当前位置:文档之家› 基于UGNXISV的数控加工仿真

基于UGNXISV的数控加工仿真

基于UGNXISV的数控加工仿真
基于UGNXISV的数控加工仿真

基于UGNX/IS&V的数控加

工仿真

设计总说明

中国的制造业面临着巨大的机遇和严峻的挑战。机床工业是装备制造业的核心,关系国家的经济命脉和安全。虚拟机床是虚拟制造技术的热点研究课题之一。

以数控加工仿真为主要内容的虚拟机床技术可以在计算机上解决实际加工中遇到的各种问题,提高编程速度,缩短开发周期,降低生产成本,提高产品质量,并得到了广泛的实际应用。因此本文通过运用CAD/CAM软件UG和UG IS&V模块,针对VS1575型三轴立式数控铣床进行了虚拟机床技术的研究。

本文通过查阅大量文献资料,系统研究了虚拟机床技术的产生、研究内容、研究现状及应用前景。并通过察看说明书等资料和实际动手操作,全面了解了VS1575型三轴立式数控铣床的结构、功能、主要参数及数控系统。同时深入学习了CAD/CAM软件UG的各个模块,重点学习了其中的建模、加工及后处理模块,对IS&V模块进行了全面的学习。以上是虚拟机床技术研究的前期工作。

本文利用软件UG的CAD模块建立了数控机床、被加工零件及毛坯的参数模型,同时在CAM模块中完成了数控编程工作,并运用后处理模块生成了可被机床直接执行的G代码;在调入由UG输出的机床及被加工零件的STL模型和数控代码的基础上,本文运用后处理构造器进一步创建了数控系统文件和刀具文件,实现了数控加工过程仿真,并进行了刀具轨迹优化和加工质量检验,实现了完全的虚拟加工过程,保证了数控程序的正确性。

IS&V 是UG 软件中一个功能强大用于数控机床集成仿真和验证的专用模块。介绍了该模块的结构组成及工作原理, 并在IS&V 环境下建立了一台三轴数控铣床的仿真模型。在该模型的基础上分别对零件加工过程中的刀具路径和铣床运动进行仿真, 预见和评估其加工过程中可能出现的问题并加以解决, 最终提高企业的生产效率并使其获得" 首试成功" 的加工制造。

目前多数三轴数控机床仿真系统,一般只提供二维的动画仿真,而且仿真系统的几何造型功能十分有限,零件和机床模型需要在其他CAD 软件中进行建模,然后导人数控仿真系统。由于文件格式的转化,零件的CAD模型将会产生误差,降低了仿真精度。该文利用UG CAD/CAM软件造型功能建立三轴数控机床和零件模型,读取数控代码对机床各部件进行三维运动仿真,并对加工过程中机床运动部件之间的干涉及工件过切进行检查,建立干涉实体,为刀具轨迹的修改提供依据,同时免除了文件格式的转化产生的误差。

本文通过实验对课题理论研究部分的内容进行了验证,证明将UG 建模和后处理相结合进行虚拟机床技术研究是一种可行的方法。

目录

第一章绪论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1数控机床加工仿真设计的发展简况. . . . . . . . . . . . . . . .2

1.2 UG IS&V的结构和优点. . . . . . . . . . . . . . . . . . . . .2

1.2.1 IS&V 模块的结构组成. . . . . . . . . . . . . . . . . . 3

1.2.2 IS&V的优点. . . . . . . . . . . . . . . . . . . . . . 3第二章定义机床的装配. . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 组织数据. . . . . . . . . . . . . . . . . . . . . . . . . . .5

2.2 虚拟机床建模. . . . . . . . . . . . . . . . . . . . . . . . .5

2.2.1 主要组件的建模. . . . . . . . . . . . . . . . . . . . .5

2.2.2 虚拟机床的模型装配. . . . . . . . . . . . . . . . . . .8第三章虚拟机床运动模型的创建. . . . . . . . . . . . . . . . . . . .10

3.1 建立运动模型的必要工作. . . . . . . . . . . . . . . . . . . .10

3.2 建立和创建机床运动模型. . . . . . . . . . . . . . . . . . . .10

3.2.1 机床运动模型的定义. . . . . . . . . . . . . . . . . . .10

3.2.2 模型的创建步骤. . . . . . . . . . . . . . . . . . . . . 11

3.3 添加机床到库. . . . . . . . . . . . . . . . . . . . . . . . 15第四章虚拟机床MTD的创建. . . . . . . . . . . . . . . . . . . . . .17

4.1 UG/Post 后处理综述. . . . . . . . . . . . . . . . . . . . . 17

4.1.1 UG/Post的组成结构. . . . . . . . . . . . . . . . . . .17

4.1.2 UG/Post的组成元素. . . . . . . . . . . . . . . . . . 19

4.1.3 UG/Post的开发方法. . . . . . . . . . . . . . . . . . . 20

4.1.4 UG/Post的安装及使用. . . . . . . . . . . . . . . . . 21

4.1.5 FANUG G代码. . . . . . . . . . . . . . . . . . . . . 22

4.2 在Post builder中创建VNC控制器. . . . . . . . . . . . . . 23

4.3 添加后处理到机床数据文件. . . . . . . . . . . . . . . . . . 25

4.4 刀具、刀柄和工件、夹具的创建. . . . . . . . . . . . . . . . 26 第五章应用IS&V机床. . . . . . . . . . . . . . . . . . . . . . . . 30第六章总结与展望. . . . . . . . . . . . . . . . . . . . . . . . . .36

第一章绪论

1.1 数控机床加工仿真设计的发展简况

随着加工技术与机床技术的发展,加工过程和应用的机床愈加复杂,这一过程所需工具和设备十分昂贵,在加工中由于无法预测,目前国外已有成熟的软件实现机床加工的仿真与模拟,仿真,验证,三轴铣削加工,钻孔,车削,车铣加工,线切割刀路验证;构建并模拟CNC机床和机床控制系统,准确检查机床碰撞;自动修正进给速度,提高切削效率,提高零件表面质量;仿真并验证四,五轴的铣削加工,钻,车,复杂的车铣联动机床操作;在加工的任何阶段,创建和模拟CNC探测程序;根据模拟所产生的过程加工特征,生成过程检测说明及工艺文档,可以节省时间和改进精度;检查过切情况,材料的去除量,接触面积等。例如VerCut。另外,像UGS公司的Tecnomatix 中eMPower Maching 不仅能实现机床的模拟,而且支持从生产线设计,具体的工艺设计到生产厂作业的整个制造过程生命周期。它支持用电子工艺表(eBOP)的格式定义制造工艺并储存到数字化制造服务器。

虚拟机床(Virtual Machine Tool, VMT)是随着虚拟制造技术的发展而提出的一个新的研究领域,它的最终目标是为虚拟制造建立一个真实的加工环境,用于仿真和评估各加工过程对产品质量的影响。虚拟机床加工系统与现实中的机床加工系统是对应的,几乎具备现实机床加工系统的全部功能、特征和行为。它可以根据实际机床或加工中心的状况进行初始化,然后用数控代码驱动虚拟机床进行切削加工,完成现实机床加工系统同样的生产任务。虚拟机床是虚拟制造的支撑技术之一。

虚拟机床加工系统的研究工作是由美国提出的。1994年美国科学技术政策办公室提出了美国机床业竞争力的测试报告,总结机床业和它的市场环境的基本变化如下:

(1)产品寿命期快速缩短;

(2)机械技术与电子技术的融合;

(3)技术集成和系统集成的重要性增加;

(4)全球市场集成与竞争力;

(5)对新技术的需求;

(6)对新投资的需求。

报告的任务是从事机床设计、制造和使用相关先进技术的研究,促使研究所、企业同高校联合,共同为加速现有的机床技术的再造和向工业企业的转移速度开展有效的工作。其中研究工作包括:

