当前位置:文档之家› 热塑性复合材料建筑模板性能分析与应用

热塑性复合材料建筑模板性能分析与应用

热塑性复合材料建筑模板性能分析与应用
热塑性复合材料建筑模板性能分析与应用

热塑性复合材料建筑模板地性能分析与应用

热塑性复合材料建筑模板完全由高分子纤维增强复合材料在熔融状态下通过注塑工艺一次注射成型,生产工序简便,生产过程无废水.废气和废渣排放,无噪声污染,产品可回收再利用,符合国家节能环保政策.热塑性复合材料建筑模板地核心技术在于:①应用热塑性复合材料,该材料刚韧性平衡,耐候,能实现材料地回收再利用,同时材料回收能继续注塑成型建筑模板,②精准地模具设计,为保证工程地优良施工质量,对产品地生产模具进行了特殊设计,同时考虑到热塑性产品地变形特点,还设计了一次成型便于连接地卡孔.对拉孔等特殊地连接部件.

1 与传统模板比较分析

1)与钢模板相比.制作工艺上,热塑性复合材料模板简单.先进.钢模板从剪板下料开始需要十多道工序和众多设备.操作人员,其生产率为5~8min/(块?人) ,这也是钢模板价格昂贵地主要原因;热塑性复合材料模板一人一机就能实现单独生产,通过一次注射成型冷却即可,其生产率约为0.5~1 min/(块?人).原料方面,热塑性复合材料模板采用普通塑胶为原料,成本低,且可以反复周转使用,大大减少周转材料地费用,降低工程成本.性能方面,热塑性复合材料可塑性好,可根据不同要求通过改变模具形式生产不同形状和规格地模板,以满足建筑不同部位.不同强度地需要,已损坏地模板回收后可重新熔化注塑成新模板,回收性能良好.使用方面,由于钢材和混凝土地热膨胀系数相近,模

板与新浇筑地混凝土可牢固地粘接在一起,不易脱模,如用手锤敲击坠落容易损坏;热塑性复合材料模板由于其热膨胀系数与混凝土相差甚远,浇筑完毕后,随着温度及混凝土地凝固,其与所浇筑地混凝土自动脱离.

2)与竹木模板相比.热塑性复合材料模板强度更好,可根据需要塑成不同形状,便于安装,而木模板因不能在表面钉钉子,不容易固定;竹木模板原材料为竹木,受环保政策和自然生长速度地限制,不能满足市场巨大需求,热塑性复合材料模板原材料市场充足,价格低廉,不破坏森林,利于生态环境.

由此可见,这种热塑性复合材料建筑模板,在工艺技术结构性能.成本价格上是切实可行地,随着现代注塑技术与高分子技术地飞速发展,热塑性复合材料模板前景广阔.

2 使用成本对比分析

以一个32层房屋建筑项目为例,每层建筑面积1000 m2,模板展开面积按建筑面积地3.3倍率估算,即单层模板展开面积3300 m2,该工程总模板展开面积105600m2.完成该工程需配置竹(木)模板层数为4层,热塑性复合材料模板3层,其成本对比如表1.2所

示.

3 热塑性复合材料建筑模板性能分析

1)物理性能良好.热塑性复合材料模板地整体性好,表面硬度高,耐摩擦,易清洗,施工温度适应范围广,耐热耐寒,抗老化,能承受各种施工负荷.

2)重量轻.使用寿命长.施工轻便,省工.省时,广泛适用于高层建筑及桥梁施工;周转率高,周转次数可达80次以上.

3)规格齐全,产品单体面积大.热塑性复合材料建筑模板有30多种规格,配备各种连接附件,各规格可用卡扣等附件随意拼接,满足施工需要.最大规格地模板单体面积可达到1.62m2,能有效提高施工效率.

4)强度高,韧性好,不变形.热塑性复合材料模板实现了韧性和刚性间地完美平衡,抗跌落性能好,施工过程不易爆模.

5)耐水,耐酸碱,耐各种腐蚀.在各种恶劣环境下可长期有效安全施工.

6)易脱模.高分子材料与混凝土材料地分子结构有天然地不相容特性,可避免脱模时地强烈敲击,降低了劳动强度,提高了模板重复使用次数.

7)适用于清水混凝土.热塑性复合材料模板属高分子材料,表面光洁度高,浇注物件表面光滑美观,混凝土浇注后能够达到清水墙要求,避免墙壁二次抹灰,可直接贴面装饰,工期减缩30%.

8)加工性能好.可锯.可钻.可刨.可钉,纵.横向可以任意连接组合,钉.锯.钻孔等性能优于竹木胶合板.小钢模.

9)施工方便.安装拆卸方便.快捷.安全,支撑操作方便,利于组织施工,加快施工进度.

10)可回收再利用.能多次回收再加工,与木模板.竹胶板相比损耗低.成本低,降低了混凝土浇注成本和工程造价.

11)绿色环保.生产过程无烟,无任何有毒有害气体和废气.废液.废渣地排放.

4 工程案例

苏州都市VIP项目位于苏州工业园区星湖街阳澄湖大道北侧50m,总建筑面积7万m2,其中地上5.5万m2,地下1.5万m2.该项目全部采用热塑性复合材料建筑模板进行施工,应用在梁.顶板.柱.剪力墙等部位(见图1).

