当前位置:文档之家› 基于无线传感器网络的农田土壤温湿度监测系统的设计与开发_刘卉

基于无线传感器网络的农田土壤温湿度监测系统的设计与开发_刘卉

基于无线传感器网络的农田土壤温湿度监测系统的设计与开发_刘卉
基于无线传感器网络的农田土壤温湿度监测系统的设计与开发_刘卉

第38卷第3期吉林大学学报(工学版)Vol.38No.3 2008年5月Journal o f Jilin U niv ersity(Engineering and T echnolo gy Edition)M ay2008基于无线传感器网络的农田土壤温

湿度监测系统的设计与开发

刘卉1,汪懋华1,王跃宣2,马道坤1,李海霞1

(1.中国农业大学精细农业研究中心,北京100083;2.清华大学理论计算机科学研究所,北京100084)

摘要:根据农田环境的应用需求,设计了农田土壤温湿度监测系统,该系统由农田无线监测网络和远程数据中心两部分组成。采用以JN5121无线微处理器为核心的传感器节点开发策略,构建基于ZigBee协议的无线监测网络;采用ARM9微处理器S3C2410,基于嵌入式Linux 开发的网关节点实现数据汇聚和GPRS通信方式的远程数据转发。远程数据中心的管理软件FieldNet采用了数据库管理模式,并通过应用ESRI嵌入式GIS组件库ArcEng ine进行监测数据的实时变化和空间变异分析。系统的设计开发为精细农业时空差异性与决策灌溉研究提供了有效工具。

关键词:农业工程;土壤温湿度监测系统;无线传感器网络;ZigBee;精细农业

中图分类号:S237;T N919.72文献标识码:A文章编号:1671-5497(2008)03-0604-05

Development of farmland soil moisture and temperature monitoring

system based on wireless sensor network

Liu H ui1,Wang M ao-hua1,Wang Yue-x uan2,M a Dao-kun1,Li H a-i x ia1

(1.Resear ch Center f or Pr ecis ion A gr icultur e,China A g ricultur al Univer sity,Beij ing100083,China;2.I nstitute f or T heor etical Comp uter S cience,T singhua Univ er s ity,Beij ing100084,China)

Abstract:Wireless sensor netw ork technolog y can provide optim al and integ rated solution to distributed data co llection,deliv ery and analysis in farm land.An in-field so il m oistur e and temperature m onitor ing sy stem w as developed w hich meets the applicatio n requirement in far mland environment.T his system consists of the soil mo nitoring wireless sensor netwo rk and rem ote data center.In the w ireless sensor netw or k,the sensor no de is developed using JN5121mo dule,an IEEE 802.15.4/ZigBee w ireless microcontro ller.The sink nodes for agg regating and dilevering netw ork data is based on ARM9processor platform in or der to meet the r equirements of high-performance.A GPRS m odule is integr ated into the sink node for long distance com munication.In the remote data center,the management so ftw are r unning on the host computer is dev elo ped for rea-l time data receiv ing and lo gg ing based o n database manag em ent metho d.It also uses ArcEngine,an em bedded GIS developer kit to realize o n-line spatial analysis o f in-field data.This monito ring sy stem m ay pro vide an effectiv e resear ch too l for spatial analy sis and for ir rigatio n decisio n making in precision

收稿日期:2007-09-21.

基金项目:/8630国家高技术研究发展计划项目(2006A A10Z216).

作者简介:刘卉(1978-),女,博士研究生.研究方向:/精细农业0智能信息支持技术.E-mail:liuhui_mail@https://www.doczj.com/doc/147099200.html, 通讯联系人:汪懋华(1932-),男,教授,中国工程院院士.研究方向:/精细农业0智能信息支持技术,农业与生物系统工程.E-mail:mhw@https://www.doczj.com/doc/147099200.html,

第3期刘 卉,等:基于无线传感器网络的农田土壤温湿度监测系统的设计与开发

algriculture.

Key words:ag ricultur e engineering;so il moisture and temperature monitoring system;w ir eless senso r netw ork;Zig Bee;precisio n ag ricultur e

目前,国内外科研人员已经将无线传感器网络技术应用于不同农业环境监测领域[1-3]。作者以农田应用为背景,以研究土壤水分及温度的连续时空变异,指导决策灌溉为目标,通过分析农田环境具体特点,设计开发了低成本、实用化,基于无线传感器网络技术的农田土壤温湿度监测示范系统。

1 系统总体设计

1.1 系统需求分析

监测系统开发前,综合分析了农田环境的应用特点,利用有利条件,规避不利因素。基于无线传感器网络的农田环境监测系统具有5个典型特点:1应用环境可知性;o充足的太阳能资源;?作物具有固定的生育周期;?应用环境动态变化;?农田基础设施少。

此外,农机的田间作业和各种天气条件也是系统设计过程中需要慎重考虑的因素。1.2

系统结构设计

图1 监测系统结构示意图Fig.1 System Architecture

综合分析上述应用特点,借鉴国外研究经验,设计的农田土壤温湿度监测系统总体结构如图1所示。监测系统由无线传感器监测网络和远程数据中心两部分组成。无线传感器监测网络由分布在农田中多个智能传感器节点组成,实时采集土壤水分、土壤温度参数,基于ZigBee 无线通信协议组建Mesh 网络,所有节点数据最终路由到网关节点,由网关节点将全部数据通过GPRS 无线

通信传输方式转发到远程数据中心,监测网络中

的所有节点均采用太阳能供电模式。远程数据中心负责数据的接收、存储和时空分析。

2 农田土壤温湿度监测网络的实现

2.1 传感器节点

传感器节点是一个微型的嵌入式系统,具有一定的处理能力和通信能力。

(1)硬件设计

传感器节点以Jennic 公司的JN5125无线微处理器模块为核心,扩展了通信接口、总线接口、传感器接口和供电接口设计。JN5121模块具有16MH z 、32位CPU,支持2.4GH z IEEE 802.15.4的无线通信组件,同时提供了4路ADC 输入和2路DA C 输入、异步串行口、SPI 接口等,为用户提供节点设计的集成化解决方案。图2为传感器节点控制板结构设计框图,