(1)立足公司企业层次,为机床制造的敏捷化建立更好的信息系统,进行更好的人员培训,建立更好的其他支撑系统。

(2)敏捷制造的支撑技术的研究

①机床的运作水平:在机床和加工系统开发中考虑功能性、精确性和通用性,

将最近的研究成果纳入新一代的机床运作中去。

②机床设计开发水平:标准化、通用化设计,建模仿真系统,多供应厂商支

撑等技术和方法大大缩短机床产品的设计开发时间。

③加工系统的研究与培训教育水平:发展大学、研究所和开发单位间的合作,

采用标准数据结构,通用硬件实现技术集成。

④敏捷性的探索研究:研究机床制造敏捷性的内涵和规律,改善敏捷性的方

法,提供并行工程和虚拟机床制造的范例。

(3)制造活动驱动力的测试:信号采集、译码、建模和向企业转移传播,更好的利用产品与过程的建模技术,设计仿真与虚拟现实制造,竞争能力的测试、表征和实施。

在进行这些广泛的研究时,研究人员认识到针对金属切削加工的模拟并不存在,尽管只考虑标定几何和运动过程的关系的碰撞检验系统以及NC代码的检验系统被广泛使用而且颇为有效,但在很多技术领域和工业实践中,有针对制造过程和设备的模拟的软件系统存在,如果不用实际的硬件进行昂贵的试验和错误运行,这些系统对于估计和验证针对新产品的设想过程的正确性是不可缺少的工具。

这个系统的目标是模拟切削的操作,获得具有真实感的结果。该报告相信伴随着计算模型的新的进展,将促使对加工过程的了解的进步,为此,他们进行了“虚拟机床(Virtual Machine Tool一VMT)”工程计划,这个计划的目标是模拟切削加工操作,获得真实感的结果的预测能力,这个系统将在切削以及与切削相关的过程中有效。

与此同时,美国国家标准技术协会(NIST, National Institute of Standards and Technology)等部门也在从事VMT的研究。其主要内容是开发新世纪的以信息为基础的制造的标准和度量工具。VMT成为NIST开发的国家发展制造试验台(NAMT, National Advanced Manufacturing Tested)的重要组成部分。

美国科学技术政策办公室特别强调VMT真实感的切削工程,包括计算工件的属性:几何特性(公差、轮廓、外形)和完整(残余应力、结晶变化)的系统的特殊性能;由外部指令施加的操作参数:施加的力和温度场以及控制物理机构的影响等。而美国国家标准技术协会认为VMT是机床的准确特性的电子描述,VM'T 将去检验和优化制造以及制造工艺,包括切削过程、加工结果,以避免价格昂贵的试切削。

当今因为还有很多的有关金属切削过程的机理人们并没有掌握,VMT还没有形成一个成形的系统,但是不仅在美国,而且在其他地区包括中国,对VMT 的研究都在被广泛的关注,正在成为制造研究领域的热点。

相比而言我国在机床仿真模拟方面与国外有较大差距,目前主要集中在界面仿真,对G代码的模拟仅限于三轴,由于CAD平台的限制,国内在三维机床仿真模拟方面还未有独立自主的软件。

1.2 UG IS&V的结构和优点

UGNX 是当今世界上最先进和紧密集成的、面向制造行业的CAID/CAD/CAE/CAM高端软件。作为一个全面集成的产品工程解决方案, 其中的IS&V( Integrated Simulationand Verification) 模块是一个功能强大的集成仿真验证专用模块, 用于模拟刀具路径以及整个数控机床的切削过程。它可以建立与实际生产加工中的数控机床完全一致的精确运动模型, 以使模拟仿真结果完全符合实际情况。

1.2.1 IS&V模块的结构组成

IS&V 模块由机床驱动器MTD( Machine Tool Driver) 和仿真验证引擎S&V Engine( Simulation &Verification Engine) 两大核心构成, 而UG CAM、NC 代码输出以及图形反馈输出等都是以此为前提的。具体结构如图1.1

图1.1 ISV结构组成及处理过程

其中MTD 是UG 后处理的延伸和扩展, 它除了包括一个传统的后处理文件( MOMPost) 和虚拟NC 控制器VNC( Virtual NCController) 以外, 还包括机床的所有运动和特性。在进行仿真时,MTD 会接受UG CAM模块产生的必要信息和数据( 包括刀路、换刀及后处理信息等) , 然后将仿真和验证命令传递到S&V Engine。而S&V Engine 则在收集处理信息和数据之后把结果仿真反馈给图形显示窗口或仿真控制面板( 包含在UG CAM模块中) 。使用IS&V 模块可以进行精确地加工仿真并生成逼真、全方位的加工仿真动画, 以保证最后生成的NC 代码能在实际的数控机床上安全、快速、可靠地运行。

1.2.2 IS&V的优点

ISV可以反映机床加工零件的实际过程,在此过程中我们可以捕捉和在加工过程中产生的任何问题,甚至有可能把这些问题反馈给设计人员来修改零件(DFM 面向制造的设计),在加工的时候,我们已经确定该零件的可加工性,并且把所有妨碍加工的障碍去除了,这些障碍可能会导致机床的停工,从而节约成本。除此之外IS&V 模块还有很多优点:

1:该结构允许控制器插入到软件控制器中。

2:可以检测任何机床部件之间的干涉碰撞,例如工装、刀具、工件等。

3:可以预览所有的加工操作,例如宏、子程序、循环、M、G、H等命令。

4:提高了加工质量。

5:消除了昂贵并且耗时的试加工验证和干切削验证。

6:减小了破坏机床、工件、夹具可能的损坏,而这些损坏可能会花费很多。7:通过模拟仿真增大了机床的利用率,因为之前可能因为一些加工因为缺少验证和可视化而不去做。

8:对新员工或新操作人员进行培训。

第二章定义机床的装配

2.1 组织数据

如果要进行机床仿真操作,我们必须把机床模型建立成一个装配体,机床的各个组件分别在独立的部件中给出,然后装配起来,这是因为所有的部件要赋予运动幅。应用装配模块组装成机床装配模型,在机床模型中不要有几何元素,特别重要的是,哪些要变成运动组件的机床组件一定要单独的文件中画出,然后组装成装配体。

装配名字:目录的名字和父装配体的名字相同,建议放在在例如...

\MACH\resource\library\machine\graphics\new_mill_xxx目录下。

组件名:给组件命名的名字要有一定的意义,例如不运动的名字是base,运动的是slide。

2.2 虚拟机床建模

到现场实际量取机床主要组件的数据以备建模。

·工作台长1700mm,宽650mm,高100mm;

·工作台上槽数量5个,槽上宽18mm,下宽30mm,高30mm,各槽间距125mm;

·机身长1020mm,宽750mm,高2050mm;

·机头长800mm,宽460mm,高1120mm;

·主轴顶端直接128mm,底端直116mm,高270mm;

·底座长1420mm,宽750mm,厚85mm;

2.2.1主要组件的建模

我们以VS1575大型立式加工中心为模型进行模拟机床的建模。为了使建立好的机床仿真模型数据不甚复杂并保证其最后的仿真逼真度,一般仿真模型中只要包含其主要部件就能满足要求。

到现场实际量取机床主要组件的数据以备建模。利用UG建模,机床组件模型尺寸与实际机床组件误差控制在0.5cm以内。

底座如图2.1所示命名为y_base,

图2.1 y_base 机身如图2.2所示命名为z_base,

图2.2 z_base

工作台如图2.3所示命名为x_slide,

图2.3 x_slide

以及支持工作台y方向运动的台下部分如图2.4所示命名为y_slide,

图2.4 y_slide

主轴为两部分如图2.5,2.6所示分别命名为z_slide_1,z_slide_2,

图2.5 z_slide_1 图2.6 z_slide_2

2.2.2虚拟机床的模型装配

利用UG NX4.0装配功能,定义机床几何体模型为一装配部件文件,用主模型概

念,即总的装配部件文件应该引用组件部件或自装配而不应直接含有几何体元素。装配模型命名为zhuangpei2。

· 首先加载机身z_base ,定位为绝对。

· 加载底座y_base,与z_base 两侧面中心配对,并对齐底面。

· 加载y_slide,使其底面与y_base 上面配对,并中心对齐到中间。

· 加载工作台x_slide,底面配对y_slide,并中心对齐前后两面。

· 加载z_slide_1,与z_base 两侧面中心配对。

· 加载z_slide_2,上底面配对到slide_1的下面,然后圆锥面中心对称一对

二slide_1的两侧面。

图2.7为该机床的主要部件所组成的仿真模型。

图2.7 机床仿真模型

第三章虚拟机床运动模型的创建

运动模型(Kinematics Model)需要添加到一个建模完成的装配中。运动模型定义装配部件之间的关系,以及轴的名称,方向和行程。仿真过程将利用这些信息和机床驱动器(Machine Tool Driver)提供的信息来使机床运动起来。机床驱动器是由后处理器创建的。

