,速度更快。今年初Ambit被Cadence公司收购,为此Cadence 放弃了它原来的综合软件Synergy。随着FPGA设计的规模越来越大,各EDA公 司又开发了用于FPGA设计的综合软件,比较有名的有:Synopsys的FPGA Express,Cadence的Synplity, Mentor的Leonardo,这三家的FPGA综合软件占了市场的绝大部分。 8.整个综合过程就是将设计者在EDA平台上编辑输入的HDL文本、原理图或状态图形描述,依据给定的硬件结构组件和约束控制条件 进行编译、优化、转换和综合,最终获得门级电路甚至更底层的电路描述网表文件。用于适配,适配将由综合器产生的网表文件配置于指定的目标器件中,使之产生最终的下载文件,如JEDEC、Jam格式的文件。

数字电路与系统设计实验报告

数字电路与系统设计实验报告 学院: 班级: 姓名:

实验一基本逻辑门电路实验 一、实验目的 1、掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。 2、熟悉TTL中、小规模集成电路的外型、管脚和使用方法。 二、实验设备 1、二输入四与非门74LS00 1片 2、二输入四或非门74LS02 1片 3、二输入四异或门74LS86 1片 三、实验内容 1、测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。 2、测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。 3、测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。 四、实验方法 1、将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的十5V连接。 2、用实验台的电平开关输出作为被测器件的输入。拨动开关,则改变器件的输入电平。 3、将被测器件的输出引脚与实验台上的电平指示灯(LED)连接。指示灯亮表示输出低电平(逻辑为0),指示灯灭表示输出高电平(逻辑为1)。 五、实验过程 1、测试74LS00逻辑关系 (1)接线图(图中K1、K2接电平开关输出端,LED0是电平指示灯) (2)真值表 2、测试74LS02逻辑关系

(1)接线图 (2)真值表 3、测试74LS86逻辑关系接线图 (1)接线图 (2)真值表 六、实验结论与体会 实验是要求实践能力的。在做实验的整个过程中,我们首先要学会独立思考,出现问题按照老师所给的步骤逐步检查,一般会检查处问题所在。实在检查不出来,可以请老师和同学帮忙。

实验二逻辑门控制电路实验 一、实验目的 1、掌握基本逻辑门的功能及验证方法。 2、掌握逻辑门多余输入端的处理方法。 3、学习分析基本的逻辑门电路的工作原理。 二、实验设备 1、基于CPLD的数字电路实验系统。 2、计算机。 三、实验内容 1、用与非门和异或门安装给定的电路。 2、检验它的真值表,说明其功能。 四、实验方法 按电路图在Quartus II上搭建电路,编译,下载到实验板上进行验证。 五、实验过程 1、用3个三输入端与非门IC芯片74LS10安装如图所示的电路。 从实验台上的时钟脉冲输出端口选择两个不同频率(约7khz和14khz)的脉冲信号分别加到X0和X1端。对应B和S端数字信号的所有可能组合,观察并画出输出端的波形,并由此得出S和B(及/B)的功能。 2、实验得真值表

数字系统设计原理和方法

论述数字系统设计的原理和方法 一、数字系统原理 数字系统,即有一些逻辑单元构成的具备数字运算和逻辑处理的一类算术系统,完成对数字量进行算术运算和逻辑运算的电路称为数字电路。用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。 数字电路一般分为组合逻辑电路和时序逻辑电路。 组合逻辑电路简称组合电路,它由最基本的的逻辑门电路组合而成。特点是:输出值只与当时的输入值有关,即输出惟一地由当时的输入值决定。电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。 时序逻辑电路简称时序电路,它是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路,与组合电路最本质的区别在于时序电路具有记忆功能。时序电路的特点是:输出不仅取决于当时的输入值,而且还与电路过去的状态有关。它类似于含储能元件的电感或电容的电路,如触发器、锁存器、计数器、移位寄存器、储存器等电路都是时序电路的典型器件。 数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算 又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、 比较、存储、传输、控制、决策等应用。以二进制作为基础的数字逻辑电路,简单可靠,准 确性高。集成度高,体积小,功耗低是数字电路突出的优点之一。电路的设计、维修、维护 灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的 功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超 大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。 电路的设计组成只需采用一些标准的集成电路块单元连接而成。对于非标准的特殊电路还 可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。 因为数字系统的稳定,易于实现等特点,因此数字系统设计广泛的应用于电视、雷达、通信、电子计算机、自动控制、航天等科学技术各个领域。 二、实现方法

