当前位置:文档之家› 一种超低比转速高速离心泵复合式叶轮的设计选优法

一种超低比转速高速离心泵复合式叶轮的设计选优法

一种超低比转速高速离心泵复合式叶轮的设计选优法
一种超低比转速高速离心泵复合式叶轮的设计选优法

一种超低比转速高速离心泵复合式叶轮的择优设计

田亚斌1 齐学义1 胡家昕2

(1兰州理工大学能源与动力工程学院, 中国 甘肃 兰州 730050 E-mail tianyb2008@https://www.doczj.com/doc/137294468.html, 2中国第一

重型机械集团公司 中国 黑龙江 齐齐哈尔161042 E-mail hujiaxin3092@https://www.doczj.com/doc/137294468.html, )

摘 要:依据影响超低比转速高速离心泵复合式叶轮设计的主要因素:复合式叶轮短叶片设计的叶片数,叶片径向进口的相对位置,叶片周向偏置度,偏转角等,采用正交法确定了16种设计方案,通过数值模拟从中得到超低比转速高速离心泵复合式叶轮短叶片的最优设计方案,与排列组合的方法相比可以大大降低设计者的工作量。结果表明,采用正交法设计的复合式叶轮内部压力场和速度场分布合理,H Q -曲线更加平坦,Q η-曲线向大流量偏移,工作性能良好。 关 键 词: 离心泵;超低比速; 复合式叶轮;择优设计

超低比转速高速离心泵存在流道狭长,圆盘摩擦损失较大,效率偏低;流道扩散较严重,叶片进口处易产生二次回流,出口处的速度梯度过大,易形成射流——尾流剪切层,扬程流量曲线易出现驼峰,小流量工况易不稳定;功率流量曲线随流量增大上升急剧,在大流量区电机易过载等现象。为了提高超低比转速高速离心泵的性能,国内外许多学者对其进行了大量研究,结果表明,采用长短叶片的复合式叶轮可以有效地防止尾迹流的产生和发展,改善叶轮内流速分布,增大有限叶片修正系数,从而增加泵扬程,是提高超低比转速离心泵性能的有效途径之一[1-5]。长短叶片配置的方法可以有多种形式,不同的放置位置会出现不同的设计效果,对复合式叶轮的效率也有不同的影响。

文献[6]通过对短叶片偏置原理的分析,给出了复合式叶轮短叶片偏置设计的影响因素;

文献[7][8]通过正交方法分别选取三因素三水平39(3)L 和三因素四水平4

9(3)L 进行计算,

分析了不同短叶片的性能。根据影响复合式叶轮设计的主要因素,采用正交法和数值模拟的方法可以选择一最优的方案,采用这种方法最大的优点是可以大大降低设计者的工作量。 1 离心泵基本参数

本文所设计的超低比转速高速离心泵的主要性能参数为:扬程400 m ,流量20 3m h ,转速8300 r min ,效率65%η≥。汽蚀余量 4.0r NPSH m ≤。根据上述设计参数及要求,依据低比转速高速离心泵的传统和经验设计,长短叶片均采用空间扭曲叶片,且长短叶片数目相等,相间布置,根据文献[6、9],初步确定其基本几何参数见表1。

表1 叶轮的基本几何参数

T ab.1 The basic geometric parameters of impeller

1/D mm

2/D m m 1/()β 2/()β 1/b m m 2/b m m

2

/()S m m 60 180 17

39 17.5 4

620.82?

2 正交法设计方案

主要影响复合式叶轮设计的几个因素: (A) 短叶片数z ;

(B) 短叶片径向进口的相对位置即以短叶片进口直径i D 与叶轮外径2D 的比值2

D D i 表征;

(C) 短叶片周向偏置度:i t 表示短叶片工作面到长叶片背面间的栅距, t 表示两长叶片间栅

距,以两者的比值t t i 表征周向偏置度;

(D) 偏转角:以短叶片位于两长叶片中间位置为起始基准,保持短叶片进口边位置不变,将短叶片的出口边向长叶片背面旋转一定的角度α,由于长叶片背面的压力低,相对速度大,为了使短叶片的分流后速度更均匀,应该向长叶片背面偏转。

在以上的因素基础上,根据正交法原则选取不同因素水平进行计算,共组合了16种不

同短叶片型式的复合叶轮方案。表2为因素水平表,表3为4

16(4)L 正交设计方案。

表2因素水平表

T ab.2 Orthogonal experimental factors

水平 因素A 因素B

因素C

因素D 叶片数z

短叶片径向位置2

D D i

短叶片周向偏置度t t i

偏转角度α

1 3 0.55 0.50 0°

2 4 0.60 0.5

3 3° 3 5 0.65 0.56 6° 4

6

0.70

0.60

表3设计方案

T ab.3 Designing schemes

方案号 因素配比 方案号 因素配比 方案号 因素配比 方案号

因素配比 ⑴ 1-1-1-1 ⑸ 2-1-2-3 ⑼ 3-1-3-4 ⒀ 4-1-4-2 ⑵ 1-2-2-2 ⑹ 2-2-1-4 ⑽ 3-2-4-3 ⒁ 4-2-3-1 ⑶ 1-3-3-3 ⑺ 2-3-4-1 ⑾ 3-3-1-2 ⒂ 4-3-2-4 ⑷ 1-4-4-4

⑻ 2-4-3-2 ⑿ 3-4-2-1

⒃ 4-4-1-3

3 正交设计方案的数值模拟结果及其分析

3.1 数值计算方法

数值模拟采用三维定常不可压雷诺时均N S -方程和标准的κε-湍流模型,利用SIMPLEC 算法实现压力和速度的耦合;离散格式中,压力项采用了二阶中心差分格式,速度项、湍动能项和湍动能粘系数项采用二阶迎风差分格式;在迭代计算时,应用了亚松弛迭代,求解压力项时松弛系数为0.3,速度项为0.7,湍动能项为0.8,湍动能耗散率项为0.8。 3.2正交法模拟试验结果

利用FLUENT 软件对上述16种方案的复合式叶轮离心泵进行模拟计算,得到各方案离心泵在设计工况点下的扬程和效率值,如表4所示。除5号~8号叶轮,即因素水平B-1,短叶片数4z =配比的正交设计方案其扬程和效率没有达到设计要求,9号叶轮,可能存在长短叶片匹配不当的问题,其扬程偏高、效率偏低,其它方案的扬程和效率指标均符合设计要求;其中,扬程指标提高幅度范围在0.63%~11.15%;效率指标提高范围0.46%~6.69%。