只有在机床的仿真模型上定义了运动, 机床驱动器MTD 才能通过后处理文件驱动机床进行运动。而机床的运动定义是在机床构造器( Machine Tool Builder) 里完成的。定义的运动要完全参照实际机床的运动, 这样进行的仿真才会生成可靠的结构。而该三轴铣床主要完成三个方向的运动, 故定义了其X、Y、Z 三个方向的运动和其它一些辅助信息。

机床构建器(MTB)帮助建立运动学模型,建立数据模型,同时MTB能编辑运动学模型及测试动画运动学模型。定义的运动要完全参照实际机床的运动,这样进行的仿真才会生成可靠的结构。主要定义了三轴铣床其X、Y、Z三个方向的运动及其他一些辅助信息。

3.1建立运动模型的必要工作

·机床装配的几何模型,包括基座,工作台,导轨,主轴等。

·机床构建器(Machine Tool Builder)用于定义机床模型部件之间的关系,还定义轴方向和行程。

·建立一个名称和库标志识相同的子目录,其中包括机床装配和所有的部件。

·在machine_database.dat文件中需要为新的机床添加一项注册信息。

·需要在后处理器目录中建立一个ASCII文件,以定义机床后处理,这个文件的后缀也是.dat

3.2定义和创建机床运动模型

3.2.1机床运动模型的定义

将运用机床构建器来为新机床定义运动模型。在UG NX4.0右侧机床导航器图标中进入机床构建器模块(Machine ToolBuilder) ,在名称栏单击右键插入运动组件,参考两条运动链的顺序,设定基座(MACH INE_BASE)为父节点,在其下添加其他子节点部件,逐步建立机床运动模型。MTB通过一个运动树来表示创建的运动模型。这个树包含运动部件(K-Components)并显示了这些部件之间的关系。

K-Components是机床的物理模型。当父部件移动,每一个子部件都随着移动。机床导航器(Machine Tool Navigator)提供了一个非常有用的工具,可以查找并创建、修改运动树结构。

若要创建机床运动模型,需要定义:

·K-Components—通过装配部件表示并定义在MTB中。

·Axes—建一个运动轴,以便可以为K-Component赋予运动。MTB中的树形结构决定了K-Components之间的关系。可以赋线性或旋转轴。

·Junctions—Junctions是经过分类和命名的坐标系。这个坐标系是根据模型部件的绝对坐标系桌定义的。Junctions是一个永久对象并且和某个

K-Component关联。 CAM系统利用它来自动定位刀具和其他器件。

机床刀具驱动器能用它来定位K-Components或替换坐标。Junctions还用于NC 轴定义。

如图3.1所示表示的是一个运动模型的例子。树形结构表示运动的依赖关系。例如,在这台机床中,如果Y—SLIDE运动,那么PART、BLANK、FIXTURE和X—SLIDEE 也会随着运动。

图3.1 运动模型关系树例子

3.2.2 模型的创建步骤

上一章中我们已经建立好了虚拟机床的装配,在建立机床虚拟装配模型后,还需要定义装配模型中各移动部件间相互运动关系(即机床运动模型) ,指定机床各NC轴(如直线轴和旋转轴)的移动方向、行程及运动范围等。

在以下步骤中,将赋予运动模型到现有的一个机床装配中。需要赋予K-组件,轴和联结点。

第 1 步从已经建立好的部件目录new_mill_liuyuan复制到

UGII_LIBRARY_MACHINE_DIR 中。

第 2 步创建一个新部件,将作为一个装配文件用于包含机床运动模型。

·选择“文件”→“新建’’命令,以便在mach\resource\library\machine\graphics\new_mill目录中创建一个新部件,为方便期间,

以自己名字命名为new_mill_liuyuan。

·选择“文件”→“存盘”命令,以存盘该部件。

添加机床装配作为新部件的子装配。.

·选择“装配”→“组件”→“添加现有的组件”命令。

·单击“选择部件文件”按钮并从目录new_mill_liuyuan中选中zhuangpei2。

·单击“确定”按钮。。

·在“添加现有的组件”对话框中单击“确定”按钮,弹出“点构建器”

对话框。

·再次弹出“部件选择”对话框时单击“取消”按钮。

·选择“适合窗口”以使模型充满整个屏幕。

第 3 步需要开启MTB应用并开始建立机床运动模型。

·选择“起始”→“所有应用模块”一“机床构建器”命令。

·在资源条上单击“机床构建器”图标。

·在机床导航器上双击NO_NAME,并以自己名更改名称LIUYUAN_SIM。

第 4 步必须定义机床的一个组成作为机床的基座。当系统开始仿真时,它会搜索这个基座并在图形窗口中显示它以及所有的子件。

机床基座将被添加到机床。下面将添加机床基座对应的几何模型。

·在机床导航器上选中LI UY UAN_SI M,单击鼠标右键然后选择“插入”→“加工基本组件”命令。;

·单击“确定”按钮回到“机床导航器”对话框。

·高亮选中MACHINE_BASE,单击鼠标右键选择“联结点”→“添加”命令。

·在名称处输入MACH_ZERO。

·选择“定义CSYS”然后单击“确定”按钮以接受当前的WCS。

·单击“确定”按钮回到“机床导航器”对话框。

·选中MACHINE BASE,单击鼠标右键后选择“联结点”命令接着选择Machine Zero。

·选择“分类”命令接着选择Machine Zero。

机床原点(Machine Zero)的Junctions用于定义机床中所有能移动的线性轴。它的方向应和机床的方向平行。机床原点Junctions 的z正方向需要和机床的z正方向一致。同样的规则适用于X和Y。

·单击“确定”按钮回到“机床导航器”对话框。

第5 步添加Z_BASE部分。

·选中MACHINE_BASE,单击鼠标右键选择“插入”→“K组件”

命令。

·存名称处输入Z_BASE。

·单击“添加”按钮并从窗口中选中Z_BASE装配部件,然后单击“确定”按钮两次。

第 6 步在本步骤中将添加机床的主轴。

·选中Z_BASE,单击鼠标右键选择“插入”→“K组件”命令。

·在名称处输入SPINDLE并单击“添加”按钮。

·从图形窗口中选中Z_SLIDE_1和Z_SLIDE_2装配部件并单击“确定”按钮直到机床导航器。

·高亮选中SPINDLE,然后单击鼠标右键选择“联结点”→“添加”命令。

·在名称处输入TOOL_MOUNT_JCT。

·选择“定义CSYS”并选中主轴基座上已存在的坐标系统,如图3.2所示。

图3.2 选择已存在的坐标系统

·单击“单部向前”和“单步向后”按钮查看轴的运动情况。·单击“确定”按钮回到“机床导航器”对话框。

第8步将添加Y_B AS E部分。

·高亮选中M AC HIN E_B A S E然后单击鼠标右键选择“插入”

→“K组件”命令。

·在名称处输入Y_B A S E并单击“添加”按钮。

·从图形窗口中选中Y_B AS E装配部件。

·单击“确定”按钮回到“机床导航器”对话框。

第9步添加Y_S LID E部分。

·选中Y_B AS E然后单击鼠标右键选择“插入”→“K组件”