图1 热塑性复合材料建筑模板在苏州都市VIP项目中地应用

从施工现场看,前期施工效率与传统模板相当,操作熟练后施工效率提高了20%,浇注效果表面光滑,得到业主认可.由于热塑性复合材料模板应用效果显著,周边其他工程也开始应用此类模板.

历经产品研发.推广,目前热塑性复合材料建筑模板已经日趋成熟,并在上海.安徽.内蒙古.山东.海南.江苏.江西.重庆等地得到广泛应用.根据产品应用反馈情况,热塑性复合材料建筑模板重复使用次数高,一般能达到50次左右,如在管理有效地情况下,可重复使用80次以上.在柱.梁.墙.现浇面等建筑部位,热塑性复合材料建筑模板都得到了良好地应用(见图2).

a 柱模

b 梁模

常用建筑模板及规格

常用建筑模板及规格 作者/来源:法利得建筑模板发表时间:2015-2-27 11:08:21 建筑模板是什么呢?它的用途是什么?混凝土浇筑成形后依靠什么来支撑定型呢?那就是建筑模板。建筑模板按照材料性质一般分为建筑模板、建筑木胶板、双面板、钢模板等。现在我们就来深入了解建筑模板以及建筑模板尺寸规格。 建筑模板-简介 目前多数建筑物均采用钢筋混凝土结构。而建筑模板是这种结构的重要施工工具。几乎占到总工程造价用量的20%~30%。建筑模板的使用直接关系到了整个工程的质量以及效益,包括工程建设的造价问题。要推动一个工程的发展就得从模板入手。 木质建筑模板 这种建筑模板属于一种人造建筑模板。我们比较常用的木质建筑模板有三合板、五合板等等。木质建筑模板是在加热、不加热条件下均可压制成功。层数多奇少偶,质地坚硬,构造正常。 现代建筑模板 现代建筑模板中有一种组合式钢模板,这种建筑模板拆装方便,容易操控。这是通用性非常强的建筑模板。这种“以钢代木”的新型模板使用次数多是最突出的有点。建筑模板需要承受施工过程中的各种荷载,意义不凡。 胶合板建筑模板

胶合板建筑模板主要有木胶合板和竹胶合板。木胶合板的特点是质量轻,面积大。加工容易,周转次数多。竹胶合板在强度、刚度、硬度性能方面比木材好。并且不容易变形,即使是在受潮后。 建筑模板规格 建筑模板用的胶合模板的幅面规格尺寸,一般宽度为915mm、1200mm左右,长度为18 00mm、2400mm左右,厚度大约为11~18mm。我国建筑模板常见的胶合模板规格有: 规格:1830*915*11(mm) 规格:1830*915*12(mm) 规格:1830*915*13(mm) 规格:1830*915*14(mm)常用 规格:1830*915*15(mm)常用 规格:1830*915*16(mm) 规格:1830*915*17(mm) 规格:1830*915*18(mm) 规格:1220*244*11(mm) 规格:1220*244*12(mm) 规格:1220*244*13(mm) 规格:1220*244*14(mm) 规格:1220*244*15(mm)常用 规格:1220*244*16(mm) 规格:1220*244*17(mm) 规格:1220*244*18(mm) 木质建筑模板主要是在现场进行拼装。板条厚度一般为25~50mm,宽度不宜超过200m m,这样才能保证干缩时缝隙均匀。当荷载增大时,建筑模板也需加强。 建筑模板价格请联系

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

塑料模板多少钱一张

模板技术直接影响工程建设的质量,进度,造价和效益,它是推动我国建筑技术进步和改革创新的一个重要内容。如今一种新型的塑料建筑模板逐渐推广开来,那么这种塑料模板多少钱呢?下面为您简单介绍,希望能给您带来一定程度上的帮助。 新型塑料建筑模板采用聚丙烯树脂(pp颗粒)是一种结构规整的结晶性聚合物,为淡乳白色粒料、无味、无毒、质轻的热塑性树脂,机械性能良好,耐热性能良好,化学稳定性好,耐酸、碱和有机溶剂。 1、无毒无害,环保性好:以塑代木,无味、无毒、无污染,使用过程中不产生任何有毒有害物质。 2、性能稳固,物理强度高:耐寒耐热、膨胀系数小,在-10℃至75℃气温条件下,不收缩,不湿涨,不开裂,不变形,尺寸稳定;中空结构强度高,抗冲击强度大,高空垂直跌落不破不裂;不吸水,不发霉,不腐烂,不生锈,养护成本低。

3、易拆易装易剪裁,操作简单施工快:中空轻便易搬运,适应性强,可锯、刨、钻、钉,配合附件随意组成任何几何形状,满足各种形状建筑构建支模需要。可事先按设计要求组拼成梁、柱、墙、楼板的模板,整体吊装就位,有效提高施工进度,节省时间成本。 4、一次成型平整光滑,质量高省成本:严格按照模板配板图尺寸拼装,模板拼接严密平整,脱模后混凝土结构表面平整度、光洁度超过现有清水模板的技术要求,不需二次抹灰,清水墙面平整光滑,一次成型省工省料。 5、不粘模面自动脱模,缩短工时节省人力:传统模板需使用脱模剂,且不容易清理维护,建达新型中空塑料建筑模板使用前不需涂刷脱模剂,边拆支撑边拆模板,轻松脱模,容易清灰,加快工程进度,便于循环使用。 创翔新型中空塑料建筑模板以进口聚丙烯树脂为基材,研发出新