表4 设计工况点下试验结果汇总

T ab.4 Experimental results at point of Design conditio n

方案 H m %η 方案 H m %η 方案 H m %η 方

案 H m %η

⑴ 404.49 67.99

⑸ 373.86 59.43 ⑼ 494.03 65.69 ⒀ 439.72 69.19 ⑵ 408.03 68.97 ⑹ 398.57 66.30 ⑽ 431.76 68.18 ⒁ 439.96 67.33 ⑶ 404.14 67.86 ⑺ 397.03 64.64 ⑾ 431.38 65.97 ⒂ 438.84 69.35 ⑷

402.52 68.60

385.93 61.41 ⑿

417.04 65.30

444.58 69.10

3.3试验结果极差分析

经过对表4中数据处理分析,得到扬程和效率与短叶片正交法设计因素水平的极差如表5所示。其中,i K 表示为相应水平计算结果之和;i K 表示为相应水平计算结果的平均值;

R 表示为极差。从极差R 大小可知,短叶片设计因素中:对扬程,各因素影响的主次顺序

为ACDB ;对效率,各因素影响的主次顺序为ABCD 。

表5 设计工况点下数据的极差分析汇总

T ab.5 Range analysis results at point of Design condition

平 H η A B C D A B

C D 1K

1619.18 1712.10 1679.02 1658.52 273.42 262.3 269.36 265.26 2K

1555.39

1678.32

1637.77

1665.06

251.78

270.78

263.05

263.05

3K 1774.21 1671.39 1724.06 1654.34 265.14 267.82 262.29 264.57 4K 1763.10 1650.07 1732.42 1733.96 274.97 264.41 269.94 269.94 1K

2K

3K

4K

404.80 428.03 419.76 414.63 68.36 65.58 67.34 66.32 388.85 419.58

409.44

416.27 62.95 67.70 65.76 65.76 443.55 417.8475 431.015 413.585 66.285 66.955 65.57 66.14 440.78 412.52 433.11 433.49 68.74 66.10 67.49 67.49 R

51.9275

15.5075

23.6625

18.8600

5.7975

2.1200

1.9125

1.7225

3.4各因素对短叶片设计的影响分析

根据以上极差分析结果可分别得到各因素随不同因素水平的扬程和效率变化曲线,如图1和图2所示。由图可见:

①因素A :随着叶片数的增加,扬程曲线先降低后逐渐升高,在第二水平取值时扬程最低,在第三水平取值时扬程最高;与扬程曲线变化趋势相同,效率曲线在第二水平取值时效率最低,后随叶片数的增加而逐渐升高,综合考虑扬程和效率选取5短叶片比较理想;

②因素B :短叶片径向进口位置在第二因素水平即取20.60i D D =时,对应的效率最高,在取20.50i D D =时,扬程略低于第二水平,但效率较低,与一二水平相比,其他水平的扬程和效率值均较低,故在第二水平附近取值较合理; ③因素C :除在第二水平取值时,扬程没有达到设计要求,其他水平的扬程指标均到达设计;效率曲线随短叶片周向偏置度的增大逐渐升高,在第四水平取值时达到最高,故可选取第四水平,即短叶片周向偏置度为0.60i t t =。

④因素D :当选取第因素一、二、三水平时,泵的扬程指标都相差不多,而取第四水平时,扬程提高显著;综合考虑扬程和效率指标,选取该因素的第四水平,即短叶片向长叶片背面偏转9°时,泵的性能较好。

根据对上述各因素的分析可以得出短叶片数5z =,径向进口的相对位置20.60i D D =,周向偏置度为0.50i t =,短叶片向长叶片背面偏转角度为9 的复合式叶轮为最优设计方案。

图1 扬程与因素关系图图 图 2 效率与因素关系图

Fig.1 Relationship between head and Fig.2 Relationship between efficiency and design Parameters design parameters 4 常规叶轮和复合叶轮的数值模拟对比

用已经确定的最优复合式叶轮设计方案与五叶片常规叶轮在设计工况下进行数值模拟计算对比,数值模拟计算方法同上。

由数值模拟计算得到设计工况下复合式叶轮与常规叶轮性能预估效率值分别为68.19%和61.25%,复合式叶轮的效率明显高于常规叶轮;两种叶轮内部的静压分布和相对速度分布对比见图3和图4,由静压力图可见:与常规叶轮相比,复合式叶轮出口处和蜗壳喉部的高压区明显减小,静压分布更加均匀,过流能力更强;从相对速度分布图中可以看出,在两

长叶片间增添的短叶片能够减轻和改善长叶片背面的脱流现象和两长叶片出口处的回流现象,复合式叶轮内部静压分布和内部相对速度分布均优于常规叶轮。

Q工况下两种叶轮内部静压分布

图31.0

d

Q conditions

Fig.3 Static pressure distribution of tow impellers on 1.0

d

Q工况下两种叶轮内部相对速度分布

图41.0

d

Q conditions

Fig.4 Relative velocity distribution of tow impellers on 1.0

d

5结论

(1)本文针对影响短叶片设计的叶片数、径向进口相对位置、周向偏置度和偏转角四个主要因素,采用正交法总共组合出16套设计方案,并从中获得一最优方案,与传统排列组合的方法相比大大降低了设计者的工作量。

(2)在相同设计条件下,采用正交法设计方案选择的复合式叶轮与常规叶轮相比,其内部压力场和速度场分布合理,Q H

-曲线向大流量偏移,工作性能更

-曲线更加平坦,Qη

优。

参考文献(References)

[1] 袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997.

[2] Y uan Shou-qi, Zhang Jin-feng, Y uan Jian-ping, et al. Effects of splitter blades on the law of inner flow with in a

centrifugal pump impeller[J]. Chines- e Journal of Mechanical Engineering:English Edition, 2007, 20(5):59-63.

[3] CUI Bao-ling, ZHU Zu-chao, ZHANG Jian-ci, et al. The flow simulation and experimental study of

low-specific-speed high-speed complex centrifug- al impellers[J]. Chinese Journal of Chemical Eng- ineering:English Edition, 2006, 14(4):435 - 441.

[4] Majidi K. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachiney, 2005,

127(1):363-371.

[5] Kergourlay G, M.Y ounsi, F.Bakir, et al. Influence of splitter blades on the flow field of a centrifugal

pump:Test-Analysis comparison[J]. International Journal of Rotating Machinery, 2007, Arti- cle ID: 85024.

[6] 张金凤.带分流叶片离心泵全流场数值预报和设计方法研究[D].镇江:江苏大学,2007.