采用了太阳能电

图2 传感器节点结构框图Fig.2 Sensor Node Block Diagram

源组件供电,扩展支持6路传感器数据采集,通过串行端口与上位机通信实现程序下载。土壤水分

传感器采用了作者所在单位自主研制开发的FDS 系列水分传感器,运用频域方法测量含水土壤混合体的介电常数,获得土壤水分。土壤温度传感器采用了基于半导体PN 极测量原理的ST10,主要技术参数见表1,将不同传感器分别连接到节点控制板的传感器接口,经信号调理后接

入JN5121的A/D 通道,通过标定曲线转换得到对应的测量参数值。图3为传感器节点实物照片。

#

605#

吉林大学学报(工学版)第38卷

表1 传感器技术参数

Table 1 Specif ications of sensors

传感器名称技术参数FDS 土壤

单位:%(m 3m -3)水分传感器

量程:0~100%测量精度:?3%

输出信号:0~1.5VDC 工作电压:5~12VDC 工作电流:35mA 左右

ST 10土壤单位:e 温度传感器

量程:-20~50测量精度:?0.

5

图3 传感器节点Fig.3 Sensor node

(2)板载软件设计

无线传感器网络应用短距离无线通信技术,ZigBee 协议是由Zig Bee 联盟制定的用于短距离无线通信技术标准之一。协议的物理层(PH Y)和媒体接入层(MAC)采用IEEE 802.15.4协议,网络/安全层实现PAN (个人域网)的组网连接、数据管理和网络安全,应用层为实际应用提供框架模型。Zig Bee 有3个工作频段,其中2.4H z 为全球通用免费的ISM 频段。ZigBee 协议主要用于低能耗、低成本设备的低速互连

[4]

。ZigBee

协议特点符合农田监测网络的应用要求。

为支持JN5121模块系列开发,Jennic 公司提供了专门的软件开发平台以及IEEE 802.15.4和ZigBee 网络堆栈。设计中采用了网状网拓扑结构,网关节点内嵌的JN5121模块作为ZigBee 协议监测网络的协调器(Coor dinator ),负责配置网络参数、启动网络并维持网络正常工作;在传感器节点中,为了满足网络覆盖,同时尽可能降低节点能耗和节约成本,将少量传感器节点充当路由器,完成传感器数据采集和路由其他设备数据到协调器的功能,而大部分传感器节点作为终端设备,只采集传感器数据并发送给附近的路由器或

协调器。在程序设计中,用户只需根据设计目标,

调用Zig Bee 协议栈的API 应用编程接口函数实现网络管理层的设备初始化、配置网络、启动加入网络、路由功能,其中消息传播和路由发现是自动完成的,用户无法干预。另外还需定义应用配置文件。图4为协调器和路由器初始化及通信的简化程序设计流程图。另外为满足应用需求,在设计过程中还涉及到时间同步、节点休眠与唤醒等算法的实现。

图4 程序流程图Fig.4 Program f lowchart

2.2 网关节点

与传感器节点相比,网关节点要求较强的处理能力和运行速度,因此设计中选择了具有丰富片上资源的ARM9微处理器S3C2410为核心,根据功能需求,扩展硬件通讯接口,网关节点的结构框图如图5所示,并针对功能设计,采用嵌入式Linux 操作系统完成定制开发。嵌入式Linux 操作系统支持有内存保护、多任务、多进程,并且具有源代码开放、支持大部分芯片、操作系统可裁剪、性能稳定、功能强大、易于移植和开发等优点[5]

图5 网关节点结构框图Fig.5 Gatew ay Board Block Diagram

(1)无线传感器网络数据汇聚。通过异步串

#

606#

第3期刘 卉,等:基于无线传感器网络的农田土壤温湿度监测系统的设计与开发

行端口连接作为Zig Bee 网络协调器的JN5121无线通信模块,网络协调器功能由JN 5121板载程序自行完成,嵌入式Linux 只需完成串口数据通信功能。

(2)GPRS 远程数据转发。通过另一个异步串行端口连接GPRS 通讯模块Siemens MC35i 。实现GPRS 远程数据通信需要自下而上完成驱动层、协议层和应用层设计。在配置嵌入式Linux 内核时选中支持串口设备实现对M C35i 模块的驱动;嵌入式Linux 内核支持PPP(Po int to Point Protocol)协议和TCP/IP 协议,在编译Linux 内核时选中支持这些选项;应用层在网络连接建立后,具体实现向远程数据中心转发数据的功能[6]。

(3)传感器网络数据本地存储。采用了USB 接口存储方式,具有容量大、可扩展、热插拔的优点。

(4)电源输入。供电部分仍采用太阳能电源,由于网关节点能耗较大,选择了功率为8W 的太阳能电源组件,同时还需要进行硬件设计优化,以降低能耗。

3 远程数据中心的实现

远程数据中心为一台具有固定公网IP 地址的计算机,在其上运行的基站数据管理软件是设计的核心。

3.1 开发环境

基站数据管理软件选择了M icro soft Visual C++ 6.0作为开发工具,采用数据库操作方式实现节点数据存储和读取。同时为了实现对分布在农田中的监测节点所采集的定点数据进行时空分析,集成地理信息系统功能,采用了ESRI 公司的ArcGIS Engine 嵌入式组件库。

ArcEngine 由ArcObjects 核心包封装组成,可在各种编程接口中调用,并且无需安装ArcGIS 桌面平台。与低端的地图控件相比,A rcEnginec 除了提供基本的制图、数据编辑和GIS 功能外,还支持空间分析和3D 分析等高级操作功能[7]。3.2 功能模块

基站数据管理软件主要实现数据的接收、存储和时空分析,根据功能需求,划分成如下模块:(1)数据接收模块。网关节点与基站之间采用C/S 客户端服务器工作模式,基于So cket 编程