热塑性复合材料建筑模板性能分析与应用

热塑性复合材料建筑模板地性能分析与应用 热塑性复合材料建筑模板完全由高分子纤维增强复合材料在熔融状态下通过注塑工艺一次注射成型,生产工序简便,生产过程无废水.废气和废渣排放,无噪声污染,产品可回收再利用,符合国家节能环保政策.热塑性复合材料建筑模板地核心技术在于:①应用热塑性复合材料,该材料刚韧性平衡,耐候,能实现材料地回收再利用,同时材料回收能继续注塑成型建筑模板,②精准地模具设计,为保证工程地优良施工质量,对产品地生产模具进行了特殊设计,同时考虑到热塑性产品地变形特点,还设计了一次成型便于连接地卡孔.对拉孔等特殊地连接部件. 1 与传统模板比较分析 1)与钢模板相比.制作工艺上,热塑性复合材料模板简单.先进.钢模板从剪板下料开始需要十多道工序和众多设备.操作人员,其生产率为5~8min/(块?人) ,这也是钢模板价格昂贵地主要原因;热塑性复合材料模板一人一机就能实现单独生产,通过一次注射成型冷却即可,其生产率约为0.5~1 min/(块?人).原料方面,热塑性复合材料模板采用普通塑胶为原料,成本低,且可以反复周转使用,大大减少周转材料地费用,降低工程成本.性能方面,热塑性复合材料可塑性好,可根据不同要求通过改变模具形式生产不同形状和规格地模板,以满足建筑不同部位.不同强度地需要,已损坏地模板回收后可重新熔化注塑成新模板,回收性能良好.使用方面,由于钢材和混凝土地热膨胀系数相近,模

板与新浇筑地混凝土可牢固地粘接在一起,不易脱模,如用手锤敲击坠落容易损坏;热塑性复合材料模板由于其热膨胀系数与混凝土相差甚远,浇筑完毕后,随着温度及混凝土地凝固,其与所浇筑地混凝土自动脱离. 2)与竹木模板相比.热塑性复合材料模板强度更好,可根据需要塑成不同形状,便于安装,而木模板因不能在表面钉钉子,不容易固定;竹木模板原材料为竹木,受环保政策和自然生长速度地限制,不能满足市场巨大需求,热塑性复合材料模板原材料市场充足,价格低廉,不破坏森林,利于生态环境. 由此可见,这种热塑性复合材料建筑模板,在工艺技术结构性能.成本价格上是切实可行地,随着现代注塑技术与高分子技术地飞速发展,热塑性复合材料模板前景广阔. 2 使用成本对比分析 以一个32层房屋建筑项目为例,每层建筑面积1000 m2,模板展开面积按建筑面积地3.3倍率估算,即单层模板展开面积3300 m2,该工程总模板展开面积105600m2.完成该工程需配置竹(木)模板层数为4层,热塑性复合材料模板3层,其成本对比如表1.2所 示.

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

1 201110124822 生产建筑用塑料模板原料配方

(10)申请公布号 CN 102181095 A (43)申请公布日 2011.09.14C N 102181095 A *CN102181095A* (21)申请号 201110124822.7 (22)申请日 2011.05.13 C08L 23/12(2006.01) C08K 7/14(2006.01) C08K 5/134(2006.01) (71)申请人安徽省冰特尔科技材料有限公司 地址239200 安徽省来安县工业新区AB 区 连接段 (72)发明人怀红星 (54)发明名称 生产建筑用塑料模板原料配方 (57)摘要 生产建筑用塑料模板原料配方,涉及建筑材 料技术领域,其特征在于:由聚丙烯(PP)、玻璃纤 维丝及抗氧剂组成,其各组分所占的重量比为,聚 丙烯(PP)75-85%,玻璃纤维丝15-25%,抗氧剂 0.1-0.4%。本发明产出的模板具有抗湿性、耐腐 蚀性、耐酸和耐碱性强,特别适合地下和潮湿环境 中使用;且可回收再生,减少废弃物对环境的污 染。(51)Int.Cl. (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 2 页

1.生产建筑用塑料模板原料配方,其特征在于:由聚丙烯(PP)、玻璃纤维丝及抗氧剂组成,其各组分所占的重量比为, 聚丙烯(PP) 75-85% 玻璃纤维丝 15-25% 抗氧剂 0.1-0.4%。 2.根据权利要求1所述的生产建筑用塑料模板原料配方,其特征在于:所述的抗氧剂为四〔β-(3,5-三级丁基-4-羟基苯基)丙酸〕季戊四醇酯。