命令。

·在名称处输入Y_S LID E并单击“添加”按钮。

·从图形窗口中选中Y_S LID E装配部件。

·单击“确定”按钮回到“机床导航器”对话框。

·选中Y_S LID E然后单击鼠标右键选择“插入”→“轴”命令。·在“编辑轴”对话框中设定以下参数。

> 名称:Y。

> 联结:M A C H IN E_B AS E@M AC H IN E_ZE R O。

> 联结轴:-y。

> 轴类型:线性。

> NC轴:选中。

> 上限:500。

> 下限:-250。

·单击“单部向前”和“单步向后”按钮查看轴的运动情况。·单击“确定”按钮回到“机床导航器”对话框。

第10步将添加X_S LID E部分。

·高亮选中Y_S LI D E然后单击鼠标右键选择“插入”→“K 组件”命令。-

·在名称处输入X_S LID E并单击“添加”按钮。

·从图形窗口中选中X_S LID E装配部件。

·单击“确定”按钮回到“机床导航器”对话框。

·选中X_SLIDE并单击鼠标右键选择“插入”→“轴”命令。

·在“编辑轴”对话框中设定以下参数。

> 名称:X。

> 联结:MACHINE_BASE@MACHINE_ZERO。

> 联结轴:-X。

> 轴类型:线性。

> NC轴:选中。

> 上限:850。

> 下限:-650。

·单击“单部向前”和“单步向后”按钮查看轴的运动情况。

·单击“确定”按钮回到“机床导航器”对话框。

第11步添加S E T UP到机床。

·选中X_S LID E然后单击鼠标右键选择“插入”→“K组件”

命令。

·在名称处输入S E T UP。

·选择“分类”然后选中S ET UP_E LE M EN T复选框,接着单击“确定”按钮。

·单击“确定”按钮回到“机床导航器”对话框。

·选中S E T UP然后单击鼠标右键选择“联结”→“添加”命令。·在名称处输入PA RT_M O U NT_J C T。

·选择“定义C S YS”接着选中位于V IS E组件中的坐标系。·单击“确定”按钮回到“机床导航器”对话框。

第12步添加BLA N K到机床。

·选择S E T UP然后单击鼠标右键选择“插入”→“K组件”命令。

·在名称处输入BLA N K。

·选择“分类”然后选中W OR KP IE C E复选框_S E T UP_E LE M EN T 复选框也自动被选中,接着单击“确定”按钮。

·单击“确定”按钮回到“机床导航器”对话框。

第13步添加FIX T U R E到机床。

·选择S E T UP然后单击鼠标右键选择“插入”→“K组件”命令。

·在名称处输入F IX T UR E。

·选择“分类”接着选中_S E T UP_E LE M EN T复选框,然后单击“确定”按钮。

·单击“确定”按钮回到“机床导航器”对话框。

第14步添加PA RT到机床。

·选中S E T UP然后单击鼠标右键选择“插入”→“K组件”命令。

·在名称处输入PA RT。

·选择“分类”然后选中_PART复选框,_S E T UP_E LE M E NT 复选框也自动被选中,然后单击“确定”按钮。

·单击“确定”按钮回到“机床导航器”对话框。

第15步存盘。

·选择“文件”→“存盘”命令,将文件存盘。

3.3 添加机床到库

我们已经定义完成了铣床的仿真模型, 但要想让UG IS&V 能识别并使用该仿真模型, 必须将该仿真模型加至UG 的默认机床库。机床库被存放在ASCII文件…MACH\resource\library\machine\ascii\machine_database.dat中,如图4.1。这个文件包含库标识(Libref)、机床类型(Machine Type)、制造商(Manufacturer)、机床描述(Machine Description)、控制器(Controller)、后处理器(Post Processor)、和刚度系数(Rigidity Factor)。

图3.3 machine_database.dat

因此首先要在UG 的机床库记录文件Machine_Data.dat 中添加一条新机床的记录用机床模型文件路径将设置好的机床加入到机床库以便被调,通常按以下:

…MACH\resource\library\machine\graphics\ new_mill_liuyuan。

在…\MACH\resource\library\machine\ascii\machine_database. dat下添加新机床入口,用记事本打开machine_database.dat,添加如下内容"DATA |new_mill_liuyuan|1|3_AxMill(MM)(XY-TB/Z-HD/Vert)|None|Ex:|${UG

II_CAM_POST_DIR}liuyuan_sim. dat|1. 000000”如图4.2。这样IS&V 便能够找到之前我们定义和创建机床。

存盘文件。

第四章虚拟机床MTD的创建

虚拟机床驱动器MTD (Machine ToolDriver)是UG后处理器(UG/post)的延伸,它由一组程序组成,能对所建立的虚拟机床进行驱动和控制。其作用是将预加工的刀具轨迹翻译成相应的控制命令,控制虚拟机床各装配部件进行相应布尔运算,以实现虚拟机床的各种"动作" ,在计算机虚拟环境中完成数控加工过程,从而达到仿真的目的。MTD是在UG/Post的基础上增加了一个虚拟NC控制器(VNC)而形成。其工作过程如下:事件生成器扫描刀具轨迹数据,提取事件及相关参数信息,并将其传送给MOM;MOM将这些事件信息再传给事件处理器;事件处理器根据相关规则对每一事件进行处理并将结果数据传给MOM作为其输出,同时,MOM又将处理信息又传给VNC,VNC依据具体事件处理信息调用不同的S&V命令来驱动虚拟机床各运动模块,产生所需的机床动作,直到完成全部加工仿真。

本章用UG/Post Builder创建该机床后处理器,生成事件处理器(. tcl文件) 、定义文件(. def文件) ,对通用VNC文件进行相应修改,生成该机床的VNC 文件,最后建立了虚拟机床驱动器MTD。

4.1 UG/Post 后处理综述

无论是哪种CAM 软件,其主要用途都是生成在机床上加工零件的刀具轨迹(简称刀轨)。一般来说,不能直接传输C A M 软件内部产生的刀轨到机床上进行加工,因为各种类型的机床在物理结构和控制系统方面可能不同,由此而对NC 程序中指令和格式的要求也可能不同。因此,刀轨数据必须经过处理以适应每种机床及其控制系统的特定要求。这种处理,在大多数C A M软件中叫做“后处理”。后处理的结果是使刀轨数据变成机床能够识别的刀轨数据,即NC 代码。可见,后处理必须具备两个要素:刀轨—— C A M 内部产生的刀轨;后处理器——是一个包含机床及其控制系统信息的处理程序。UG 系统提供了一般性的后处理器程序——UG/Post,它使用UG内部刀轨数据作为输入,经后处理后输出机床能够识别的NC代码。UG/Post 有很强的用户化能力,它能适应从非常简单到任意复杂的机床及其控制系统的后处理。

4.1.1 UG/Post的组成结构

提到UG/Post后处理器,不得不简单的介绍一下MOM(Manufacturing Output Manager),即加工输出管理器。M O M 是U G 提供的一种事件驱动工具,UG/CAM 模块的输出均由它来管理,其作用是从存储在UG/CAM 内的数据中提取数据来生成输出。UG/Post就是这种工具的一个具体运用。MOM 是UG/post 后处理器的核心,UG/post 使用MOM 来启动解释程序,向解释程序提供功能和数据,并加载事件处理器(Event Handler)和定义文件(DefinitionFile)。