技术,监听本地IP 地址的绑定端口,在确认客户

端即网关节点的连接请求后,接收数据,并根据自定义数据包协议完成数据解析。

(2)数据库存储模块。根据数据的采集时间,采用时段划分的数据存储管理方式,将解析数据存储到数据库对应表格的对应属性字段中。

(3)监测量时间变化分析模块。从数据库表中读取监测量数据,以时间为横轴,绘制监测量随时间变化的曲线,分析监测量连续变化的特性。(4)监测量空间变异分析模块。课题创新点之一是将GIS 管理分析功能融入到无线传感器网络应用设计中。与灾害预警应用不同,农田无线传感器网络监测旨在通过节点位置上的环境变量采样估计其他非节点位置上的数据,生成环境变量的空间分布图。目前在每个节点中嵌入GPS 模块,成本过高且无必要,因此系统借鉴土壤栅格采样策略,根据预先的部署设计将节点安装在网格中,利用GPS 测量节点的精确位置,并将节点名称和位置信息输入到基站数据管理软件中,生成传感器节点图层。用设定时间间隔所接收到的最新节点数据实时更新节点图层中土壤湿度、土壤温度等监测量字段数据,通过ArcEng ine 的空间分析模块实现空间插值,获得任意时段的监测量空间分布。Raster Analy sis 类包含在GeoAnalyst 类库中,是栅格分析的集合,其中RasterInterpo lationOp 对象的IInterpo lation 接口支持距离反比、克里金法(Krig ing )、样条函数(Splining )及趋势面(T rend surface)等栅格插值算法。

图6为管理软件FieldNet 的实时监测分析界面。

图6 管理软件实时监测分析界面Fig.6 Display of the managem ent software for

rea-l time monitoring and analysis

#

607#

吉林大学学报(工学版)第38卷

4 无线通信模块距离传输试验

无线信号传输过程中存在路径损耗[8]

,为了合理部署传感器节点,进行JN5121模块距离传输试验。发送端与接收端天线高度是影响信号传输的因素之一,图7为裸地环境下传输距离随天线高度变化的曲线。另外随着作物的生长,农田环境动态变化,植被覆盖也是重要的影响因素,例如在小麦株高为60cm 的麦田中,天线高度为150cm ,低功率模块的有效传输距离为50m,高功率模块也仅为150m 。因此在无线传感器网络部署时,应注意以下问题

:

图7 无线传输距离随天线高度变化的曲线Fig.7 Radio range over antenna height

(1)对于同一块农田,低功率模块通信覆盖范

围小,提高节点部署密度,必然增加投入成本,但有利用保证环境监测变量的采样密度;高功率模块可以较好地保证网络连通性,降低成本,但可能导致采集数据失去空间相关性,因此节点部署需综合分析通信和采样两个因素。

(2)针对农田具体覆盖作物,设计适宜的节点天线放置高度,有利于减少信号传输的路径损耗。(3)网络拓扑结构设计中,每个作为终端设备的传感器节点在有效通信范围内至少能够与两个以上的作为路由器的传感器节点通信,以保证一条链路出现故障时不会影响到整个网络。

5 结 论

(1)分析农田环境的应用需求,基于无线传感器网络技术设计了由土壤温湿度监测网络和远程数据中心两部分组成的农田监测系统。提出了广域采集、实时传输、在线分析的新型农田信息化管理集成化解决方案。

(2)采用以JN5121无线微处理器模块为核心的传感器节点软硬件开发策略,构建了基于ZigBee 协议的无线监测网络,开发周期短;以

ARM 9微处理器为核心,基于嵌入式Linux 开发网关节点,处理能力强,扩展性好,在网关节点设计中,采用C/S 客户端服务器工作模式,通过GPRS 通信方式实现数据低成本、远距离转发。(3)基于数据库管理和嵌入式GIS 组件库ArcEngine 开发远程数据管理软件,实现对土壤温湿度监测量的存储、时间变化和空间变异分析,为研究农田时空变异性与决策灌溉提供有效工具。参考文献:

[1]Kim Y,Ev ans R G,Iv ersen W M ,Pierce F J.In -str umentatio n and contr ol fo r w ireless sensor net -w or k fo r aut omated irr igation [C]M 2006A SABE Annual Internatio nal M eeting,Po rtland,2006.AS -A BE P aper N o 061105.

[2]R aul M orais,Valente A ,Ser édio C.A w ireless sen -sor netw ork fo r smart ir rig atio n and env ir onmental mo nitor ing [C ]M EF IT A /W CCA V ila Real Po rtu -g al,2005:845-850.

[3]乔晓军,张馨,王成,等.无线传感器网络在农业中

的应用[J].农业工程学报,2005,21(2):232-234.Qiao Xiao -jun,Zhang X in,Wang Cheng ,et al.A ppl-i catio n of the w ireless senso r netw or ks in ag ricultur e [J].T ransactions of T he Chinese Society of A gr -i cultur al Engineering ,2005,21(2):232-234.[4]蒋挺,赵成林.紫蜂技术及其应用[M ].北京:北京

邮电大学出版社,2006:8-23.

[5]探矽工作室.嵌入式系统开发圣经[M ].北京:中国

铁道出版社,2003:395-424.

[6]李秀红,黄天成,孙忠富,等.基于GPR S/SM S 的嵌

入式环境监测系统[J].吉林大学学报:工学版,2007,37(6):1409-1414.

L i X iu -ho ng ,H uang T ian -shu,Sun Zhong -fu,et al.Embedded enviro nment mo nitor ing system based on G PR S and SM S[J].Jo unr al o f Jilin U niv ersity (En -g ineering and T echno log y Edition ),2007,37(6):1409-1414.

[7]朱仕杰,南卓铜.基于A rcEng ine 的GIS 软件框架

建设[J].遥感技术与应用,2006,21(4):385-390.Zhu Sh-i jie,N an Zhuo -t ong.Building G IS frame -w or k w ith A r cEngine[J].Remo te Sensing T echno -l o gy and A pplication,2006,21(4):385-390.[8]T heodo re S Rappapo rt.无线通信原理与应用(2版)

[M ].周文安等译.北京:电子工业出版社,2006:72-114.