[7] 陈松山,周正富,葛强,等.长短叶片离心泵正交试验研究[J].扬州大学学报(自然科学版),2005,8(4):

45-48.

CHEN Song-shan, ZHOU Zheng-fu, GE Qiang, et al.Orthogonal experimental study on centrifugal pump with deviated splitter vanes[J]. Journal of Y angzhou University:Natural Science Edition, 2005,8(4):45-48(in Chinese)

[8] 袁寿其,张金凤,袁建平等.用正交试验研究分流叶片主要参数对性能的影响[J].排灌机械,2008,

26 (2):1-5.

Y uan Shou-qi, Zhang Jin-feng, YUAN Jian-ping, et al. Orthogonal experimental study effect of maingeometry factors of splitter blades on pump performance [J].Drainage and Irrigatio Machin- ery, 2008, 26(2):1-5.(in Chinese)

[9] 朱祖超.低比转速高速离心泵的理论及设计应用[M].北京:机械工业出版社,2007,7.

基于CFD技术的离心泵优化设计

基于CFD技术的离心泵优化设计 文章对目前泵设计方法如模型换算法、速度系数法和面积比原理进行详细介绍,并应用相似换算法和速度系数法对参数为Q=1400m3/h,H=15m,n=990r/min 的离心泵进行设计,通过CFD数值模拟,获得了内部流场较好的泵。 标签:离心泵;叶轮;设计 1 叶轮设计方法 在叶片式流体机械中,叶轮是叶片式流体机械中直接进行能量转换的部件,是叶片式流体机械最关键的部件。由于泵内部流动非常复杂,对其流动规律的认识还不够全面,因此泵的水力设计还需建立在半理论、半经验和试验验证的基础上进行。目前泵设计方法有几种形式,一般分为模型换算法、速度系数法、面积比原理[1]。 1.1 模型换算法 邹滋祥[2]系统的叙述了相似理论的具体内容,包括几何相似、物理现象相似以及两个体系之间相似的必要和充分条件,同时通过具体的例子来阐述叶轮机械模型设计过程中的具体应用方法。陈凤军[3]针对集中空调系统试运行中出现的循环泵电机发热严重、能耗高、实际效果差等问题,提出了运用相似原理、按功率匹配进行叶轮切割的技术改造方案。经实践证明,实现了优化运行,满足了设计要求,提高了经济效益。 应用模型换算法的首要前提条件,必须具有一个优秀的水力模型库,这样才会使得水力设计方便、可靠。 1.2 速度系数法 Stepanoff[4]早在1984年就提出利用比速规律进行水力设计的设计系数法,在统计大量实测资料的基础上提出了著名的Stepanoff速度图。国内于80年代初曾经对部分优秀模型进行统计。1985年陈次昌[5]应用多元逐步回归分析法对离心泵叶轮主要几何尺寸进行了总结与统计,得出了一些具有参考价值的计算公式。90年代初,张俊达[6]和何希杰[7]等对近年来的优秀模型进行了重新统计,提出了一些系数和规律。白小榜[8]等对6个混流泵优秀水力模型统计分析基础上,对叶轮和蜗室的主要几何参数:叶轮进口速度U0、叶轮外径D2(D2a,D2e)、出口宽度b2及蜗室几何参数计算公式中的速度系数进行了公式拟合,给出了混流泵的水力参数计算方法。同时应用设计实例验证设计方法的准确性。沙毅[9]等利用叶片泵能量方程和相似理论,推导出离心泵叶轮外径D2,出口叶片宽度b2和进口直径D0的速度系数法水力计算公式。在IS系列泵参数回归统计基础上,利用最小二乘法拟合速度系数与比转数的关系方程式。并用ns=87和ns=118两泵型的设计实例验证了设计计算方法的准确性和先进性。

水泵及水泵站课程设计心得【模版】

水泵及水泵站课程设计 1基本设计资料 1.1 基本情况 本区地势较高,历年旱情比较严重,粮食产量低。根据规划,拟从附近河流扬水灌溉该区的10万亩农田,使之达到高产稳产的目的。 机电扬水灌区内主要作物有小麦、玉米、谷子和棉花等。灌区缺少灌溉制度,现参考附近老灌区的灌水经验,拟定出本灌区灌溉保证率为75%的灌溉制度。其设计灌水率如表1所示。 1.2地质及水文地质资料 根据可能选择的站址,布置6个钻孔。由地质柱状图明显的看出,3米以内表土主要是粘壤土,经土工试验,得到的有关物理指标为粘壤土的内摩擦角φ=35°,承载力为220kN/m2。 站址附近的地下水位多年平均在202.2m左右(系黄海高程)。 1.3气象资料 夏季多年平均旬最高气温34℃,春、秋季干旱少雨,年平均降雨量为524mm,降雨年内分配极不均匀,每年7、8、9月的降雨量占全年降雨量的80%以上。年平均无霜期为200天左右,多年平均最低气温为-8℃,最大冻土深度为o.44m。平均年地面温度为15℃,平均年日照时数为2600.4h。累积年平均辐射总量为527.4l kJ/cm,平均日照百分率为59 %。热量和积温都比较丰富,能满足一年两熟作物生长的需要。 1.4 水源 灌区南侧有一河流,是规划灌区的水源,其水量充沛。灌溉保证率为75 %时的河流月平均水位如表2所示。 达2l6.5m,夏季多年旬平均最高水温为20℃。 1.5其它 根据规划,为保证扬水后自流灌溉,出水池水位均不应低于234m。站址附近有8 kV高压电力线通过,已经有关部门批准,可供泵站使用。该地区劳动力充足,交通方便。除水泥、金属材料以及泵站建设中所需的特殊材料外,当地可提供砖、石、砂、瓦、木材等建筑用材。 根据机电设备的运行特性,每天按20h运行设计。

水泵课程设计

水泵课程设计 综合说明 1.1 兴建缘由 该排涝泵站的兴建是为了满足某市城市防洪需要。 1.2 工程位置、规模、作用 工程位置:该排涝泵站拟建在距该县城区以东15公里的新沟河上。 3工程规模:由泵站设计流量Q=8.0m/s,由《泵站设计规范GBT50265-97》可知该排涝泵站属于中型泵站。 工程作用:满足城市的防洪需求 1.3 基本资料 地面以下土质为中粉质壤土,夹铁锰质结核,贯入击数为24击,地基土容3重19.4 kN/ m,含水率26.8%,空隙比为0.833,允许承载力220kPa,内摩擦角 -723?,凝聚力19 kPa,渗透系数2.66×10,地下水埋深7.3m。 1.3.2水位特征值 泵站上下游水位资料见表1-1。 表1-1 泵站上下游水位资料 下游水位(m) 上游水位(m) 设计运行水最低运行水最高运行水设计运行水最低运行水最高运行水 位位位位位位 26.4 25.8 30.6 31.4 31.1 31.8 1.3.3工程布置和主要建筑物