除MOM 外,UG/post 主要由事件生成器、事件处理器、定义文件和输出文件

数控车床加工工艺分析

数控车床加工工艺分析 摘要:随着数控加工的日益成熟越来越多的零件产品都用数控机床来加工,因此如何改进数控加工的工艺问题就越来越重要。在数控机床上由于机床空间及机床的其他局限了数控加工的灵活性,这样就要求我们要懂得如何改进加工工艺,提高数控机床的应用范围和加工性能。从而达到提高生产效率和产品质量。 关键词:数控加工加工工艺薄壁套管、护轴 前言:数控加工作为一种高效率高精度的生产方式,尤其是形状复杂精度要求很高的模具制造行业,以及成批大量生产的零件。因此数控加工在航空业、电子行业还有其他各行业都广泛应用。然而在数控加工从零件图纸到做出合格的零件需要有一个比较严谨的工艺过程,必须合理安排加工工艺才能快速准确的加工出合格的零件来,否则不但浪费大量的时间,而且还增加劳动者的劳动强度,甚至还会加工出废品来。下面我将结合某一生产实例对数控加工的工艺进行分析。以便帮助大家进一步了解数控加工,对实际加工起到帮助作用。 一般数控机床的加工工艺和普通机床的加工工艺是大同小异的,只是数控机床能够通过程序自动完成普通机床的加工动作,减轻了劳动者的劳动强度,同时能比较精准的加工出合格的零件。由于数控加工整个加工过程都是自动完成的,因此要求我们在加工零件之前就必须把整个加工过程有一个比较合理的安排,其中不能出任何的差错,

否则就会产生严重的后果。 1、1 零件图样分析 因为薄壁加工比较困难,尤其是内孔的加工,由于在切削过程中,薄壁受切削力的作用,容易产生变形。从而导致出现椭圆或中间小,两头大的“腰形”现象。另外薄壁套管由于加工时散热性差,极易产生热变形,使尺寸和形位误差。达不到图纸要求,需解决的重要问题,是如何减小切削力对工件变形的影响。薄壁零件的加工是车削中比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。可利用数控车床高加工精度及高生产效率的特点,并充分地考虑工艺问题对零件加工质量的影响,为此对工件的装夹、刀具几何参数、程序的编制等方面进行试验,有效地克服薄壁零件加工过程中出现的变形,保证了加工精度,为今后更好的加工薄壁零件提供了好的依据及借鉴。 无论用什么形式加工零件,首先都必须从查看零件图开始。由图看见该薄壁零件加工,容易产生变形,这里不仅装夹不方便,而且所要加工的部位也那难以加工,需要设计一专用薄壁套管、护轴。

宇龙数控车床仿真软件的操作

第18章宇龙数控车床仿真软件的操作 本章将主要介绍宇龙数控仿真软件车床的基本操作,在这一章节中主要以FANUC 0I和SIEMENS 802S数控系统为例来说明车床操控面板按钮功能、MDA键盘使用和数控加工操作区的设置。通过本章的学习将使大家熟悉在宇龙仿真软件中以上两个数控系统的基本操作,掌握机床操作的基本原理,具备宇龙仿真软件中其它数控车床的自学能力。 就机床操作本身而言,数控车床和铣床之间并没有本质的区别。因此如果大家真正搞清楚编程和机床操作的的一些基本理论,就完全可以将机床操作和编程统一起来,而不必过分区分是什么数控系统、什么类型的机床。 在编程中一个非常重要的理论就是在编程时采用工件坐标值进行编程,而不会采用机床坐标系编程,原因有二:其一机床原点虽然客观存在,但编程如果采用机床坐标值编程,刀位点在机床坐标系中的坐标无法计算;其二即使能得到刀位点在机床坐标系的坐标,进而采用机床坐标值进行编程,程序是非常具有局限性的,因为如果工件装夹的位置和上次的位置不同,程序就失效了。实际的做法是为了编程方便计算刀位点的坐标,在工件上选择一个已知点,将这个点作为计算刀位点的坐标基准,称为工件坐标系原点。但数控机床最终控制加工位置是通过机床坐标位置来实现的,因为机床原点是固定不变的,编程原点的位置是可变的。如果告诉一个坐标,而且这个是机床坐标,那么这个坐标表示的空间位置永远是同一个点,与编程原点的位置、操作机床的人都没有任何关系;相反如果这个坐标是工件坐标值,那么它的位置与编程原点位置有关,要确定该点的位置就必须先确定编程原点的位置,没有编程原点,工件坐标值没有任何意义。编程原点变化,这个坐标值所表示的空间位置也变化了,这在机床位置控制中是肯定不行的,所以在数控机床中是通过机床坐标值来控制位置。为了编程方便程序中采用了工件坐标值,为了加工位置的控制需要机床坐标值,因此需要将程序中的工件坐标转换成对应点的机床坐标值,而前提条件就是知道编程原点在机床中的位置,有了编程原点在机床坐标系中的坐标,就可以将工件坐标值转换成机床坐标值完成加工位置的控制,解决的方法就是通过对刀计算出编程原点在机床坐标系中的坐标。程序执行时实际上做了一个后台的工作,就是根据编程原点的机床坐标和刀位点在工件坐标系中的坐标计算出对应的机床坐标,然后才加工到对应的机床位置。 这是关于编程的最基本理论,所有轮廓加工的数控机床在编程时都采用这样的理论,无论铣床、车床、加工中心等类型的机床,还是FANUC、SIEMENS、华中数控、数控等数控系统,数控机床都必须要对刀,原理都是完全相同的,而对刀设置工件坐标系或刀补则是机床操作中的核心容,如果大家搞清楚这些理论对机床操作将十分具有指导意义。 18.1 实训目的 本章主要使大家了解宇龙仿真软件车床的基本操作,熟悉并掌握FANUC 0I数控车床的操作界面,在此基础上过渡并熟悉SIEMENS 802S数控车床的界面和操作。 18.2 FANUC 0i数控车床

零件的数控加工工艺分析

三.零件的数控加工工艺分析 (一)数控加工的基础知识 1.概述零件的数控加工过程 在数控机床上加工零件时,首先要将被加工零件图上的几何信息和工艺信息数字化。先根据零件加工图样的要求确定零件加工的工艺过程、工艺参数、刀具参数,再按数控机床规定采用的代码和程序格式,将与加工零件有关的信息如工件的尺寸、刀具运动中心轨迹、位移量、切削参数(主轴转速、切削进给量、背吃刀量)以及辅助操作(换刀、主轴的正转与反转、切削液的开与关)等编制成数控加工程序,然后将程序输入到数控装置中,经数控装置分析处理后,发出指令控制机床进行自动加工。 数控车床工作过程:如图所示。数控车床工作大致分为下面几个步骤: 1)根据零件图要求的加工技术内容,进行数值计算、工艺处理和程序设计。 2)将数控程序按数控车床规定的程序格式编制出来,并以代码的形式完整记录在存储介质上,通过输入(手工、计算机传输等)方式,将加工程序的内容输送到数控装置。 3)由数控系统接收来的数控程序(NC代码),NC代码是由编程人员在CAM软件上生成或手工编制的,它是一个文本数据,表现比较直观,较容易地被编程人员直接理解,但却无法为软件直接利用。 4)根据X、Z等运动方向的电脉冲信号由伺服系统处理并驱动机床的运动结构(主轴电动机、进给电动机等)动作,使机床自动完成相应零件的加工。 2.切削加工必须具备的两种运动 1)主运动:主运动是切除工件多余金属层,形成工件新表面的必要运动。它是由机床提供的主要运动。主运动的特点是速度最高,消耗功率最多。切削加工中只有一个主运动,它可由工件完成,也可由刀具完成。如车削时工件的旋转运动、铣削和钻削时和钻头的旋转运动等都是主运动。 2)进给运动:进给运动是把切削金属层间断或连续投入切削的一种运动,与主运动相配合即可 不断切削金属层,获得所需的表面。进给运动的特点是速度小、消耗功率少。切削加工中进给运动可以是一个、两个或多个。它可以是连续的运动,如车削外圆时,