#

608#

智能家居系统中无线传感器网络的设计

智能家居系统中无线传感器网络的设计 智能家居系统中无线传感器网络的设计 随着时代的发展,人们将更多的注意力放在了生活环境的安全性、舒适性和便利性上,从而 出现了智能家居的概念。智能家居控制系统使人们可以对家居内的任意电器进行数字化控制,利用计算机技术、网络通讯技术将与家居生活有关的各种设备有机地结合在一起,进行集中管理,让家居生活更加舒适、安全、有效。本文以ZigBee技术对智能家居内部进行无线网络组网,通 过ZigBee无线传感器网络节点的设计,实现节点对各种传感器信息的采集、传输和控制功能。1Zigbee技术ZigBee技术是一种强调极低耗电、极低成本的短距离无线网络技术,遵循IEEE802.15.4标准。它专注于低速率传输控制,网络容量大,时延短,提供数据完整性检查, 加密算法采用AES-128,网络扩充性强,有效覆盖范围为10~75m,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭环境,通信频率采用2.4GHz 免执照频段。ZigBee是一组基于IEEE802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。IEEE802.15.4仅定义了MAC层和物理层协议,而ZigBee联盟则对其网络层和应用层进行了标准化。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。2系统结构设计无线传感器网络系统主要由传感器、CC2430无线模块构成,结构图。 无线传感器网络采用树状结构,网络中有一个协调器,负责整个网络中数据的处理、转发以及网络的管理。终端节点(传感器节点)上电复位后,会搜索协调器节点,当能够搜索到协调器时,直接申请加入网络。当终端节点搜索不到协调器时,这时就会通过路由器节点找到协调器来加入网络。加入网络后保持待机状态,当有数据需要发送时,按照组网时的路径来收发数据信息。协调器通过串口与PC机相连,利用超级终端实现发送命令或者显示数据。3硬件电路设计本文设计的无线传感器网络系统的硬件结构主要由协调器模块,路由器模块,传感器模块,串口转换模块,供电模块以及PC机等组成。其中协调器、路由器、传感器3个模块作为主要的无线通信模块,由主控芯片CC2430作为数据处理以及无线收发器。其系统硬件电路结构示意图。3.1主控芯片选用CC2430芯片作为无线收发器和数据处理及控制器。CC2430在单个芯片上整合了ZigBee射频前端、内存和微控制器。它采用增强型8051MCU、32/64/128kB 闪存、8kBSRAM等高性能模块,还包含模拟数字转换器、几个定时器、AES-128协同处理器、看门狗定时器。32kHz晶振的休眠模式定时器、上电复位电路、掉电检测电路以及21个可编程I/O引脚。3.2无线模块设计1)协调器模块协调器节点由电压转换模块、按键模块、LCD模块、LED指示灯、时钟、处理器CC2430、天线等部分组成。CC2430的工作电压为3~3.3V,所以要用电压转换模块把电压从5V降低到3.3V左右;LED指示灯用来显示协调器节点网络状态信息(如是否组网成功);LCD模块是用户和传感器网络的交互界面,用来显示功最长能菜单,用户通过按键来选择功能菜单。其电路图。 2)传感器模块与路由器模块传感器模块亦即是终端节点模块,由传感器、处理器CC2430、天线、LED指示灯、时钟等部分组成。LED指示灯由P1.0、P1.1口控制。传感器模块就是在协调器模块的基础上去掉了LCD,而加入了传感器。传感器选用了DHT11温湿度传感器,与P0.0口相连,来负责数据采集。路由器模块与传感器模块的硬件电路相同,只是在编程实现功能上有所不同。4无线网络系统软件设计在ZigBee网络中,只有那些可以成为ZigBee协调器的设备才能建立新网络。协调器首先执行信道扫描,如果发现了一个合适的

温湿度传感器介绍

DWTHI100-S02 无线多功能综合传感器 一、产品介绍 1.1产品概述 ●本产品可以实时、准确的测量环境温度、环境相对湿度和照度,它能使用户对现 场环境实现远程的数据采集和监测,大大减少人工工作量,突出便利性、准确性和实时性。 ●本产品具有体积小、使用寿命长、无线信号传输距离远、环境适应性好、测量 精度高、安装便捷、防水等特点,是一款高性价比的产品。 ●本产品可广泛应用于仓储管理、生产制造、气象观测、科学研究以及日常生活等 领域。 1.2 产品外观 1.3技术参数 1. 温度测量范围:-40℃~+125℃; 2. 温度测量精度:±0.3℃±2.5%(rdg-25℃); 3. 绝对湿度测量范围:1%RH~100%RH; 4. 绝对湿度测量精度: <10%RH:±1.8%RH±20%(rdg-20%RH); 10%RH~90%RH:±1.8%RH

>90%RH:±1.8%RH±20%(rdg-90%RH); 5. 工作环境温度:-20℃~+80℃; 6. 信号调制方式:GFSK; 7. 工作频率:2.45GHz; 8. 无线通讯距离:>300米(2.45GHz、开阔地); 9. 测量周期:30s(3.6V、典型值); 10.平均功耗:<7μA(3.6V); 11.电池寿命:≥6年; 12.外壳材料:增强型耐高温ASA树脂; 13.外形尺寸:45 mm×24 mm×18.5mm; 14.重量:25g(含天线); 15.防护等级:IP34; 16.安装方式:螺丝固定或无痕泡棉双面胶粘贴。 1.4应用场所 1、机房、厂房、仓库、无菌室; 2、温室大棚、智能大棚; 3、图书馆、档案馆、文物馆; 4、生物制药; 5、食品加工、储存场所; 6、医卫场所; 7、气象站; 8、智能楼宇; 9、其它需要监测温、湿、照度的场所。 1.5产品尺寸