泵站工程的主要建筑物有进水建筑物、站房和出水建筑物。进水建筑物包括前池、进水池和进水管道等。出水建筑物包括出水管路和出水池等。泵站站房内安装水泵、动力机和辅助设备以及泵站附属设备。 1.3.4其他 该站建筑物等级为?级,站址北首附近有10kV电源,水陆交通方便。已知该泵站上下游引水河道断面设计参数如表1-2所示。其中上下游河道堤顶高程自行设计,规定下游地面高程低于引水河道堤顶0.5m。 表1-2 泵站上下游引水河道断面设计参数 1 下游引水河道上游引水河道河底高程河底宽度堤顶宽河底高程河底宽度堤顶宽边坡边坡 (m) (m) (m) (m) (m) (m) 24.1 7 1:2.5 6 27.7 7 1:2.5 6 第2章设计参数确定 2.1 设计流量的确定 3 泵站设计流量Q=8.0m/s。 2.2 水位分析及特征扬程的确定 考虑此泵站的主要功能为排涝,则本设计的水位组合如表2-1所示。表2-1 排涝泵站水位组合 下游(m) 上游(m) 设计运行水位 26.4 设计运行水位 31.4 最低运行水位 25.8 最低运行水位 31.1 最高运行水位 30.6 最高运行水位 31.8 泵站各特征扬程为: 设计扬程:H=H, H=31.4 ,26.4=5m; 设设上设下 最大扬程:H=H,H=31.8,25.8 =6m; 高最高上最低下

水泵课设

第一章基本资料的分析与整理 第一节地形资料 图1:黄墩湖水系示意图 1.水文资料 (一)水位 内河设计水位:18.2m; 内河最低水位:17.0m; 内河最高水位:19.5m; 外河设计水位:21.5m; 外河最高水位:22.5m; 外河最低水位:19.8m。 (二)流量 设计流量为4.0m3/s。 第二节其他资料 (一)能源资料 泵站用电由徐州或宿迁电网供给,从徐州或宿迁电网接电,通过升压站变电后,进行泵站供电。 (二)交通、建材资料

本地交通方便,陆路可通汽车,水路可通船舶;建筑材料可以保证供应,砂石料更可就地取材。 第二章 工程规划 第一节 站址确定 一、选址原则 1.泵站站址应根据流域或城建建设总体规划,泵站工程规模、运行特点和综合利用要求,考虑地形、地质、水源或容泄区、电源、枢纽布置、对外交通、占地、拆迁、施工、管理等因素,并考虑扩建的可能性,经技术经济比较确定; 2.站址最好选在地形开阔、岸坡适宜,有利于工程布置的地点;宜选择在岩土坚实、抗渗性能良好的天然地基上,不应设在大的或活动性的断裂构造带及其他不良地质地段,如果当地不具备较好的地质条件,同时考虑到本次设计的泵站规模较小,可以在建站处进行地基处理; 3.站址应尽量选在交通方便和靠近电源的地方以方便机械设备、建筑材料的运输和减少输电线路的长度; 4.选址时还要特别注意进水水流的平稳和流速分布的均匀以及避免发生流向改变或形成回流、漩涡等现象。 根据这些原则可确定黄墩湖泵站的站址,其具体位置见图5:黄墩湖排涝泵站平面布置图。 第二节 泵站设计流量和扬程 一、泵站设计流量Q 设 本次设计根据设计书要求,取34.0/Q m s 设。 二、水泵的设计扬程H 设 1.根据所给的水文、地形等资料,可以确定内、外河最低水位、设计水位及最高水位分别为: 内河设计水位:18.2m ; 内河最低水位:17.0m ; 内河最高水位:19.5m ; 外河设计水位:21.5m ;

(完整版)离心泵——叶轮设计说明书

主要设计参数 本设计给定的设计参数为: 流量Q=3 3 500.01389m m h s =,扬程H=32m ,功率P=15Kw ,转速 1450min r n =。 确定比转速s n 根据比转速公式 3 4 3.65145046.3632s n ?=== 叶轮主要几何参数的计算和确定 1. 轴径与轮毂直径的初步计算 1.1. 泵轴传递的扭矩 3 15 9.5510955098.81450 t P M N m n =?=?=? 其中P ——电机功率。 1.2泵的最小轴径 对于35号调质钢,取[]52 35010N m τ=?,则最小轴径 0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径 j D 的初步计算 取叶轮进口断面当量直径系数0 4.5K =,则 0 4.50.09696D K m mm ==== 对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算

由于泵的比转速为46.36,比较小,故1k 应取较大值。不妨取10.85k =,则 110.859682j D k D mm ==?= 4. 叶片出口直径2D 的初步计算 2 20.5 0.5 246.369.359.3513.73 10010013.730.292292s D D n K D K m mm --???? ==?= ? ? ?? ?? ==== 5. 叶片进口宽度1b 的初步计算 ()00222 111 4/4//v v m j j h v Q Q V V D D d Q b DV ηηππηπ===-= 所以 220111 1 44j j v V D D b V D K D = = 其中,10v V K V =,不妨取0.8v K =,则 22 118535.42440.863.75j v D b mm K D ===?? 6. 叶片出口宽度2b 的初步计算 225/6 5/6 246.360.640.640.3373 1001000.33730.00727.2s b b n K b K m mm ?? ?? ==?= ? ? ?? ??==== 7. 叶片出口角2β的确定 取2β=15° 8. 叶片数Z 的计算与选择 取叶片数Z=8,叶片进口角0155.8β=。 9. 计算叶片包角? ()0 000360/360360 2.491128 t Z Z φλ??====

离心泵课程设计

离心泵课程设计 课程设计说明书 题目: 流体机械及工程课程设计______ 院(部):能源与动力工程学院_____ 专业班级: __________ 流体1002班________ 学号:3100201079 ___________ 学生姓名: _____________ 刘成强___________ 指导教师: _____________ 赵斌娟___________