2020年数控仿真编程论文:数控加工仿真系统在数控教学中的应用参照模板

数控仿真编程论文:数控加工仿真系统在数控教学中的 应用 【摘要】在数控工种的实践教学中,数控加工仿真软件的应用,弥补了目前实践教学中设备不足,学生操作时间不足的缺点;改善了目前数控实习教学中效果不理想、效率低、资源消耗大的现象;避免了由于操作不熟练造成的设备损坏;提高了学生数控编程能力、机床操作能力;使实践教学达到事半功倍的效果。 【关键词】数控实习;数控仿真;编程;模拟加工AbstractNC simulation software is applied in numericalcontrolled practice.Making up the equipmentinsufficiencyandtheinsufficiencyofthestudentoperatin gtimewhiletheypracticedintheteachingprocess,It has enhanced the unideal result,lowefficiencyandmoreresourcesconsumptioninthepractices ectorintheteachingofnumericalcontrolledcourseandhasavoidedeq uipmentdamageinthecase of the operation has not skilled;It has alsoimprovedstudentscapabilitytoprogramnumericalcontrolando peratemachine;thus,Itmakingpracticeteaching twice the result with half the effort. Key wordsNC practice;NC simulation;program;Simulationprocessing

上海宇龙数控加工仿真软件操作

上海宇龙仿真操作2009.5 一、软件开启。 双击桌面图标,或者右键单击图标打开,或点开始——程序——数控仿真系统。 二、选择机床。 (1)点左上角图标。 (2)点机床选项下拉菜单“选择机床”。 出现图004 依次点选“控制系统”“系统型号”“机床类型”“机床标准”最后点“确定”三、定义毛坯 (1)点左上角图标 (2)点零件下拉菜单“定义毛坯”。 出现图007

毛坯名字一般不用改;材料默认低碳钢,可以点右面的下拉箭头选择各种材料;圆柱形状即为上图所示为棒料,横向150为长度,纵向100为直径;U形形状下图008为带孔棒料,上面150为棒料长度,左面100为棒料直径,下面50为内孔深度,右面50为孔径,所有数字左键单击即可修改;所有选项点选完毕后,点“确定”即可完成“定义毛坯” 四、放置毛坯 (一)点击左上角图标。 (二)点击零件下拉菜单放置零件。出现图011

左键单击刚才所设的“毛坯1”内容变蓝,再单击“安装零件”即可安装,并进入“移动零件”状态。 五、移动零件 (一)安装零件后的默认状态。图012 (二)点击零件下拉菜单,移动零件。会出012图示。 “—”号为缩进,“+”号为伸出,中间旋转符号为“调头” 六、选择刀具 (一)点击图标 (二)点击机床下拉菜单“选择刀具” 出现图016刀具选择选项。

首先,1234号刀具选框选中会变黄,其次,选择刀片样式(16类),选中样式后会有刀片规格(角度刀长刀尖角),最后,选择刀柄(内外左右等),再选择刀柄规格(长度)。总结为一把刀点五下。所有刀具选择完毕后点“确定”。 以下为推荐选择。1号刀“定制”“菱形刀片”“35度11刃长刀尖半径0”“右偏93度或90度” 2号刀切槽刀 3号螺纹刀 七、视图选择

数控铣削加工工艺分析

目录 一、零件图的工艺分析 二、零件设备的选择 三、确定零件的定位基准和装夹方式 四、确定加工顺序及进给路线 五、刀具选择 六、切削用量选择 七、填写数控加工工艺文件

1、如图1所示,材料为45钢,单件生产,毛坯尺寸为 84mm×84mm×22mm),试对该零件的顶面和内外轮廓进行数控铣削加工工艺分析。 图1带型腔的凸台零件图 一零件图的工艺分析 1、图形分析 (1)分析零件图是否完整、正确,零件的视图是否正确、清楚,尺寸、公差、表面粗糙度及有关技术要求是否齐全、明确。从上图可以看出该零件图的尺寸符合了这一要求。 (2)分析零件的技术要求,包括尺寸精度、形位公差、表面粗糙度及热处理是否合理。过高的要求会增加加工难度,提高成本;过低的技术要求会影响工作性能,两者都是不允许的。上图的精度为IT8级,技术要求和尺寸精度都能满足加工要求。 (3)该零件图上的尺寸标注既满足了设计要求,又便于加工,各图形几何要素间的相互关系(相切、相交、垂直和平行)比较明确,条件充分,并且采用了集中标注的方法,满足了设计基准、工艺基准与编程原点的统一。因此该图的尺寸标注符合了数控加工的特点。 2、零件材料分析 由题目提供,材料为45钢。 3、精度分析

该零件最高精度等级为IT8级,所以表面粗糙度均为Ra3.2um。加工时不宜产生震荡。如果定位不好可能会导致表面粗糙度,加工精度难以达到要求。 4、结构分析 从图1上可以看出,带型腔的凸轮零件主要由圆弧和直线组成,该零件的加工内容主要有平面、轮廓、凸台、型腔、铰孔。需要粗精铣上下表面外轮廓内轮廓凸台内腔及铰孔等加工工序。 二、选择设备 由该零件外形和材料等条件,选用XK713A数控铣床。 三、确定零件的定位基准和装夹方式 由零件图可得,以零件的下端面为定位基准,加工上表面。把零件竖放加工外轮廓。 零件的装夹方式采用机用台虎钳。 四、确定加工顺序及进给路线 1、确定加工顺序 加工顺序的拟定按照基面先行,先粗后精的原则确定,因此先加工零件的外轮廓表面,加工上下表面,接着粗铣型腔,再加工孔,按照顺序再精铣一遍即可。 加工圆弧时,应沿圆弧切向切入。 2、进给路线

数控加工工艺规程编制与实施2

江苏开放大学 形成性考核作业 学号2015050000143 姓名吴畏 课程代码 110045 课程名称数控加工工艺规程编制与实施评阅教师 第 2 次任务 共 4 次任务 江苏开放大学

任务内容: 一、选择题(每题2分,共30分) 1、切削刃形状复杂的刀具宜采用( D )材料制造较合适。 (A)硬质合金(B)人造金刚石(C)陶瓷(D)高速钢 2、YG类硬质合金主要用于加工(A)材料 (A)铸铁和有色金属(B)合金钢(C)不锈钢和高硬度钢(D)工具钢和淬火钢 3、刀具材料在高温下能够保持较高硬度的性能称为(B )。 (A)硬度(B)红硬性(C)耐磨性(D)韧性和硬度 4、JT/BT/ST刀柄柄部锥度为( A )。 (A)7:24;(B)1:10;(C)1:5;(D)1:12 5、过定位是指定位时,工件的同一(B)被多个定位元件重复限制的定位方式。 (A)平面(B)自由度(C)圆柱面(D)方向 6、若工件采取一面两销定位,限制的自由度数目为( A ) (A)六个(B)二个(C)三个(D)四个 7、在磨一个轴套时,先以内孔为基准磨外圆,再以外圆为基准磨内孔,这是遵循( D )的原则。 (A)基准重合(B)基准统一(C)自为基准(D)互为基准 8、采用短圆柱芯轴定位,可限制( D )个自由度。 (A)二(B)三(C)四(D)一 9、在下列内容中,不属于工艺基准的是( D )。 (A)定位基准(B)测量基准(C)装配基准(D)设计基准 10、( B )夹紧机构不仅结构简单,容易制造,而且自锁性能好,夹紧力大,是夹具上用得最多的一种夹紧机构。 (A)斜楔形(B)螺旋(C)偏心(D)铰链 11、精基准是用( D )作为定位基准面。 (A)未加工表面(B)复杂表面(C)切削量小的(D)加工后的表面 12、夹紧力的方向应尽量垂直于主要定位基准面,同时应尽量与( D )方向一致。 (A)退刀(B)振动(C)换刀(D)切削 13、通常夹具的制造误差应是工件在该工序中允许误差的( C )。 (A)1~3倍(B)1/10~1/100 (C)1/3~1/5 (D)同等值 14、铣床上用的分度头和各种虎钳都是( B )夹具。