土壤温湿度采集器

适宜的土壤温湿度是农作物生长的重要环境条件,它不仅直接影响农作物根系的生长发育以及土壤微生物的活动,而且土壤温湿度的变化还可以改变土壤中水分的运动,造成灌溉的困难。因此人们必须对土壤温湿度进行采集并加以控制 ,使之保持在一定范围之内,以适应农作物的生长。采用单片机系统来设计的土壤温湿度采集器 ,不仅具有控制方便、简单、灵活性大等优点 ,而且较之使用人工分别检测温度和湿度再进行分析处理的方法可以大幅度提高被控温湿度的技术指标,减小中间过程的人为因素误差 ,从而能够大大提高数据的质量,进而使系统做出正确的判断和进一步的控制动作。本设计主要是针对现代农业生产中的大棚温室种植的土壤温湿度进行采集和显示,并有简单的预置功能和报警功能。 本设计以单片机为处理核心,对土壤(也可以是周围的环境比如是空气)进行温度和湿度的测量并进行采集,通过数码管显示出来。在系统的硬件部分主要是采集电路和显示电路。采集电路主要是通过温湿度传感器DHT11将采集到的温湿度数值以数字信号的形式送入单片机中进行处理。显示电路主要是将已经数据处理的温湿度数值利用数码管进行显示出来,配合系统的其他硬件部分如按键系统可以选择显示模式。软件部分的主要工作是使温湿度传感器得到的温湿度数值与单片机之间正确的进行信号的周期性采集与输送,之后进行各种判断来控制硬件电路的显示模式和报警电路。 关键词:温湿度参数;单片机;温湿度传感器

The suitable temperature and humidity of soil are very important for the crop growth .the conditions of soil not only effect the crop root and the microorganism in growing ,but also can effect the moisture movement in the soil.So to keep the moisture in the soil is difficult. Therefore ,people should get the soil temperature and humidity in time to control the system. so that it remains within a certain range in order to adapt to the growth of crops. The single-chip microcomputer for controling the soil temperature and humidity systern, not only has control of the convenience, simplicity, flexibility advantages, but also were used to detect than the artificial temperature and humidity can greatly increase the technical indicators of temperature and humidity to reduce the middle man error factors, which can greatly enhance the quality of the data, the design of agricultural production is mainly directed against the greenhouse temperature and humidity system for collecting and display, and features a simple preset. The single chip design to address the core of the surrounding environment temperature and humidity measurements and acquisition, digital tube display. Part of the hardware in the system is collected and displayed by temperature and humidity sensors DHT11 be processed into the single chip, and then to the display circuit. Software is part of the main collection and distribution of signals and a variety of hardware circuit judge to control the display mode and alarm circuit. Keywords:temperature and humidity parameters; scm; temperature and humidity sensors

基于无线传感器网络的环境监测系统设计与实现

南京航空航天大学 硕士学位论文 基于无线传感器网络的环境监测系统设计与实现 姓名:耿长剑 申请学位级别:硕士 专业:电路与系统 指导教师:王成华 20090101

南京航空航天大学硕士学位论文 摘要 无线传感器网络(Wireless Sensor Network,WSN)是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络,已成为当前无线通信领域研究的热点。 随着生活水平的提高,环境问题开始得到人们的重视。传统的环境监测系统由于传感器成本高,部署比较困难,并且维护成本高,因此很难应用。本文以环境温度和湿度监控为应用背景,实现了一种基于无线传感器网络的监测系统。 本系统将传感器节点部署在监测区域内,通过自组网的方式构成传感器网络,每个节点采集的数据经过多跳的方式路由到汇聚节点,汇聚节点将数据经过初步处理后存储到数据中心,远程用户可以通过网络访问采集的数据。基于CC2430无线单片机设计了无线传感器网络传感器节点,主要完成了温湿度传感器SHT10的软硬件设计和部分无线通讯程序的设计。以PXA270为处理器的汇聚节点,完成了嵌入式Linux系统的构建,将Linux2.6内核剪裁移植到平台上,并且实现了JFFS2根文件系统。为了方便调试和数据的传输,还开发了网络设备驱动程序。 测试表明,各个节点能够正确的采集温度和湿度信息,并且通信良好,信号稳定。本系统易于部署,降低了开发和维护成本,并且可以通过无线通信方式获取数据或进行远程控制,使用和维护方便。 关键词:无线传感器网络,环境监测,温湿度传感器,嵌入式Linux,设备驱动

Abstract Wireless Sensor Network, a new intelligent control and monitoring network combining sensor technology with computer and communication technology, has become a hot spot in the field of wireless communication. With the improvement of living standards, people pay more attention to environmental issues. Because of the high maintenance cost and complexity of dispose, traditional environmental monitoring system is restricted in several applications. In order to surveil the temperature and humidity of the environment, a new surveillance system based on WSN is implemented in this thesis. Sensor nodes are placed in the surveillance area casually and they construct ad hoc network automatieally. Sensor nodes send the collection data to the sink node via multi-hop routing, which is determined by a specific routing protocol. Then sink node reveives data and sends it to the remoted database server, remote users can access data through Internet. The wireless sensor network node is designed based on a wireless mcu CC2430, in which we mainly design the temperature and humidity sensors’ hardware and software as well as part of the wireless communications program. Sink node's processors is PXA270, in which we construct the sink node embedded Linux System. Port the Linux2.6 core to the platform, then implement the JFFS2 root file system. In order to facilitate debugging and data transmission, the thesis also develops the network device driver. Testing showed that each node can collect the right temperature and humidity information, and the communication is stable and good. The system is easy to deploy so the development and maintenance costs is reduced, it can be obtained data through wireless communication. It's easy to use and maintain. Key Words: Wireless Sensor Network, Environment Monitoring, Temperature and Humidity Sensor, Embedded Linux, Device Drivers