离心泵课程设计 起止日期:2014.1.72012.1.17

流体机械及工程课程设计设计任务书 设计依 据: 流量Q:30m3/h 扬程H:18.5m 转 速n: 2900 r/min 效率:68% 任务要求: 1. 用速度系数法进行离心泵叶轮的水力设计。 2. 绘制叶轮的木模图和零件图,压出室水力设 计图。 3. 写课程设计说明书 4. 完成Auto CAD 出图

目录 第一章结构方案的确定 (5) 1.1确定比转数 (3) 1.2确定泵进、出口直径 (3) 1.3泵进出口流速 (3) 1.4确定效率和功率 (4) 1.5电动机的选择轴径的确定 (4) 第二章叶轮的水力设计 (5) 2.1叶轮进口直径D0的确定 (5) 2.2叶轮出口直径D2的确定 (6) 2.3确定叶片出口宽度b2 (6) 2.4确定叶片出口安放角 2 6 2.5确定叶片数Z (6) 2.6精算叶轮外径D (6) 2.7叶轮出口速度 (8) 2.8确定叶片入口处绝对速度M和圆周速度U1 (9) 第三章画叶轮木模图与零件图 (9) 3.1叶轮的轴面投影图 (9) 3.2绘制中间流线 (11) 3.3流线分点(作图分点法) (11) 3.4确定进口角1 (13) 3.5作方格网 (14) 3.6绘制木模图 (15) 第四章压水室的设计 (17) 4.1 基圆直径D3的确定 (17) 4.2压水室的进口宽度 (17) 4.3 隔舌安放角0 (17) 4.4隔舌的螺旋角0 (17) 4.5断面面积F (17) 4.6当量扩散角 (18) 4.7各断面形状的确定 (18) 4.8压出室的绘制 (20) 1. 各断面平面图 (20) 2. 蜗室平面图画 (20) 3. 扩散管截线图 (21)

水泵课程设计

1泵站设计参数的确定 1.1水泵站流量确定 泵站工作时设计流量 ()3 ¢?80000*1.1/24*1.3/4766.7m 1324.1/S h Q L == 1.2水泵站的扬程确定 /m c o H Z H h h H 21432122 1.572.5=++∑+∑+=+++++=(泵站内) (安全) 水泵的涉及扬程; Zc ——地形高差; Ho ——自由水压; h ——总水头损失; h ——泵站内水头损失; 2选择泵站 可用管路特性曲线和型谱图进行选泵。管路特性曲线和水泵特性曲线交点为水泵工况点。 球馆路特性曲线失球管路特性曲线方程中的参数Hst 和S 因为 st H 4213257=++= ()()()2 5 2 2 /h .h /122/4766.7 6.27S m h Q E -=+=+=-∑∑泵站内 故管路特性曲线方程为 2 57 6.27*H E Q =+- 根据水泵扬程,与流量查手册选取型号为35075S 的单机双吸式水泵。然后,根据手册中所给出的水泵扬程曲线和效率曲线以及功率曲线。运用“抛物线”拟合法,在高效段内相距较远的曲线上选取两点A (900,80)和B (1400,68)运用两点法求出公式2Q x x H H S =-中的未知数x H ,x S 。由此求出x H 为88.42;x S 为1.04E-5。 及水泵扬程曲线方程为 H=88.42-1.04E-5*Q^2 运用“横加法”求出2台水泵,3台水泵,4台水泵的曲线。 在坐标纸上画出图形如下:

G : (4980.80,72.20) J : (4203.75,76.86)I : (3113.29,77.15) H : (1683.19,81.00)F : (4208.26,67.84)E : (3114.99,63.05)D : (1688.01,58.77) 然后根据此列表如下: 水量变化范围 运行水泵台数 水泵扬程 管路所需扬程 扬程浪费 水泵效率 4972~4206 4.00 76.89~72.25 67.86~72.25 9.03~0 85~83 4206~3116 3.00 77.10~67.86 63.03~67.86 14.07~0 83.5~83 3116~1688 2.00 80.94~63.03 58.77~63.03 22.17~0 83~74 该型号的水泵的性能参数如下: 型号为350S75 Q=972~1440,H=80~65;85%η=;n=1480r/min ;电机功率N=355Kw ;Hs=3.5m ;质量为1200Kg 。 4台水泵并联工作时其工况点G 点,G 点对应的流量和扬程为4998M^3/H,72.2M 。 满足4766M^3/H 和71.5M 再选一台同型号的350S75型水泵备用,泵站共有5台350S75型水泵,4用一备。 确定电机 根据水泵样本提供的配套可选电机,选定Y400-39-4(6KV )电机,其参数如下: 额定电压V=6000Kv ;N=355Kw ;n=1480r/min ;W=

离心泵的水力设计讲解

离心泵的水力设计 离心泵叶轮设计步骤 第一步:根据设计参数,计算比转速ns 第二步:确定进出口直径 第三步:汽蚀计算 第四步:确定效率 第五步:确定功率 第六步:选择叶片数和进、出口安放角 第七步:计算叶轮直径D2 第八步:计算叶片出口宽度b2 第九步:精算叶轮外径D2到满足要求 第十步:绘制模具图 离心泵设计参数 作为一名设计人员,在设计一台泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。 下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵进出口直径 右图为一台ISO单级单吸悬臂式离心泵的实物图和装配图。对于新入门的学习者,请注意泵的进出口位置,很多人会混淆。 确定泵的进口直径 泵吸入口的流速一般取为3m/s左右。从制造方便考虑,大型泵的流速取大些,以减小泵的体积,提高过流能力。而从提高泵的抗汽蚀性能考虑,应减小吸入流速;对于高汽蚀性能要求的泵,进口流速可以取到1.0-2.2m/s。 进口直径计算公式 此处下标s表示的是suction(吸入)的意思 本设计例题追求高效率,取Vs=2.2m/s Ds=77,取整数80 确定泵的出口直径 对于低扬程泵,出口直径可取与吸入口径相同。高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。一般的计算公式为:

D d=(0.7-1.0)D s 此处下标d表示的是discharge(排出)的意思 本设计例题中,取 D d = 0.81D s = 65 泵进口速度 进出口直径都取了标准值,和都有所变化,需要重新计算。 Vs = 2.05 泵出口速度 同理,计算出口速度= 3.10