数控机床虚拟仿真系统

产品需求及技术规范 一、建设目标: 项目建成后,为数控技术专业提供现代化数控技术类专业的学习平台、学生学习数控机床操作的实训仿真平台和考核平台,建成后将达到以下应用目标: 1、建立数控技术专业教学仿真实训软件平台,该平台能完成数控机床仿真实训操作; 2、建设一个资源丰富的专业教学学习平台; 3、建设一个能完成学生课程考核系统平台; 4、建设一个能管理学生教学过程的管理平台。 二、项目组成 项目主要包括三个部分:数控技术专业教学仿真实训软件平台建设、数控机床仿真终端设备开发集成系统、仿真平台教学资源开发。 (一)数控技术专业仿真实训软件平台建设 系统平台建设主要包括:实训系统开发和考核系统开发等。 (二)数控机床仿真终端设备开发集成 数控机床仿真终端设备主要包括:基于安卓系统的平板触摸式仿真数控机床终端操作面板的开发。 (三)仿真平台教学资源开发 开发基于工作过程的课程教材,适用于虚拟仿真平台的教学使用;开发基于网页的教学学习资源。 三、系统功能需求说明 (一)数控技术专业仿真实训软件平台包括5部分:工厂及车间虚拟场景系统、数控机床虚拟仿真系统、教学考核系统、积分管理系统、管理功能。各子系统的主要功能如下: (1)工厂及车间虚拟场景系统 能提供工厂厂区平面图; 能在制作的工厂环境中漫游; 工厂由若干个车间组成,每个车间大小可以定制; 能在制作的车间环境中漫游,能在车间虚拟环境中完成着装、领取工具、刀

具、量具等职业行为动作。 漫游中提供多个人物角色,分男和女,各种人物角色有不同形象。 车间环境是小组团队实训学习的虚拟实训环境,在该环境中,有完整清晰的标示线,指明各个区域的作用,并在各个区域中完成相关职业活动学习任务、实训任务和实际的工作任务; 车间虚拟环境中能在规定区域中由教师或者学生自由摆放数控机床、钻床等设备和工具车、材料车等辅助设备; 车间虚拟环境提供的设备种类包括:数控车床、数控铣床(3轴);提供是辅助设备包括:工具车、材料车、钳工台。 提供进入其他模块的入口功能。 (2)数控机床虚拟仿真系统 能完成以下系统的仿真操作功能: a、加工中心:华中22m、法那科oi MD b、数控车床:华中世纪星、广数系统; 能完成刀具选择,毛坯选择和装夹功能; 能完成程序仿真; 能完成零件的仿真加工; 能完成加工产品的测量; 能完成加工产品测量数据的填写,并能发回服务器提供给老师,并能通过系统进行自动评分; 能独立完成数控车床、数控铣床学习任务; 能采用团队合作的方式完成数控车铣复合学习任务; 提供任务导向的教学工作任务; (3)教学考核系统 能提供理论考核和实训考核; 能提供理论试题录入功能; 能提供实训任务录入功能,并提供工艺表书写功能; 能自动组卷,并通过网络的方式传递到每个学生界面; 能自动阅卷和手工阅卷模式; 能自动将成绩录入;

宇龙数控加工仿真系统说明书

宇龙数控加工仿真系统实验指导书 主要内容 ?基于FANUC 0i数控加工仿真系统的基本操作方法 ?基于FANUC 0i数控车床的仿真加工操作 ?基于FANUC 0i数控铣床的仿真加工操作 ? FANUC 0i数控加工仿真实验 1 宇龙数控加工仿真系统基本操作方法 1.1 界面及菜单介绍 1.1.1 进入数控加工仿真系统 进入宇龙数控加工仿真系统3.7版要分2步启动,首先启动加密锁管理程序,然后启动数控加工仿真系统,过程如下: 鼠标左键点击“开始”按钮,找到“程序”文件夹中弹出的“数控加工仿真系统”应用程序文件夹,在接着弹出的下级子目录中,点击“加密锁管理程序”,如图1.1(a)所示。 (a) 启动加密锁管理程序(b) 启动数控加工仿真系统(c) 数控加工仿真系统登录界面 图1.1 启动宇龙数控加工仿真系统3.7版 加密锁程序启动后,屏幕右下方工具栏中出现的图表,此时重复上面的步骤,在二级子目录中点击数控加工仿真系统,如图1.1(b)所示,系统弹出“用户登录”界面,如图1.1(c)所示。 点击“快速登录”按钮或输入用户名和密码,再点击“登录”按钮,即可进入数控加工仿真系统。 1.1.2 机床台面菜单操作 用户登录后的界面,如图1.2所示。图示为FANUC 0i车床系统仿真界面,由四大部分构成,分别为:系统菜单或图标、LCD/MDI面板、机床操作面板、仿真加工工作区。 1 选择机床类型

图1.2 宇龙数控加工仿真系统3.7版FANUC 0i 车床仿真加工系统界面 打开菜单“机床/选择机床…”,或单击机床图标菜单,如图1.3(a )鼠标箭头所示,单击弹出“选择机床”对话框,界面如图1.3(b )所示。选择数控系统FANUC0i 和相应的机床,这里假设选择铣床,通常选择标准类型,按确定按钮,系统即可切换到铣床仿真加工界面,如图1.4所示。 (a) 选择机床菜单 (b) 选择机床及数控系统界面 图1.3 选择机床及系统操作 图1.4 宇龙数控加工仿真系统3.7版FANUC 0i 铣床仿真加工系统界面 系统菜单或图标 机床操作面板

典型零件数控加工工艺分析及编程

典型零件数控加工工艺分析及编程 姓名: 班级: 学号: 指导老师: (单位:江苏省盐城技师学院邮编:224002) 2009-4-10

典型零件数控加工工艺分析及编程 【摘要】针对典型零件选择机床、夹具、刀具及量具,拟定加工工艺路线、切削用量等,编写数控加工的程序。 【关键词】工艺编程 一、数控加工工艺路线的设计 工艺路线是指零件加工所经过的整个路线,也就是列出工序名称的简略工艺过程。工艺路线的拟定是制订工艺规程的重要内容,其主要任务是选择各个表面的加工方法,确定各个表面的加工顺序及整个工艺过程的工序数目和工序内容。 数控加工工艺路线的设计与通用机床加工工艺路线的设计的主要区别在于它往往不是只从毛坯到成品的整个过程,而仅是几道数控加工工序工艺过程的具体描述。因此在工艺路线设计中一定要注意到,由于数控加工工序一般都穿插于零件加工的整个工艺过程中,因而要与其它加工工艺衔接好。 ⒈工序的划分 根据数控加工的特点,数控加工工序的划分一般可按下列方法进行: ⑴以一次安装、加工作为一道工序。这种方法适合于加工内容较少的零件,加工完后就能达到待检状态。 ⑵以同一把刀具加工的内容划分工序。有些零件虽然能再一次安装加工中加工很多代加工表面,但考虑到程序太长,会受到某些限制(主要是内存容量),机床连续工作时间的限制(如一道工序在一个工作班内不能结束)等,此外,程序太长会增加出错与检索的困难。因此程序不能太长,一道工序内容

不能太多。 ⑶以加工部位划分工序。对于加工内容很多的工件,可按其结构特点将加工部位分成几个部分,如内腔、外形、曲面或平面,并将每一部分的加工作为一道工序。 ⑷以粗、精加工划分工序。对于加工后易发生变形的工件,由于对粗加工后可能发生的变形需要进行校形,故一般来说,凡要进行粗、精加工的过程,都要将工序分开。 ⒉顺序的安排 顺序的安排应根据零件的结构和毛坯,以及定位、安装与夹紧的需要来考虑。顺序安排一般应按以下原则进行: ⑴上道工序的加工不能影响下道工序的定位与夹紧,中间穿插于通用机床加工工序的也应综合考虑; ⑵先进性内腔加工,后进行外形加工; ⑶以相同定位、夹紧方式或用同一把刀具加工的工序,最好连续加工,以减少重负定位次数和换刀次数。 ⑷同时还应遵循切削加工顺序的安排原则:先粗后精、先主后次、先面后孔、基准先行。 二、数控编程 数控编程就是生产用数控机床进行零件加工的数控程序的过程。数控程序是由一系列程序段组成,把零件的加工过程、切削用量、位移数据以及各种辅助操作,按机床的操作和运动顺序,用机床规定的指令及程序各式排列而成的一个有序指令集。 零件加工程序的编制是实现数控加工的重要环节,特别是对于复杂零件的加工,其编程工作的重要性甚至超过数控机床