无线传感器网络的安全性研究

无线传感器网络的安全性研究 0 引言 无线传感器网络(WSN,Wireless Sensor Network)是一种自组织网络,由大量具有无线通信、数据采集和处理、协同合作等功能的节点协同组织构成。WSN在军事、环境、工控和交通等方面有着广阔的应用前景。由于大多数用户对WSN的安全性有较高要求,而WSN有着与传统的Ad hoc网络不同的特点,大多数传统的安全机制和安全协议难以直接应用于WSN,因此有必要设计适合WSN的安全性方案。 无线传感器网络与传统的ad hoc网络相比有如下独有的特点[1]: (1)传感器节点数量巨大,网络规模庞大; (2)节点密集分布在目标区域; (3)节点的能量、存储空间及计算能力受限,容易失效; (4)动态的网络拓扑结构; (5)通常节点不具有统一的身份(ID)。 1 WSN的安全性问题 WSN中,最小的资源消耗和最大的安全性能之间的矛盾,是传感器网络安全性的首要问题。通常两者之间的平衡需要考虑到有限的能量、有限的存储空间、有限的计算能力、有限的通信带宽和通信距离这五个方面的问题。 WSN在空间上的开放性,使得攻击者可以很容易地窃听、拦截、篡改、重播数据包。网络中的节点能量有限,使得WSN易受到资源消耗型攻击。而且由于节点部署区域的特殊性,攻击者可能捕获节点并对节点本身进行破坏或破解。 另外,WSN是以数据通信为中心的,将相邻节点采集到的相同或相近的数据发送至基站前要进行数据融合,中间节点要能访问数据包的内容,因此不适合使用传统端到端的安全机制。通常采用链路层的安全机制来满足WSN的要求。 2 常见的攻击和解决方案 在WSN协议栈的不同层次上,会受到不同的攻击,需要不同的防御措施和安全机制。 2.1 物理层 物理层完成频率选择、载波生成、信号检测和数据加密的功能。所受到的攻击通常有: 1)拥塞攻击:攻击节点在WSN的工作频段上不断的发送无用信号,可以使在攻击节点通信半径内的节点不能正常工作。如这种攻击节点达到一定的密度,整个网络将面临瘫痪。 拥塞攻击对单频点无线通信网络影响很大,采用扩频和跳频的方法可很好地解决它。 2)物理破坏:WSN节点分布在一个很大的区域内,很难保证每个节点都是物理安全的。攻击者可能俘获一些节点,对它进行物理上的分析和修改,并利用它干扰网络的正常功能。甚至可以通过分析其内部敏感信息和上层协议机制,破坏网络的安全性。 对抗物理破坏可在节点设计时采用抗窜改硬件,同时增加物理损害感知机制。另外,可对敏感信息采用轻量级的对称加密算法进行加密存储。 2.2 MAC层 MAC层为相邻节点提供可靠的通信通道。MAC协议分3类:确定性分配、竞争占用和随机访问。其中随机访问模式比较适合无线传感网络的节能要求。 随机访问模式中,节点通过载波监听的方式来确定自身是否能访问信道,因此易遭到拒绝服务攻击(Distributed Denial of Service,DOS)[2]。一旦信道发生冲突,节点使用二进指数倒退算法确定重发数据的时机。攻击者只需产生一个字节的冲突就可以破坏整个数据包的发送,这时接收者回送数据冲突的应答ACK,发送节点则倒退并重新选择发送时机。如此这般反复冲突,节点不断倒退,导致信道阻塞,且很快耗尽节点有限的能量。

无线传感器网络系统的设计思路

无线传感器网络系统的设计思路 一、无线传感器网络技术应用广泛,百花齐放 无线传感器和传感器网络,是具有非常广泛的市场前景,将会给人类的生活和生产的各个领域带来深远影响的新技术。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。 无线传感器网络有着十分广泛的应用前景,在工业、农业、军事、环境、医疗,数字家庭,绿色节能,智慧交通等传统和新兴领域有具有巨大的运用价值,无线传感器网络将无处不在,将完全融入我们的生活。图一是无线传感器应用示意。 由于无线传感器和无线传感器网络巨大的市场和应用前景,所以目前全世界许多公司都推出了各自的无线传感器网络。这些技术百花齐放,各有千秋,但是这些技术之间,几乎不能相互兼容和互通。 目前正在开发中的各种无线传感器技术,从这个图我们可以看到,不同的无线传感器网络,最终都是希望实现和互联网的通讯,这可能是这些传感器网络最终交汇的通道。 二、如何选择合适的无线传感器技术 无线传感器网络系统的基本架构包括三部分,第一部分是无线收发芯片,其职责是将数字信息转换为高频无线信号传送出去和将接收到的高频无线信号恢复成数字信息。无线传感器收发芯片而言,IEEE 802.15.4能为无线传感器应用提供最佳方案,这是因为IEEE 802.15.4规范可能是主要且可能唯一的实用标准。目前全球有多家公司提供这方面的收发芯片。像TI 公司的CC2420/CC2520等芯片都特别适用于钮扣电池和低电能应用的低功耗特性。 实现一个典型的无线传感器网络节点和路由器,可以采用多芯片方案,,由一个无线收发芯片和一个微控制器(单片机)组成,微处理器可以采用低功耗的MSP430,无线芯片可以采用CC2520/CC2420等。 随着技术不断发展,已经有越来越多的公司,将无线收发器芯片和微控制器和无线收发器做成了一个片上系统(SoC),例如TI公司采用8051内核的CC2430/CC2431等ZigBee无线单片机,随着无线传感器网络对计算能力提高要求,最近Freescale公司也推出了ARM内核的32位ZigBee无线单片机。使用这些SoC无线单片机设计无线传感器网络,将使无线传感器节点具有更小的体积,更低的功耗和更低的价格;TI公司在国内的技术合作伙伴无线龙科技公司等,也同时提供这些芯片,开发工具的相关技术支持。 无线传感器网络构架第二部分是运行于单片机或者无线单片机内部的嵌入式软件,也称软件协议栈(network stack),网络堆栈有两个职责。首先它必须要处理节点间的无线链接通信质量的频繁变化和环境因数对无线通讯造成的干扰,具有对网络自组织,自恢复的能力;网络堆栈的第二个职能是要具有很强的路由算法能力,确保信息可靠高效地通过各种网络拓扑(星状/网状等等)从源节点(如果现有,可以通过成百上千路由节点)发送到目标节点。确保通讯的实时性要求。 ZigBee联盟是由众多技术供应商和开发商组成的独立标准组织。也是目前世界是最大的,基于IEEE 802.15.4平台的网络软件协议栈标准提供联盟。 该组织从ZigBee2004、ZigBee2006、ZigBee2007不断发展,目前提供的两个网络栈是:ZigBee和ZigBee PRO。从使用角度看ZigBee堆栈很适合一般包含十到几百个节点的小型网络。而ZigBee PRO是ZigBee超集,它增加了一些功能,可对网络进行扩展并更好地应对来自其他技术的无线干扰,而且可以适应更大型的网络和具有更加可靠的路由通讯算法和无线通讯可靠性。 无线传感器网络构架第三部分应用软件,这部分包括各种根据用户现有开发的软件代码,