汽蚀计算 泵转速的确定 泵的转速越高,泵的体积越小,重量越清。舰艇和军工装备用泵一般都为高 速泵,其具有转速高、体积小的特点。 转速与比转速有关,比转速与效率有关,所以选取转速时需和比转速相结合。 转速增大、过流不见磨损快,易产生振动和噪声。 提高泵的转速受到汽蚀条件的限制。 从汽蚀比转数公式可知,转速n和汽蚀基本参数和C有确定的关系。 按汽蚀条件确定泵转速的方法,是选择C值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件允许的转速,所采用的转速应小于汽蚀条件允许的转速。 汽蚀的概念 水力机械特有的一种现象。当流道中局部液流压力降低到接近某极限值(目前多以液体在该 温度下的汽化压力作为极限值)时,液流中就开始发生空(汽)泡,这些充满着气体或蒸汽的空 泡很快膨胀、扩大并随液流至压力较高的地方后又迅速凝缩、溃灭。液流中空泡的发生、扩 大、渍灭过程涉及许多物理、化学现象,会有噪音,振动甚至对流道材料产生侵蚀作用(汽 蚀)。以上这些现象统称为汽蚀现象。 汽蚀会导致泵的噪声与振动,破坏过流部件,加快腐蚀,性能下降等。汽蚀一直是流体机械 研究的热点和难点。

单级离心泵设计

单级离心泵设计 摘要:本设计从离心泵的基本工作原理出发,进行了一系列的设计计算。考虑离心泵基本工作性能,流量范围大,扬程随流量而变化,在一定流量下只能供给一定扬程(单级扬程一般10~80m)。本设计扬程为50m,泵水力方案通过计算比转数(n=67.5)确定采用单级单吸结构;通过泵轴功率的计算确定选择三相异步电动机;由设计参数确定泵的吸入、压出口直径;通过叶轮的水力设计确定叶轮的结构以及叶轮的绘型;设计离心泵的过流部件,确定吸入室为直锥形吸入室,压出室为螺旋形压出室;设计轴的结构及进行强度校核;确定叶轮,泵体的密封形式及冲洗,润滑和冷却方式;通过查标准确定轴承,键以及联轴器,保证连接件的标准性。从经济可靠性出发,合理设计离心泵部件,选择标准连接件,保证清水离心泵设计的安全性,实用性,经济性。 关键词:离心泵工作原理;水力方案设计;叶轮和过流部件设计;强度校核;密封设计;键、轴承的选择

Centrifugal Pump Design Manua l Abstract : This design starting from the basic working principle of the centrifugal pump, conducted a series of design calculations. consider the basic centrifugal pump performance, flow in a wide range, lift varies with the flow, the flow can only supply some lift (single-stage lift is generally 10~80m).The design head is 50m ,the design of the pump hydraulic scheme by calculating the number of revolutions(n=67.5) to determine the single-stage single-suction structure; choice of motor shaft power calculation; design parameters to determine the pump suction outlet diameter; determine the structure of the impeller and the impeller of the drawing of the hydraulic design of the impeller; flow parts of the design of centrifugal pump suction chamber for straight conical suction chamber, pressed out of the spiral-shaped pressure chamber; the structure and strength check of the axis design; determine the impeller centrifugal pump seal design, pump closed form and washing, lubrication, cooling method; determined by checking the standard bearings, and coupling to ensure that the standard connection. Departure from the economic viability of the rational design of centrifugal pump components, select the standard connector, to ensure the water using a centrifugal pump design safety, practicality, economy. Keyword:Centrifugal pump working principle ;Hydraulic design;Component design of the impeller and the over current; Strength check; Seal design; The choice of key and bearing

离心泵的工作原理和主要部件图

离心泵的工作原理和主要部件图 一、离心泵的工作原理1、离心泵的工作原理离心泵的叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。泵壳中央有一液体吸入4与吸入管5连接。液体经底阀6和吸入管进入泵内。泵壳上的液体排出口8与排出管9连接。在离心泵启动前,泵壳内灌满被输送的液体;启动后,启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。 2、气缚现象当泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力。从而,贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵不能输送液体,此种现象称为“气缚现象”。为了使泵内充满液体,通常在吸入管底部安装一带滤网的底阀,该底阀为止逆阀,滤网的作用是防止固体物质进入泵内损坏叶轮或防碍泵的正常操作。二、离心泵的主要部件离心泵的主要部件有叶轮、泵壳和轴封装置。1、叶轮叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。叶轮一般有6~12片后弯叶片。叶轮有开式、半闭式和闭式三种,

开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类。叶轮有单吸和双吸两种吸液方式。2、泵壳泵壳的作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。泵壳多做成蜗壳形,故又称蜗壳。由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。3、轴封装置轴封装置的作用是防止泵壳内液体沿轴漏出或外界空气漏入泵壳内。常用轴封装置有填料密封和机械密封两种。填料一般用浸油或涂有石墨的石棉绳。机械密封主要的是靠装在轴上的动环与固定在泵壳上的静环之间端面作相对运动而达到密封的目的。

长江大学毕业设计开题报告(离心泵的设计)

长江大学 毕业设计开题报告 题目名称离心泵设计及基于solidworks三维设计院(系)机械工程学院 专业班级装备11001 学生姓名胡强 指导教师门朝威 辅导教师门朝威 开题报告日期2014.04.10

离心泵设计及基于solidworks三维设计 学生:胡强机械工程学院 指导老师:门朝威机械工程学院 一、题目来源: 生产实际 二、研究目的和意义: 泵是一种通用的工业机械,特别是离心泵,可以说在是在工业生产中不可 缺少的一部分,而在工业生产中,研究泵往往是为了更加高效的液体介质输送水力和结构,能适合更多(甚至是苛刻)的工况条件,泵的生命周期成本更低,环 保等等。 三、阅读的主要参考文献及资料名称 [1] 关醒凡.现代泵技术手册[M].北京:宇航出版社,1995 [2] 濮良贵,纪名刚.机械设计[M].西安:高等教育出版社,2006 [3] 柴立平.泵选用手册[M].北京:机械工业出版社,2009 [4] 侯作富,胡述龙,张新红.材料力学[M].武汉:武汉理工大学出版社,2012 [5] 张锋,古乐.机械设计课程设计手册[M].北京:高等教育出版社,2002 [6] 李世煌,吴桐林.水泵设计教程[M].北京:机械工业出版社,1987 [7] 于慧力,冯新敏.轴系零部件设计与实用数据查询[M].北京.机械工业出版 社,2010 [8] 王朝晖.泵与风机[M].北京.中国石化出版社,2007 [9] 钱锡俊,陈弘.泵与压缩机[M].山东.石油大学出版社,1994 [10] 李云,姜培正.过程流体机械[M].北京.化学工业出版社,2008 [11] 汪云英,张湘亚.泵与压缩机[M].北京:石油工业出版社,1985 [12] 袁恩熙.工程流体力学[M].北京:石油工业出版社,2012 [13] 查森.叶片泵原理及水力设计[M].北京:机械工业出版社,1987 [14]Mario ?avar.Improving centrifugal pump efficiency by impeller