数字系统设计

东南大学自动化学院 《数字系统课程设计》 专业综合设计报告 姓名:_________________________ 学号: 专业:________________________ 实验室: 组别:______________________同组人员: 设计时间:年月日 评定成绩: _____________________ 审阅教师:

一.课程设计的目的与要求 二.原理设计 三.架构设计 四.方案实现与测试 五.分析与总结

专业综合设计的目的与要求(含设计指标) 主干道与乡村公路十字交叉路口在现代化的农村星罗棋布,为确保车辆安全、迅速地通过, 在交叉路口的每个入口处设置了红、绿、黄三色信号灯。红灯禁止通行;绿灯允许通行;黄 灯亮则给行驶中的车辆有时间行驶到禁行线之外。 主干道和乡村公路都安装了传感器, 检测 车辆通行情况,用于主干道的优先权控制。 设计任务与要求 (1)当乡村公路无车时,始终保持乡村公路红灯亮,主干道绿灯亮。 (2)当乡村公路有车时,而主干道通车时间已经超过它的最短通车时间时,禁止主干道通 行,让乡村公路通行。主干道最短通车时间为 25s 。 (3)当乡村公路和主干道都有车时,按主干道通车 25s ,乡村公路通车 16s 交替进行。 ( 4)不论主干道情况如何,乡村公路通车最长时间为 16s 。 (5)在每次由绿灯亮变成红灯亮的转换过程中间,要亮 5s 时间的黄灯作为过渡。 (6)用开关代替传感器作为检测车辆是否到来的信号。用红、绿、黄三种颜色的发光二极 管作交通灯。 要求显示时间,倒计时。 . 原理设计(或基本原理) HDL 语言,用ONEHOTI 犬态机编码表示交通灯控制器的四个状态(状态 0010,状态三: 0100,状态四: 1000): 设置两个外部控制条件:重置( set );乡村干道是否有车( c —— c=1 表示无车; c=0 表示有 车) 设置一个内部控制条件: 时间是否计满 ( state —— state=0 表示计数完成; state=1 表示计 数没有完成) 本设计采用 Verilog : 0001,状态二: 主干道红灯,显示 5 秒;乡村干道黄灯,显示 5 秒——( 0001) 主干道红灯,显示 21 秒;乡村干道绿灯,显示 16 秒——( 0010) 主干道黄灯,显示 5 秒;乡村干道红灯,显示 5 秒——( 0100) 主干道绿灯,显示 25 秒;乡村干道红灯,显示 30 秒——( 1000)

数字电路与系统设计课后习题答案

1、1将下列各式写成按权展开式: (352、6)10=3×102+5×101+2×100+6×10-1 (101、101)2=1×22+1×20+1×2-1+1×2-3 (54、6)8=5×81+54×80+6×8-1 (13A、4F)16=1×162+3×161+10×160+4×16-1+15×16-2 1、2按十进制0~17的次序,列表填写出相应的二进制、八进制、十六进制数。 解:略 1、3二进制数00000000~11111111与0000000000~1111111111分别可以代表多少个数?解:分别代表28=256与210=1024个数。 1、4将下列个数分别转换成十进制数:(1111101000)2,(1750)8,(3E8)16 解:(1111101000)2=(1000)10 (1750)8=(1000)10 (3E8)16=(1000)10 1、5将下列各数分别转换为二进制数:(210)8,(136)10,(88)16 解:结果都为:(10001000)2 1、6将下列个数分别转换成八进制数:(111111)2,(63)10,(3F)16 解:结果都为(77)8 1、7将下列个数分别转换成十六进制数:(11111111)2,(377)8,(255)10 解:结果都为(FF)16 1、8转换下列各数,要求转换后保持原精度: 解:(1、125)10=(1、0010000000)10——小数点后至少取10位 (0010 1011 0010)2421BCD=(11111100)2 (0110、1010)余3循环BCD码=(1、1110)2 1、9用下列代码表示(123)10,(1011、01)2: 解:(1)8421BCD码: (123)10=(0001 0010 0011)8421BCD (1011、01)2=(11、25)10=(0001 0001、0010 0101)8421BCD (2)余3 BCD码 (123)10=(0100 0101 0110)余3BCD (1011、01)2=(11、25)10=(0100 0100、0101 1000)余3BCD 1、10已知A=(1011010)2,B=(101111)2,C=(1010100)2,D=(110)2 (1)按二进制运算规律求A+B,A-B,C×D,C÷D, (2)将A、B、C、D转换成十进制数后,求A+B,A-B,C×D,C÷D,并将结果与(1)进行比较。解:(1)A+B=(10001001)2=(137)10 A-B=(101011)2=(43)10 C×D=(111111000)2=(504)10 C÷D=(1110)2=(14)10 (2)A+B=(90)10+(47)10=(137)10 A-B=(90)10-(47)10=(43)10 C×D=(84)10×(6)10=(504)10 C÷D=(84)10÷(6)10=(14)10 两种算法结果相同。 1、11试用8421BCD码完成下列十进制数的运算。 解:(1)5+8=(0101)8421BCD+(1000)8421BCD=1101 +0110=(1 0110)8421BCD=13