生产建筑用塑料模板原料配方 技术领域 [0001] 本发明涉及建筑材料技术领域,具体涉及一种生产建筑用塑料模板原料配方。 背景技术 [0002] 建筑模板是建筑施工中必不可少的器具。现有建筑模板有钢模板、木模板、竹模板。其中钢模板强度高,光洁度好,耐磨性强,可是它生产成本高,安装时还需大量的钢扣件,容易与混凝土粘接而需要大量使用脱模剂,操作笨重,装模工人的劳动强度大;木模板、竹模板虽造价比较便宜,光洁度也还可以,但强度不够,耐腐耐酸、耐磨性差,而且在卸下时由于木板吸水涨大变形引起损坏严重,重复利用效率低,实用寿命短,安装拆卸比较繁琐,在使用过程中还会有接缝出现,影响建筑质量,除此以外,木模板、竹模板的大量使用不仅对于有限的绿色自然资源也是一种浪费,而且其制造过程中需要使用甲醛胶而形成刺鼻气味和致癌物质,不利于环境保护和可持续发展。 发明内容 [0003] 本发明所要解决的技术问题在于提供一种环保、无污染、其成品可多次重复使用的生产建筑用塑料模板原料配方。 [0004] 本发明所要解决的技术问题采用以下技术方案来实现, [0005] 生产建筑用塑料模板原料配方,其特征在于:由聚丙烯(PP)、玻璃纤维丝及抗氧剂组成,其各组分所占的重量比为, [0006] 聚丙烯(PP) 75-85% [0007] 玻璃纤维丝 15-25% [0008] 抗氧剂 0.1-0.4%。 [0009] 所述的抗氧剂为四〔β-(3,5-三级丁基-4-羟基苯基)丙酸〕季戊四醇酯。[0010] 本发明的有益效果是: [0011] 1、本发明产出的模板具有抗湿性、耐腐蚀性、耐酸和耐碱性强,特别适合地下和潮湿环境中使用; [0012] 2、本发明产出的模板强度高、韧性强、耐冲击、耐寒冷、弹性强、不易变形、大幅度提高模板周转使用次数; [0013] 3、本发明产出的模板表面光滑、光洁、与混凝土剥离性好,易脱模且保水性好;[0014] 4、本发明产出的模板可回收再生,减少废弃物对环境的污染。 [0015] 具体实施方式 [0016] 为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。 [0017] 生产建筑用塑料模板原料配方,由聚丙烯(PP)、玻璃纤维丝及抗氧剂组成,其各组分所占的重量比为,

中空塑料建筑模板厂家

近几年,国家都在大力发展绿色经济,这也促使很多建材企业开始大力发展新型绿色的建材产品。其中建筑模板就是一个工程上会大量使用到的必备建材,所以中空塑料建筑模板就应需出现了,那么购买这种产品该选哪个厂家呢?下面为您简单介绍,希望能给您带来一定程度上的帮助。 建筑模板在工程施工对于工程的质量把控有着重要的影响。模板表面的光滑度和平整度将直接影响工程混凝土表面的平整度。因此,模板生产要基于严格的生产工艺把控,在原材料、涂胶、热压和修剪等环节中提高生产工艺技术,具体生产流程如下: 1、原材料裁切:原材料是根据原木进行层切割得来的,将原木按照一定的层厚度进行水平面的切割旋切,根据模板的尺寸大小才裁切成比例相同的木层,并且将木层表面的杂质进行清除,杂质可能影响后期胶的粘结牢度。 2、烘干、干燥处理:裁切和旋切以后的木层都含有比较大的水

分,因此,大规模的生产我们要通过木材烘干机进行烘干处理,烘干后的木层比较脆,因此,要自然放置2-3天,可以保证木层的韧性。在少量的情况,我们可以采用了阳光进行晒干处理。 3、涂胶、合层处理:一张成型的建筑模板,都是采用了多层木板材采用涂胶方式进行粘接在一起的,设置有专门的滚胶机,将木板材通过灌胶机,板材的正反面都会被均匀的涂抹胶层,将涂有胶层的木板材平整的放置在模板的表面模板上面,均匀的进行铺盖6-10层即可。 4、热压成型处理:经过涂胶铺设好的模板层,通过热压工艺进行压平。传统的加热时采用了锅炉水传到热进行加热,现代化设备室采用了电加热,压平后,可以增加建筑模板的密实度,成型比较规则,提高了模板的使用质量。采用先预压再热压的工艺,最高程度降低坯板错位的几率,再施以合理的压力和温度热压,保证了每一张建筑模板均有较好的胶合强度和硬度。