水泵课设

目录 第一章绪论——————————————————————————2 第二章水泵基础的初步选择———————————————————3 2.1 泵站设计参数的确定—————————————————————3 2.2 型号选择——————————————————————————3第三章消防校核———————————————————————5第四章泵房形式的选择————————————————————5第五章水泵机组的基础设计———————————————————6 5.1 设计要求——————————————————————————7 5.2 布置及选择配件———————————————————————7 5.3 管径计算——————————————————————————7 第六章水泵吸水管和压水管的计算————————————————9 6.1 设计要求——————————————————————————9 6.2 布置及选择配件———————————————————————9 6.3 管径计算——————————————————————————9第七章吸水井的设计—————————————————————10 第八章管道配件的选取————————————————————11 第九章泵房各工艺标高的确定水损校核——————————————12 9.1 泵轴安装高度———————————————————————12 9.2 其它各个工艺标高的计算——————————————————12 9.3 泵房形式的选择——————————————————————12 9.4 泵房高度的计算——————————————————————13第十章水泵机组的布置及泵房尺寸的确定—————————————14 10.1 机组布置—————————————————————————14 10.2 泵房尺寸—————————————————————————14第十一章水损校核——————————————————14 11.1 吸水管路水头损失—————————————————————15 11.2 压水管路水头损失—————————————————————15第十二章复核水泵和电机———————————————15 第十三章附属设备的选择———————————————16 13.1 起重设备—————————————————————————16 13.2 引水设备—————————————————————————16 13.3 排水设备—————————————————————————16 13.4 通风设备—————————————————————————17 13.5 计量设备—————————————————————————17 参考文献———————————————————————————17 设计心得———————————————————————————17 附录

离心泵水力设计流程

离心泵水力设计 课程设计及指导书 (一)离心泵水力设计任务书 1 设计目的 掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。 2 设计参数及有关资料 (1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)

1. m h rpm n m H h m Q a 3.3,2900,60,/373 =?=== 2. m h rpm n m H h m Q a 44.5, 1450, 16, /903 =?=== 3. 900 ,1430,24, /663 ====C rpm n m H h m Q 4. 900 %, 80,2900, 48,/1453 =====C rpm n m H h m Q η 5. m 5, 2970, 5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6. m h rpm n m H s l Q r 13.2, 2870,10,/3.2=?=== 7. m rpm n m H h m Q 6.2h , 1450,5.32,/170r 3 =?=== 8. % 60,2h , 2900, 20,/20r 3==?===ηm rpm n m H h m Q (2)工作条件:抽送常温清水。 (3)配用动力:用电动机作为工作动力。 3 设计内容及要求 (1)设计内容。包括以下几个方面: l )、离心泵结构方案的确定。 2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。 3)、叶轮轴面投影图的绘制。 4)、螺旋形压水室水力设计。 (2)要求。包括以下几个方面: l )、用速度系数法和解析计算法进行离心泵水力设计。 2)、绘出压水室设计图。 3)、编写设计计算说明书。

离心泵叶轮型式

离心泵闭式开式半开式叶轮的区别 点击次数:8022 发布时间:2012-2-29 离心泵叶轮的区别,闭式叶轮开式叶轮的区别 叶轮是离心泵的做功零件,依靠它高速旋转对液体做功而实现液体的输送,是离心泵的重要零件之一。离心泵叶轮的区别: (1)叶轮的分类叶轮一般由轮毂、叶片和盖板三部分组成。叶轮的盖板有前盖板和后盖板之分,叶轮入口侧的盖板称为前盖板,另一侧的盖板称为后盖板。按结构形式,叶轮可分为以下三种。 ①闭式叶轮叶轮的两侧均有盖板,盖板间有4~6个叶片,如图2-20 (a)所示。当叶片弯曲方向与叶轮旋转方向相反时,称为盾弯式叶片。一般叶轮的叶片均为后弯式叶片。这种闭式叶轮效率较高,应用最广,适用于输送不含固体颗粒及纤维的清洁液体。闭式叶轮有单吸和双吸(图2—21)两种类型。双吸叶轮比单吸叶轮输液量大。 ②开式叶轮叶轮两侧均没有盖板,叶片通过筋板连接在轮毂上,如图2-20 (b)所示。这种叶轮结构简单,制造容易,但效率低,适用输送含较多固体悬浮物或带纤维的液体。 ⑧半开式叶轮这种叶轮只有后盖板,如图2-20(c)所示。它适用于输送易于沉淀或含固体悬浮物的液体,其效率介于开式和闭式叶轮之间。 按叶轮的形状及液体在叶轮内流动方向的不同,叶轮可分为径流式、轴流式和混流式,径流式叶轮应用在离心泵中,液体沿轴向进入叶轮,沿径向从叶轮流出。液体获得的能量主要来源于叶轮旋转时产生的离心力。轴流式叶轮应用在轴流泵中,液体轴向通过叶轮,液体获得的能量主要来源于叶轮旋转时产生的升

力(即推力)。混流式叶轮应用在混流泵中,液体沿轴向进入叶轮,而沿轴向与移径向之间的某方向流出,依靠离心力和轴向推力的混合作用输送液体. 根据不同的需要,叶轮可由铸铁、铸钢、不锈钢、玻璃钢、塑辩等材料制成。叶轮的制造方法有翻砂铸造、精密铸造、焊接、模压等,其尺寸、形状和制造精度对泵的性能影响很大。