无线温湿度传感器方案 V2

无线温度传感器方案 V2.0.20121102

1、设计指标 ◆工作及其测试温度:-25℃ ~ 70℃ ◆温度测试分辨率:0.1℃ ◆温度测试精度:±2℃,可校准 ◆温度传感器:热敏电阻,可制定外接18B20\LM34应用 ◆工作电压:2V~3.6V,最好使用一节3.6V锂电池 ◆终端功耗:视数据量决定,待机电流<10uA,发送电流(17dbm) ≤70mA,接收电流≤13.5mA ◆可制定采集速度,一个路由器可挂载最多255个终端 ◆同个网络可有最大255个路由器 ◆终端及其路由器发送功率0~17dbm可调,开阔地最远发送距离1km ◆拓扑结构:终端采用星型,路由器采用树型 ◆终端汇集数据到路由器,终端采用节能间歇工作方式 ◆路由器之间接力传输数据,需要永久供电 ◆网络接入点为主机,主机与路由器连接获得数据通过串口与PC通信 2、网络结构 终端以星型的拓扑结构与路由器相连接, 3、网络的架设和配置

终端、路由器和主机的配置都是通过模块上的串口进行配置,模块串口使用TTL电平,配置时需要一根RS232转TTL的串口转换器,也可使用直接USB转串口TTL输出的数据线。连接上模块后,打开无线温湿度传感器配置软件打开串口即可进行配置。 3.1 终端的配置 如图3.1.1所示的终端配置界面中,发送功率可在-12dBm到 17.5dBm之间调整,调整合适的数值可获得不同的传输距离和功耗。空中 速率可决定传输数据的时间,对于低功耗设备,在满足距离的情况下越高越合适,可以极大的减少平均功耗,空中速率可在2~250Kbps之间调整,整个网络中速率必须相同。发送间隔为温度数据采集并传输的时间,以秒为单位,需要根据网络复杂度调节。本机地址是指在当前同个路由器下星型网络中终端的地址,同一个网络中,节点地址必须唯一。在不同的路由器星型网络中,节点地址可重复使用。路由地址是指当前终端所需要挂载到的路由器地址,请参考图2.1所示的网络示意图。 温度的校准需要根据环境温度来实现校准,例如当前采集到的温度与实际不符,那么在温度校准编辑框中输入当前实际的温度,然后点击开始校

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

无线传感器网络的应用及影响因素分析

无线传感器网络的应用与影响因素分析 摘要:无线传感器网络在信息传输、采集、处理方面的能力非常强。最初,由于军事方面的需要,无线传感网络不断发展,传感器网络技术不断进步,其应用的X围也日益广泛,已从军事防御领域扩展以及普及到社会生活的各个方面。本文全面描述了无线传感器网络的发展过程、研究领域的现状和影响传感器应用的若干因素。关键词:无线传感器网络;传感器节点;限制因素applications of wireless sensor networks and influencing factors analysis liu peng (college of puter science,yangtze university,jingzhou434023,china) abstract:wireless sensor networks in the transmission of informa- tion,collecting,processing capacity is very strong.initially,due to the needs of the military aspects of wireless sensor networks,the continuous development of sensor network technology continues to progress its increasingly wide range of applications,from military defense field to expand and spread to various aspects of social life.a prehensive description of the development process of the wireless sensor network,the status of the research areas and a number of factors affecting the application of the sensor. keywords:wireless sensor networks;sensor nodes;limiting factor 一、无线传感器网络的技术起源以及特点

无线传感器网络课程设计报告

无线传感器网络 课程设计报告 (2018-2019学年第一学期) 题目安全的无线传感器网络数据传输系统的设计指导老师 班级

目录1需求分析 2传感器网络概述 2.1传感器网络体系结构 2.2传感器网络协议栈 3数据传输方式 4设计 4.1主要数据结构 4.2 课程设计的条件 5测试 6使用说明 6.1应用程序功能的详细说明 6.2应用程序运行环境要求 6.3输入数据类型、格式和内容限制 6.4各模块程序段说明 7总结提高 7.1课程设计总结 7.2课程设计评价

1 需求分析 1.1 功能与技术需求 随着信息时代的逐渐来临,物联网的建设也越来越完善,为信息的存储和传输提供了完善的路径,而无线传感网是物联网的重要组成部分,它的建设成为物联网建设的关键。无线传感器网络是由大量微型传感器节点以自组织和多跳的方式构成的网络。它具有资源非常受限、无线通信链路质量不稳定和网络拓扑动态变化等诸多显著特点,与现有的互联网和其它无线网络存在较大差别,向可靠数据传输提出新的挑战和要求。在数据传输可靠性保障方面,采用了加密算法保证在传输过程中的安全性。 2 传感器网络概述 2.1传感器网络体系结构 典型的传感器网络结构包括传感器节点、汇聚节点和管理节点。随即部署在监测区域内的大量传感器节点通过自组织方式构成网络。传感器节点的监测数据沿着其他节点逐跳传输,监测数据可能被多个节点处理,经过多跳后被路由到汇聚节点,最后通过互联网或者卫星到达管理节点和用户。管理节点对传感器网络进行配置和管理。传感器网络体系结构如图所示

2.2传感器网络协议栈 与互联网协议栈(TCP/IP)的五层相对应,传感器网络协议栈包括:物理层、数据链路层、网络层、传输层和应用层。另外协议栈还包括时间同步、节点定位、网络管理、QoS保障、移动管理、任务管理、能量管理和安全机制等。物理层提供信号调制、无线收发和相应的密码服务:数据链路层负责信道接入、拓扑生成、差错控制、介质访何控制、数据成帧以及数据帧监测等;网络层主要负责路由生成,路由选择和拓扑管理等;传输层负责数据流的传输控制,网络的协同工作等:时间同步、节点定位、网络管理、QoS 保障、移动管理、任务管理、能量管理和安全机制等通常跨越多个网络协议栈层次