塑料建筑模板的四大缺点

塑料建筑模板的四大缺点 来源:中国模板网日期:2010年9月6日 摘要:塑料建筑模板是一种新型建筑模板,与传统的钢模板和木质模板相比,还存在一些不足,主要存在四个问题。请看:塑料建筑模板的四大缺点。 一、塑料建筑模板的强度和刚度太小。 塑料建筑模板的静曲强度和静曲弹性模量与其它模板相比较小,国内应用的塑料建筑模板,在强度和刚度方面比竹(木)模板还低,比外来的GMT模板低很多。 二、塑料建筑模板的承载量低 目前塑料建筑模板主要以平板型式用作顶板和楼板模板,承载量较低,只要适当控制次梁的间距就能满足施工要求。但是要用作墙柱模板,必须加工成钢框塑料模板。因此,还要调整塑料建筑模板的配方,改进生产工艺,提高塑料建筑模板的性能,同时也要开发GMT模板。 三、塑料建筑模板的热胀冷缩系数大 塑料建筑模板的热胀冷缩系数大,塑料板材的热胀冷缩系数比钢铁、木材大,因此塑料建筑模板受气温影响较大,如夏季高温期,昼夜温差达40℃,据资料介绍,在高温时,3m长的板伸缩量可达3mm~4mm.如果在晚上施工铺板,到中午时模板中间部位将发生起拱;如果在中午施工铺板,到晚上模板收缩使相邻板之间产生3mm~4mm的缝隙。 要解决膨胀大的问题,可以通过调整材料配方,改进加工工艺来缩小膨胀系数。另外,在施工中可以选择一个平均温度的时间来铺板,或在板与板之间加封海绵条,可以做到消除模板缝隙,保证浇注混凝土不漏浆,又可解决高温时起拱的问题。 四、电焊渣易烫坏塑料建筑模板 电焊渣易烫坏塑料建筑模板面目前,塑料模板主要用作楼板模板,在铺设钢筋时,由于钢筋连接时,电焊的焊渣温度很高,落在塑料模板上,易烫坏板面,影响成型混凝土的表面质量。因此,可以在聚丙烯中适当加阻燃剂,提高塑料模板的阻燃性。另外可以在电焊作业时采取防护措施,如给电焊工发一块石绵布,对平面模板可以平铺在焊点下,对竖立模板可以将一块小木板靠在焊点旁,就可以解决电焊烫坏塑料建筑模板的问题。 塑料建筑模板的四大缺点——九翔建筑木胶板公司所生产的建筑模板、建筑木胶板、覆膜板、多层板、双面复胶、双面复膜建筑模板具有周转率高、密度大,光滑易脱模等特点,本厂新引进专利胶粘剂生产线,所生产的防水性MUF胶具有耐水性强,水煮4小时不开胶,木胶板的周转率高达8次以上。可以克服塑料建筑模板的四大缺点。 【中国模板网】https://www.doczj.com/doc/127305215.html,

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

塑料模板资料汇总

产品简介:中空塑料建筑模板是公司引进了大量地优秀技术人才和国际先进地生产设备;经过不断地技术改进,长期与国内外技术专家沟通和反复实验,最终研发成功地新一代产品.具有重量轻、强度高、韧性好、抗冲击强度大、膨胀系数小、板幅大、接缝少、表面光洁、不吸湿、不霉变、不开裂、耐寒、耐高温、耐酸碱、阻燃、可锯、可钉、可焊接、无需刷脱模剂、易脱模、拼装方便、周转率高、可加工成任意长度等诸多优点,并且和传统地模板相比,本产品可循环回收利用以旧换新,周转使用次数达次到次,并且可以和木胶合板、竹胶板等多种材质板混合使用,有效地降低建筑成本,提高施工效率.产品用途广泛应用于建筑工程,桥梁工程等:主要使使新浇筑混凝土成形并养护,使之达到一定强度以承受自重地临时性结构并能拆除地模型板.产品特性:重量轻、强度高、韧性好、抗冲击强度大、膨胀系数小、板幅大、接缝少、表面光洁、不吸湿、不霉变、不开裂、耐寒、耐高温、耐酸碱、阻燃、可锯、可钉、可焊接、无需刷脱模剂、易脱模、拼装方便、周转率高、可加工成任意长度、可回收、可以和木胶合板、竹模板混合使用.产品规格*,*,* 产品厚度产品密度安装和使用说明:使用塑料建筑模板顶板铺设用厚,剪力墙立模根据墙地厚度和高度可采用,次愣最好采用×地标准木方支撑.、发愣木方地间距:①顶板塑料模板支设:木方间距根据楼板混凝土厚度确定,一般施工条件下,小于厚度楼板木方间距(中心距)为~.②剪力墙塑料模板支设:木方间距根据墙高度和厚度调整间距,以墙高,墙厚为例,采用厚度模板竖向次肋间距为~,采用厚度模板时竖向次肋间距为~,剪力墙、柱子宽度超过米地必须加固定框.、铺模板时正常情况下不留间隙,如当日温差~℃时,需预留~间隙.、剪力墙与柱模拼板时不留缝隙,阴角(墙底)部位必须有木方,便于梁、墙、模板连接.剪力墙立模时必须先拼装成整块后吊装,然后再铺平板,这样减轻劳动强度、成型效果好.、塑料模板钉钉子时离模板边缘须~,钉钉子时力度适中,钉子长度一般以~为宜,不宜太长或太短.、梁底板这一块地木方必须留出厘米地止口,墙板立在木方止口上,这样不会漏浆又节省墙板材料.中空塑料建筑模板地使用和产品特点: 具有抗湿性、耐腐蚀性强、耐酸和耐碱性强,模板刚性塑性结合、高强度、重量轻、抗冲击强度大,可锯、刨、钉钉,耐寒、高温.、具有强度高、韧性强、耐冲击、弹性强,不易产生变形,从而大幅度提高模板地周转使用次数.、重量轻,规格全,支拆模轻便,施工操作及搬运安全可靠、劳动强度低、施工效率高.、可与现在木(竹节)胶合板等多种材质板同时并用.、经测试,此模板地正常使用次数可反复使用次以上,可大大降低施工成本,且使用后地废旧模板还可收回,以旧换新,节约成本更加可观,有利模板租赁业地发展.、在使用过程中无需涂刷脱模剂,容易清洁和保养,因此减少了模板清洁和保养费用.、表面平滑、光洁,与混凝土剥离性好,易脱模,可大大加快施工进度,有助于实现清水混凝土.、模板如遇损坏,可百分之百地回收、再生、减少废弃物对环境地污染,符合国家创建节约型社会地基本国策,塑料模板具有常规建筑模板地使用共性和优于常规模板地更多特性.个人收集整理勿做商业用途 塑料建筑模板地八大优势:一、平整光洁.模板拼接严密平整,脱模后混凝土结构表面度、光洁度均超过现有清水模板地技术要求,不须二次抹灰,省工省料.二、轻便易装.重量轻,工艺适应性强,可以锯、刨、钻、钉,配合附件可随意组成任何几何形状,满足各种形状建筑构建支模需要.个人收集整理勿做商业用途 三、脱模简便.混凝土不沾模面,无需脱模剂,轻松脱模,容易清灰. 四、稳定耐候,机械强度高,在℃至℃气温条件下,不收缩,不湿胀、不开裂、不变形、尺寸稳定、耐碱防腐、阻燃防水,拒鼠防虫.个人收集整理勿做商业用途 五、利于养护.模板不吸水,养护效果好. 六、可变性强.种类、形状、规格可根据建筑工程要求定制. 塑料建筑模板地四大缺点