数字集成电路——电路系统与设计 项目

Digital Integrated Circuits – A Design Perspective 2/e Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikoli? Chapter 11 and 6 Design Project: 32-bit Arithmetic Logic Unit (Phase 1) 1.Designing a 32-bit atithmetic-logic unit – Background Arithmetic-logic units are the heart of any microprocessor. This semester, we will design the critical part of a 32-bit ALU. 1.1.High level structure The high-level block diagram of a high-performance ALU is shown in Figure 1. ALU’s have four major parts: ?Arithmetic block: This block is used to perform arithmetic operations such as addition, subtraction and comparison. The core of the arithmetic block is an adder. In the architecture presented in Figure 1, the adder uses carry look-ahead and sum-select techniques (the blocks labeled CARRYGEN, SUMGEN and SUMSEL). ?Logic block: This block is used to perform simple bitwise logic operations such as AND (masking), OR and XOR (the block labeled LU in Figure 1) ?Multiplexers: These blocks are used to select the appropriate inputs for the arithmetic and logic blocks. Usually more than two buses arrive at the inputs of the ALU (9 buses in Figure 1, selected by 9:1 MUX’s). Sometimes these multiplexers are used to perform some simple logic operations. The 5:1 MUX is a programmable shifter: its inputs contain

数字集成电路设计流程介绍

2002 年版权,复旦大学专用集成电路与系统国家重点实验室(设计流程1) 数字集成电路设计流程介绍 唐长文 2002年7月8日

2002 年版权,复旦大学专用集成电路与系统国家重点实验室(设计流程2) 内容 一、设计流程介绍1、流程图及设计步骤2、EDA软件 二、硬件描述语言简介 1、传统自下向上的设计方法 2、基于硬件描述语言的自顶向下的设计方法 3、硬件描述语言--VHDL介绍 4、VHDL语言设计实例 三、数字系统的结构设计-行为级或RTL级设计1、系统规范2、系统框架 3、系统源代码设计 4、系统行为级仿真 四、数字系统的电路设计--门级电路设计1、FPGA逻辑综合2、ASIC逻辑综合3、综合后仿真 五、数字系统的版图设计1、FPGA器件实现 2、基于标准单元ASIC版图的自动化生成 3、版图后仿真 六、版图验证和管子级仿真1、DRC&LVS 2、Star_sim管子级仿真

一、设计流程介绍 C语言仿真Matlab仿真COSSAP仿真

2002 年版权,复旦大学专用集成电路与系统国家重点实验室(设计流程4) 数字集成电路设计主要分为四大步:1、行为级、RTL 级源代码设计2、电路设计-门级电路设计(1)FPGA 逻辑综合(2)ASIC 逻辑综合3、版图设计 (1)FPGA 版图布局布线设计(器件实现) (2)ASIC 版图布局布线设计(基于标准单元库)4、版图验证(DRC&LVS) ?设计的步骤

2002 年版权,复旦大学专用集成电路与系统国家重点实验室 (设计流程5) ?EDA 软件 (1)FPGA 设计需要的软件源代码设计和仿真9Active-HDL FPGA 逻辑综合 9Synopsys FPGA Express 、Synplicity Synplify 、 Examplar LeonardoSpectrum 、XST(Xilinx Synthesis Tech)FPGA 器件实现 9Xilinx Foundation ISE 、Altera MaxplusII

verilog数字系统设计教程第6章例题

第六章例题 [例1]:用initial 块对存储器变量赋初始值 initial begin areg=0; //初始化寄存器areg for(index=0;index