(完整版)无线无源温度检测原理

无线测温技术方案 (基于EH技术) 1.EH技术说明 1.1. EH技术简介 环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。 能量收集(EH)也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。 能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。 1.2.EH技术应用 在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。 将EH技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。 2.基于EH技术的富邦电控FTZ600无线测温系统 2.1. 无线测温系统简介

土壤温湿度仪的使用范围及安装要点

土壤温湿度仪的使用范围及安装要点 土壤温湿度仪又称为便携式土壤温度速测仪、快速土壤水分温度仪、快速土壤水分温度测定仪、土壤温湿度测定仪、土壤温湿度记录仪。TZS-2X土壤温湿度仪可同时测土壤表层和不同深度的土壤容积含水量,测量精度高,存储容量大,体积小巧,便于携带。可用于农田、水利、森林、草坪、公路、铁路养护等的长期监测,可连续监测土壤的水分,性能稳定,可靠性高,免维护。 土壤温湿度仪可脱离开计算机独立工作,上位机软件功能强大,数据查看方便,随时可以将记录数据导出到计算机中,并可以存储为EXCE表格文件,生成数据曲线,以供其它分析软件进一步进行数据处理,连接计算机可以打印存储数据。 TZS-2X土壤温湿度仪广泛应用于农业、林业、地质、农田、水利、森林、草坪、公路、铁路养护等测等方面的测量及研究。 浙江托普云农研发生产的土壤温湿度仪,土壤温湿度测定仪,土壤温湿度记录仪,便携式土壤水分温度速测仪,快速土壤水分温度仪,快速土壤水分温度测定仪小巧美观便于携带 ,轻触式按键,大屏幕点阵式液晶显示,全中文菜单操作。 型号功能区别 TZS-2X 不带定位功能 TZS-2X-G 带定位功能 土壤温湿度仪|土壤温湿度测定仪|土壤温湿度记录仪|便携式土壤水分温度速测仪|快速土壤水分温度仪手持机技术参数: 记录容量:设备内部Flash可存储近3万条数据,标配4G内存卡可无限存

储,亦可与Flash中数据同时存储。 记录时间间隔:5分到99小时 经度:0~180° 纬度:0~90° 语音播报:中文普通话 工作电源:3.7V锂电池供电 工作电流:待机功耗10mA,其他功耗根据配置而定 土壤温湿度仪传感器介绍: 1)土壤温度技术参数: 土壤温度单位:℃ 测试范围:-40~100℃ 精度:±0.5℃ 2)土壤水份技术参数: 水份单位:%(m3/m3) 含水率测试范围:0~100% 标准电缆长度:1.5m(可按客户需要定做,最长可至1000m) 可选件:测量地下深层土壤水份时建议使用土钻 响应时间:≤2s 相对百分误差:≤3% 土壤温湿度仪/便携式土壤水分温度速测仪/快速土壤水分温度测定仪功能特点: 1、小巧美观便于携带,轻触式按键,大屏幕点阵式液晶显示,全中文菜单操作。 2、采集设置:在无人看守的情况下使用,可设置定时采集,也可手动采集。自动记录数据并存储。

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

无线传感器网络练习题(1)

一、填空 1.无线传感器网络系统通常包含汇聚节点、传感器节点、管理节点。 2.传感器节点一般由通信模块、传感器模块、存储模块和电源模块 组成。 3.无线传感器节点的基本功能是:采集数据、数据处理、控制和通 信。 4.传感器节点通信模块的工作模式有发送、接收和空闲。 5.无线通信物理层的主要技术包括介质的选择、频段的选择、调制 技术和扩频技术。 6.扩频技术按照工作方式的不同,可以分为四种:直接序列扩频、 跳频、跳时和宽带线性调频扩频。 7.目前无线传感器网络采用的主要传输介质包括无线电波、光纤、 红外线等。 8.无线传感器网络可以选择的频段有:868MHz、915MHz、和5GHz。 9.传感器网络的电源节能方法:休眠机制、数据融合。 10.根据对传感器数据的操作级别,可将数据融合技术分为一下三类: 决策级融合、特征级融合、数据级融合。 11.根据融合前后数据的信息含量分类(无损失融合和有损失融合) 12.根据数据融合与应用层数据语义的关系分类(依赖于应用的数据 融合、独立于应用的数据融合、结合以上两种技术的数据融合)13.定向扩散路由机制可以分为三个阶段:兴趣扩散、梯度建立、路 径加强。

14.无线传感器网络的关键技术主要包括:时间同步机制、数据融合、 路由选择、定位技术、安全机制等。 15.无线传感器网络通信安全需求主要包括结点的安全保证、被动抵 御的入侵能力、主动反击入侵的能力。 16.标准用于无线局域网,标准用于低速无线个域网。 17.规定三种帧间间隔:SIFS、PIFS、DIFS。 18.标准为低速个域网制定了物理层和MAC子层协议。 19.ZigBee主要界定了网络、安全和应用框架层,通常它的网络层支 持三种拓扑结构:网状网络、树形网络、星型网络。 20.传感器网络中常用的测距方法有:接收信号强度指示、到达时间 差、到达角。 21.ZigBee网络分4层分别为:物理层、网络层、应用层、数据链路 层。 22.与传统网络的路由协议相比,无线传感器网络的路由协议具有以 下特点:能量优先、基于局部拓扑、以数据为中心、应用相关。 23.数据融合的内容主要包括:目标探测、数据关联、跟踪与识别、 情况评估与预测。 24.无线传感器网络信息安全需求主要包括数据的机密性、数据鉴别、 数据的完整性、数据的实效性。 25.传感器结点的限制条件是电源能量有限、通信能力有限、计算和 存储能力有限。

相关主题
文本预览
相关文档 最新文档