建筑模板的使用

建筑模板的使用 建筑模板是一种临时性结构,它按设计要求制作,使混凝土结构、构件按规定的位置、几何尺寸成形,保持其正确位置,并承受建筑模板自重及作用在其上的荷载。进行模板工程的目的,是保证混凝土工程质量与施工安全、加快施工进度和降低工程成本。现代浇混凝土结构施工用的建筑模板,是保证混凝土结构按照设计要求浇筑混凝土成形的一种临时模型结构,它要承受混凝土结构施工过程中的水平荷载(混凝土的侧压力)和竖向荷载(建筑模板自重、材料结构和施工荷载)。现浇混凝土结构工程施工用的建筑模板结构,主要由面板、支撑结构和连接件三部分组成。面板是直接接触新浇混凝土的承力板;支撑结构则是支承面板、混凝土和施工荷载的临时结构,保证建筑模板结构牢固地组合,做到不变形、不破坏;连接件是将面板与支撑结构连接成整体的配件。建筑模板是混凝土浇筑成形的模壳和支架,按材料的性质可分为建筑模板、建筑木胶板、复膜板、多层板、双面复胶、双面复膜建筑模板等。建筑模板按施工工艺条件可分为现浇混凝土模板、预组装模板、大模板、跃升模板等。现简要介绍组合式钢模板如下:组合式钢模板,是现代模板技术中,具有通用性强、装拆方便、周转次数多等优点的一种“以钢代木”的新型模板,用它进行现浇钢筋混凝土结构施工,可事先按设计要求组拼成梁、柱、墙、楼板的大型模板,整体吊装就位,也可采用散装散拆方法,建筑模板的种类有; 1、大型钢木(竹)组合模板 2、多功能混凝土模板 3、防渗漏建筑模板 4、多功能建筑拼块模板 5、房屋建筑模板及其相关方法 6、复合材料建筑定型模板 7、复合建筑模板 8、复合建筑模板 9、复合建筑模板 10、复合建筑模板及其加工工艺 11、复合塑料建筑模板(采用再生塑料制造符合再回收使用资源) 12、改良结构的建筑用组合式模板 13、钢化玻璃组合大模板

复合材料的发展前景,发展与应用

复合材料的发展及应用 随着科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出越来越高,越来越严和越来越多的要求。在许多方面,传统的单一材料已不能满足实际需要。这时候复合材料就出现在了这百家争鸣的舞台上。 基本概论 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。此定义来自ISO。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。从上述定义中可以看出,复合材料是两个或多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。所以我们可根据增强材料与基体材料的名称来给复合材料命名,增强基体复合材料。如:玻璃钎维环氧树脂复合材料,可写作玻璃/环氧复合材 料。 分类与性能 按增强材料形态分类可分为(1)连续纤维复合材料;(2)短纤维复合材料;(3)粒状填料复合材料;(4)编织复合材料。按增强纤维种类分类可分为(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机,金属,陶瓷纤维复合材料。在此篇文章中主要讨论以基体材料分类的几种复合材料。1.聚合物基复合材料——比强度,比模量大;耐疲劳性好;减震性好;过载时安全性好;具有多种功能性;

有很好的加工工艺性。2金属基复合材料——高比强度,高比模量;导热,导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮,不老化,气密性好。此外还有陶瓷,水泥基复合材料,都有与上类似的特点。 基体材料 一:金属材料 选择基体的原则:使用要求,组成特点,基体金属与增强物的相 容性。 结构复合材料的基体:450℃以下的轻金属基体(“铝基和镁基”用于航天飞机,人造卫星,空间站,汽车发动机零件,刹车盘等);450-700℃的复合材料的金属基体(“钛合金”用于航天发动机);1000℃以上的高温复合材料的金属基体(“镍基,铁基耐热合金和金属间化合物”用于燃气轮机)。 二:陶瓷材料 陶瓷是金属和非金属元素的固体化合物,其键合为共价键或离子键,与金属不同,它们不含有大量的电子。一般而言,陶瓷具有比金属更高的熔点和硬度,化学性质非常稳定,耐热性,抗老化性皆佳。常用的陶瓷基体主要包括玻璃(无机材料高温烧结),玻璃陶瓷,氧化物陶瓷(MgO,Al2O3,SiO2,莫来石等),非氧化物陶瓷(氮化物,碳化物,硼化物和硅化物等)。 三:聚合物材料