水泵课程设计

水泵与水泵站课程设计 任务书 福建工程学院建筑环境与设备系 给水排水教研室 2009年11月

《泵与泵站》课程设计任务书 一、教学目的与基本要求 泵和泵站课程设计,是给水排水工程专业的重要的集中性实践性环节之一。该课程的任务是使学生在掌握水泵及水泵站基本理论知识的基础上,进一步掌握给、排水泵站的工艺设计步骤和设计方法,使学生所获得的专业理论知识加以系统化,整体化,以便于巩固和扩大所学的专业知识。通过本课程设计还可以训练学生工程设计的基本技能,提高其设计计算能力、编写说明书的能力和工程图纸的表达能力。 基本要求: 1.培养学生严谨的科学态度,严肃认真的学习和工作作风,树立正确的设计思想,形成科学的研究方法。 2.培养学生独立工作的能力,包括收集设计资料、综合分析问题、理论计算、数据处理、工程制图、文字表达等能力。 3.通过课程设计,使学生得到较为全面的工程设计的初步训练。 4.掌握给、排水泵站设计的一般程序,学会灵活地处理复杂的工程问题。 5.学会编写“设计说明书”和“设计计算书”,按规范和标准绘制有关图纸。 6.本设计原则上是由学生在指导教师的指导下,独立完成。 二、设计内容 1.确定泵站的设计流量和扬程,拟定选泵方案。 2.选择水泵和电动机(包括水泵型号、电动机型号、工作和备用泵台数等); 3.确定水泵机组的基础尺寸; 4.吸水管路和压水管路的设计计算(包括进出水管内的流速、管径、阀门等,压水管长度计算至泵房外1m); 5.确定泵站内的附属设备,引水设备(如真空泵)、起重设备、排水泵等; 6.泵站的平面布置; 7.泵站的高程布置(包括水泵的基础、进出水管、泵轴、泵站地面等的标高); 8.根据起重设备的型号,确定泵房的建筑高度; 9.绘制泵站的平面图1张,剖面图1张,并列出主要设备表及材料表。 10.整理设计计算书1份,设计说明书1份。 最终的设计成果: (1)设计计算书和设计说明书各1份

离心泵工作原理及叶轮的作用

离心泵工作原理及叶轮的作用 当化工离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。当化工离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。液体在流经叶轮的运动过程获得了能量,静压能增高,流速增大。当液体离开叶轮进入化工离心泵壳后,由于壳内流道逐渐扩大而减速,部分动能转化为静压能,最后沿切向流入排出管路。所以蜗形泵壳不仅是汇集由叶轮流出液体的部件,而且又是一个转能装置。当液体自叶轮中心甩向外周的同时,叶轮中心形成低压区,在贮槽液面与叶轮中心总势能差的作用下,致使液体被吸进叶轮中心。依靠叶轮的不断运转,液体便连续地被吸入和排出。液体在化工离心泵中获得的机械能量最终表现为静压能的提高。 叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。 1.叶轮 叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。叶轮有开式、半闭式和闭式三种。开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗

粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的化工离心泵叶轮多为此类。 2.泵壳 作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。化工离心泵壳多做成蜗壳形,故又称蜗壳。由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。

离心泵设计

离心泵设计 目录 1 概述 (2) 2 工艺说明 (2) 2.1 工艺简介 (2) 2.2 物料性质 (2) 2.3 工作温度 (2) 2.4 工作压力 (2) 2.5 尺寸参数 (2) 2.6 其他说明................................. 错误!未定义书签。 3 机械设计....................................... 错误!未定义书签。 3.1 材料选择................................. 错误!未定义书签。 3.2 结构设计 (3) 3.3 设计参数 (3) 4 零部件的选型 (4) 4.1 法兰的选型 (4) 4.2 泵体的选型 (4) 4.3 叶轮的选型 (4) 4.4 其他零部件的选型 (4) 5 总结 (4) 参考文献 (5)

1 概述 本门课程是关于化工机械与设备的基础课程,完成一项相关设计是课程学习的主要目的,也是学好课程的重要方法。 目的是将论运用于实践,提高综合运用知识的能力。 本课程设计的目标是提高查阅资料、理论计算、工程制图、数据处理的能力。 完成本设计需要先学好理论知识再参考各类标准按照规范完成作品。 本设计的主要内容有确定工艺参数、确定材料与结构、完成相关计算以及零部件选型。 2 工艺说明 2.1 工艺简介 即合成氨的生产工艺,工艺大致流程如下: 造气→半水煤气脱硫→压缩机1,2工段→变换→变换气脱硫→压缩机3段→脱硫→压缩机4,5工段→铜洗→压缩机6段→氨合成→产品NH 3 本设备主要在其中起输送液体作用。 2.2 物料性质 水在70℃下的物性数据: 热导率:λ 2 = 0.624 W/(m?℃) 粘度:μ 2 = 0.742×10-3 Pa?s 2.3 工作温度 热流体进口温度70℃。 2.4 工作压力 根据工艺要求,设备允许压强不大于2×105Pa。 2.5 尺寸参数 外型尺寸 L: 352 H:320 a:80 h:180

离心泵叶轮切割方法的应用

离心泵叶轮切割方法的应用 摘要:离心泵使用过程中,由于泵选型不当或工艺发生改变,导致泵的扬程偏大,扬程富 余太多,泵出口阀门开度非常小,节流损失大,排量受到限制,造成工况不稳,调节困难, 轴承振动大,机械密封泄漏次数增多。为使泵满足现场工艺要求,可采用切割叶轮的方法 进行调整,离心泵采用切割叶轮的方法,可以改变泵的性能参数,解决泵的匹配性。适当 减小叶轮外径,在转速不变的条件下降低泵的流量、扬程和功率,改变泵的性能参数,从 而使泵在适当流量下使用,有利于降低检修率及起到节能效果。 关键词:离心泵;叶轮切割;机械性能曲线 0 引言 某炼厂硫磺收回装置半贫液泵为单级离心泵,泵的设计出口压力为0.7MPa,但运行压力为1.0MPa,实际泵出口压力5kg/cm2即可满足要求,设计流量Q=222m3/h,实际200 m3/h 即可满足要求。但该泵平时运行流量为80 m3/h,由于达不到泵的最小稳定连续流量要求,造成泵运行状态恶化,主要表现为:泵出口阀卡量过小,泵振动过大,密封泄漏频繁,造成能耗浪费等。为了优化操作,消除设备隐患,节能降耗,需针对该情况增变频电机或者进行叶轮切割。 1、叶轮切割计算 1.1、设计条件工作与实际条件工况的对比 泵的设计条件和性能参数 设计运行参数设计性能参数 流量Q=222 m3/h 扬程H=60m 温度T=119℃叶轮直径D=460mm 出口压力P =0.7MPa 效率η=72% 出 =0.3MPa 功率N=50.38KW 入口压力P 入 介质密度ρ=961kg/m3泵转速n=2950r/min 泵实际的运行的条件和性能参数 实际运行参数实际性能参数 流量Q=80 m3/h 扬程H=60m 温度T=119℃叶轮直径D=460mm =1.0MPa 效率η=72% 出口压力P 出 入口压力P =0.3MPa 功率N=50.38KW 入 介质密度ρ=961kg/m3泵转速n=2950r/min 由此参数可以看出,变化最大的为流量和入口压力,流量的偏低导致泵实际运行工况的改

相关主题
文本预览
相关文档 最新文档