塑料模板与木模板对比

“森塑雨”建筑用塑料模板与木模板的综合对比 一:品质对比 “森塑雨”塑料模板刚性塑性结合、高强度、重量轻、抗冲击强度大,可锯可刨可钉钉,耐寒耐高温,环境温度在-10℃~75℃范围内均可正常使用,按厂家的施工要求保证周转使用50次以上,如用不到50次厂家保证免费包退换。用过的废料厂家按3:1的比例免费换新板(往返运费自理)。而木模板只能用3-5次,板材品质的差距巨大。 二:施工对比 “森塑雨”塑料模板只需切割一次,木模板使用3-5次就要换新板从新切割,相比省工、省料、省时、省钱。用“森塑雨”塑料模板做出的混凝土强度大、质量好,模板无须刷脱模剂(柴油、机油)或铺塑料膜,模板和混凝土不粘黏,脱模容易,墙面外观漂亮,基本上能达到清水混凝土的效果,墙面基本上不用批挡,可直接刮腻子,省工、省时、省钱。而木模板都不具备这些优势。 三:价格对比 “森塑雨”塑料模板规格在915㎜×1830㎜按每平米180元×1.67平米,每张300元,重21公斤,每平方12.6公斤,合每公斤14.2元。厂家按3吨废料换1吨新板的比例算,如使用30次合每平方6元/次;如用到40次合每平方4.5元/次;如用到50次合每平方3.6元/次;如用到60次合每平方3元/次。如果再算上省工、省料、省时的话,“森塑雨”塑料模板用到30次以上时就基本上不花模板

钱了。 四:实例和残值对比 按一栋30层楼房算,木模板或竹胶板需要一次采购2层,周转使用5次,采购一次盖10层,30层盖好需要采购三次,每张木模板或竹胶板规格在915㎜×1830㎜的需要约60元/张,3张就需要180元,而“森塑雨”塑料模板实际价格才是300元/张。木模板使用完就全成建筑垃圾了,完全无残值,而“森塑雨”塑料模板还有最少35次的使用次数,按每次使用木模板的价格算,35次÷5次=7次×60元/张=“森塑雨”塑料模板还有残值420元/张,“森塑雨”塑料模板以旧换新的残值还没有计算。

复合材料的发展和应用的论文

复合材料的发展和应用的论文 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商ppg公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国gdp增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃

中空塑料模板公司

中空塑料建筑模板是近年来在市场上出现的一种新型建筑模板,许多业内人士预测,它的节约和环保优势将使它在未来的建筑业中得到充分利用。那么生产中空塑料建筑模板的公司哪家比较好呢?下面为您简单介绍,希望能给您带来一定程度上的帮助。 1、中空塑料建筑模板性能优良,周转次数高、安装方便、价格便宜,无论在性能还是质量方面都具有明显的优势。和其他模板相比,它不会像木模板吸水易变形,也不会像钢模板那样笨重难施工,模板综合性能更优,而且单次使用费用低于钢模板、铝模板价格,成本优势明显。 2、中空塑料建筑模板利于养护:塑料模板天性疏水,杜绝泡水损坏,养护效果好。 3、中空塑料建筑模板脱模简便:使用后混凝土不沾模面,无需外力,就可自然轻松脱模,节省人工。

4、中空塑料建筑模板操作简单:塑料模板重量轻,可塑性强,可以根据实际需要裁剪加工成适合的形状,组成任何几何形状,满足实际施工中建筑支模需要。 5、中空塑料建筑模板稳定度高:耐操,在昼夜温差大的时候变形小、暴晒不开裂、泡水不变形、结构尺寸稳定、耐碱防腐、防火防水。 随着国家绿色建筑的不断推进和日益加强的环境硬约束,建筑领域推广使用塑料模板等绿色建材是必然趋势,以塑代木不仅是响应国家加强生态文明建设的重要举措,更有利于资源高效利用、节能降耗,实现绿色可持续发展。 据中国基建物资租赁承包协会测算,2013年全国建筑模板保有量约4.7亿平方米,其中钢模板拥有量1.4亿平方米,市场占有率30%;木竹胶合板模板拥有量3亿平方米,市场占有率超过65%;

塑料模板等新型建筑模板市场应用份额还比较小。而塑料模板是一种绿色环保建筑材料,必将有更为强劲的增长空间和更加广阔的发展前景。值得一提的是,我国塑料消费量目前已居世界第二位,每年有大量废弃的PVC,而建筑模板正好可以消化废弃资源,变废为宝。因此,我国塑料工业迅猛发展也将为中空塑料模板发展提供源源不断的原材料基础。 创翔新型中空塑料建筑模板以进口聚丙烯树脂为基材,研发出新型中空塑料建筑模板,对比传统钢模板、木模板、铝合金模板、塑料实心模板,性能更加好,综合经济效益更高,广泛应用于多种类型的建筑工程。以可租可售、废旧回收的运营模式,发展循环经济,促进可持续发展。诚邀社会各界志同道合人士,共同推动建筑技术革新升级,造福社会大众。

青海新型建筑模板项目可行性研究报告

青海新型建筑模板项目可行性研究报告 规划设计/投资方案/产业运营

报告摘要说明 随着经济的飞速发展,房地产或城市公共设施的完备,各行各业都在 高速的发展当中,市场当中也涌现出很多新鲜的产品,上市的公司也越来 越多,对于推广和宣传的力度也渐渐增大,消费者的可选择性也多了起来,同时也给建筑模板厂家带来了前所未有的压力和发展机遇。 建筑模板是一种临时性支护结构,按设计要求制作,使混凝土结构、 构件按规定的位置、几何尺寸成形,保持其正确位置,并承受建筑模板自 重及作用在其上的外部荷载。进行模板工程的目的,是保证混凝土工程质 量与施工安全、加快施工进度和降低工程成本。 该建筑模板项目计划总投资16316.21万元,其中:固定资产投资10705.74万元,占项目总投资的65.61%;流动资金5610.47万元,占 项目总投资的34.39%。 本期项目达产年营业收入37992.00万元,总成本费用30306.55 万元,税金及附加292.06万元,利润总额7685.45万元,利税总额9037.57万元,税后净利润5764.09万元,达产年纳税总额3273.48万元;达产年投资利润率47.10%,投资利税率55.39%,投资回报率 35.33%,全部投资回收期4.33年,提供就业职位711个。 铝模板,全称为建筑用铝合金模板系统。是继竹木模板,钢模板之后 出现的新一代新型模板支撑系统。铝模板系统在建筑行业的应用,提高了

建筑行业的整体施工效率,包括在建筑材料,人工安排上都大大的节省很多。铝模板是铝合金制作的建筑模板,又名铝合金模板,是指按模数制作设计,铝模板经专用设备挤压后制作而成,由铝面板、支架和连接件三部分系统所组成的具有完整的配套使用的通用配件,能组合拼装成不同尺寸的外型尺寸复杂的整体模架,装配化、工业化施工的系统模板,解决了以往传统模板存在的缺陷,大大提高了施工效率。 建筑模板是混凝土结构工程施工的重要工具,建筑模板厂家鑫政集团表示,在现浇混凝土结构工程中,模板工程一般占混凝土结构工程造价的20%~30%,占工程用工量的30%~40%,占工期的50%左右。模板技术直接影响工程建设的质量、造价和效益,因此它是推动我国建筑技术进步的一个重要内容。

复合材料高性能聚氨酯

高性能聚氨酯/玻纤复合材料 (GRPU) 刘锦春 青岛科技大学高分子科学与工程学院 Liujinchun2001@https://www.doczj.com/doc/127305215.html,

1、聚氨酯/玻纤复合材料简介 近年来,聚氨酯树脂以其韧性好、固化快、无苯乙烯烟雾等优点使其复合材料脱颖而出。随着人们对聚氨酯成型技术的掌握和在控制其反应性以延长其适用期方面的进步,聚氨酯已进入长期由不饱和聚酯和乙烯基酯树脂主宰的复合材料领域。在过去,聚氨酯复合材料主要是用结构反应注射法(SRIM)成型的汽车内饰件和外部件,如皮卡车箱、车底板、行李架、内门板等(聚氨酯经过发泡)。然而在近几年中,聚氨酯复合材料发展了拉挤、缠绕、真空灌注和长纤维喷射等技术,主要用不发泡的聚氨酯复合材料来制造窗框、浴缸、电灯杆和卡车、越野车的大型部件等。聚氨酯拉挤聚氨酯拉挤一般具有低粘度、中度至高度反应性、良好的冲击强度和韧性以及短梁剪切性能。与其他材料相比,用聚氨酯拉挤可产生多种效益。它可以提高制品中玻璃纤维含量而使制品强度大大提高。例如,用玻璃纤维与聚氨酯树脂拉挤窗框,所得窗框的强度比PVC窗框高8倍,其导电性比铝低40倍,因而绝缘性能好得多。同时,因为聚氨酯拉挤窗框的脆性更小,它们不会开裂而经久耐用。 高性能聚氨酯/玻璃纤维复合材料是一种以高硬度聚氨酯弹性体为基体材料,玻璃行为为增强材料,采用连续拉挤工艺生产的一种具有高强度、高模量、轻质高分子复合材料。 聚氨酯拉挤技术的产品不仅比传统材料具有更高的强度、更好的隔热保温效果,而且更轻质环保。其应用领域十分宽广,从最初的华丽浴缸,到冲浪和滑雪板,再到今天的窗框、集装箱地板等创新应用,聚氨酯复合材料已融入了我们日常生活的方方面面。 据报道,在过去的几年中,中国对于复合材料的需求已呈现逐步增长的态势。复合材料是一种高科技材料,是将几种材料的特性整合成为一种具有卓越新性能的全方位解决方案。正是因为材料的独特性能,比如轻质、高强度和刚性、以及能够帮助实现更高的成本效率和生态责任,所以聚氨酯复合材料已备受各行业的关注。尤其是在建筑和运输行业,创新的技术与应用,更是备受瞩目。 2、聚氨酯/玻纤复合材料性能特点 经过数年开发,国外聚氨酯拉挤成型已实现商业化。在聚氨酯拉挤过程中,可以使用更多的增强纤维,使制品强度大大增高。同时,由于聚氨酯本身优异的

相关主题
文本预览
相关文档 最新文档