数控加工工艺课程设计指导书

数控加工工艺课程设计指导书 一.设计目的 通过数控加工工艺课程设计,掌握零件的数控加工工艺的编制及加工方法。二.设计内容 编制中等复杂程度典型零件的数控加工工艺。 三.设计步骤 (一)零件的工艺分析 无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量。在编程中,对一些工艺问题(如对刀点、加工路线等)也需做一些处理。因此程序编制中的零件的工艺分析是一项十分重要的工作。 1.数控加工工艺的基本特点 数控机床加工工艺与普通机床加工工艺在原则上基本相同,但数控加工的整个过程是自动进行的,因而又有其特点。 1)数控加工的工序内容比普通机床的加工的工序内容复杂。这是因为数控机床价格昂贵,若只加工简单的工序,在经济上不合算,所以在数控机床上通常安排较复杂的工序,甚至是在通用机床上难以完成的那些工序。 2)数控机床加工程序的编制比普通机床工艺规程编制复杂。这是因为在普通机床的加工工艺中不必考虑的问题,如工序内工步的安排、对刀点、换刀点及走刀路线的确定等问题,在数控加工时,这一切都无例外地都变成了固定的程序内容,正由于这个特点,促使对加工程序的正确性和合理性要求极高,不能有丝毫的差错,否则加工不出合格的零件。 2.数控加工工艺的主要内容 根据数控加工的实践,数控加工工艺主要包括以下方面: 1)选择适合在数控机床上加工的零件和确定工序内容; 2)零件图纸的数控工艺性分析; 3)制订数控工艺路线,如工序划分、加工顺序的安排、基准选择、与非数控加工工艺的衔接等; 4)数控工序的设计,如工步、刀具选择、夹具定位与安装、走刀路线确定、测量、切削用量的确定等; 5)调整数控加工工艺程序,如对刀、刀具补偿等; 6)分配数控加工中的容差; 7)处理数控机床上部分工艺指令。 3.数控加工零件的合理选择 程序编制前对零件进行工艺分析时,要有机床说明书、编程手册、切削用量表、标准工具、夹具手册等资料,方能进行如下一些问题的研究。 在数控机床上加工零件时,一般有两种情况。第一种情况:有零件图样和毛坯,要选择适合加工该零件的数控机床。第二种情况:已经有了数控机床,要选择适合在该机床上加工的零件。无论哪种情况,考虑的主要因素主要有,毛坯的材料和类型、零件轮廓形状复杂程度、尺寸大小、加工精度、零件数量、热处理要求等。概括起来有三点,即零件技术要求能否保证,对提高生产率是否有利,经济上虽否合算。 根据国内外数控技术应用实践,数控机床通常最适合加工具有以下特点的零件:

数控加工仿真系统操作说明

数控加工仿真实验指导书

数控编程仿真实验要求 一、实验目的 “数控机床加工程序编制”(简称数控编程)课程,是机械和机电等各类专业本、专科教学计划中开设的一门应用性和实践性很强的专业课程。学好本课程,不仅要掌握数控编程的基本理论知识和编程方法,更重要的是要通过一定的实践教学,在实践教学中运用所掌握的机械加工工艺知识、数控编程的理论知识、数控编程的方法编制零件加工程序,并完成对零件的数控加工。采用仿真软件在计算机上进行模拟加工,是完成这一实践教学的有效手段。因此,在各专业本、专科“数控编程”课程的教学计划中均设有“仿真实验”这一实践教学环节。其实验的目的是: 1. 熟悉并学会运用计算机仿真技术,模拟数控车床、数控铣床完成零件加工的全过程; 2. 为后续的“数控编程实训”,实地操作数控机床进行数控加工,积累和打下操作技能训练的基础。 二、实验要求 1. 熟悉并掌握FANUC 0i系统仿真软件面板操作过程; 2. 按给定车削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工; 3. 按给定铣削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工; 4. 按实验内容,编写实验报告。 三、课时安排 四、实验报告编程内容 1. 简要叙述FANUC 0i系统仿真软件面板操作过程; 2. 按给定零件图样,编制的车削加工程序; 3. 按给定零件图样,编制的铣削加工程序。 五、指导书及联系题: 1. 数控加工仿真FANUC 0i系统面板操作简介 2. 仿真加工零件图样 2010年9月修订

宇龙数控加工仿真系统实验指导书 主要内容 ?基于FANUC 0i数控加工仿真系统的基本操作方法 ?基于FANUC 0i数控车床的仿真加工操作 ?基于FANUC 0i数控铣床的仿真加工操作 ? FANUC 0i数控加工仿真实验 1 宇龙数控加工仿真系统基本操作方法 1.1 界面及菜单介绍 1.1.1 进入数控加工仿真系统 进入宇龙数控加工仿真系统3.7版要分2步启动,首先启动加密锁管理程序,然后启动数控加工仿真系统,过程如下: 鼠标左键点击“开始”按钮,找到“程序”文件夹中弹出的“数控加工仿真系统”应用程序文件夹,在接着弹出的下级子目录中,点击“加密锁管理程序”,如图1.1(a)所示。 (a) 启动加密锁管理程序(b) 启动数控加工仿真系统(c) 数控加工仿真系统登录界面 图1.1 启动宇龙数控加工仿真系统3.7版 加密锁程序启动后,屏幕右下方工具栏中出现的图表,此时重复上面的步骤,在二级子目录中点击数控加工仿真系统,如图1.1(b)所示,系统弹出“用户登录”界面,如图1.1(c)所示。 点击“快速登录”按钮或输入用户名和密码,再点击“登录”按钮,即可进入数控加工仿真系统。 1.1.2 机床台面菜单操作 用户登录后的界面,如图1.2所示。图示为FANUC 0i车床系统仿真界面,由四大部分构成,分别为:系统菜单或图标、LCD/MDI面板、机床操作面板、仿真加工工作区。 1 选择机床类型

数控机床仿真模拟加工实验报告

数控机床仿真模拟加工实验报告 实验目的 1、熟悉典型数控加工仿真软件——宇龙数控加工仿真软件的特点及其应用; 2、通过软件系统仿真操作和编程模拟加工,进一步熟悉实际数控机床操作,提高编写和调试数控加工程序的能力。 3、了解如何应用数控加工仿真软件进行加工过程预测,以及验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验基本原理 宇龙数控加工仿真软件是模拟实际数控机床加工环境及其工作状态的计算机仿真加工系统;应用该软件,可以基于虚拟现实技术,模拟实际的数控机床操作和数控加工全过程。本实验在熟悉软件的用户界面及使用方法的基础上,针对典型零件进行机床仿真操作运行和零件数控编程模拟加工,从而预测加工过程,验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验内容及过程 本实验通过指导老师讲解和自己的实际操作练习,分两个阶段完成实验任务;具体如下: 一、初步熟悉数控加工仿真软件的用户界面及基本使用方法: 通过实际练习,了解应用宇龙数控加工仿真软件系统进行仿真加工操作的基本方法,包括: 如何选择机床类型; 如何定义毛坯、使用夹具、放置零件; 如何选择刀具; FANUC 0i 数控系统的键盘操作方法; 汉川机床厂XH715D加工中心仿真操作方法等。 二、针对汉川机床厂XH715D数控加工中心,应用宇龙数控加工仿真软件对凸轮零件进行机床仿真操作运行和数控编程模拟加工: 凸轮零件图如下所示:

机床仿真操作运行和数控编程模拟加工过程如下: 1、机床开启 启动数控铣系统前必须仔细检查以下各项:1.所有开关应处于非工作的安全位置;2.机床的润滑系统及冷却系统应处于良好的工作状态;3.检查工作台区域有无搁放其他杂物,确保运转畅通。之后打开数控机床的电器总开关,启动数控车床。 2、机床回参考点 启动数控铣系统后,首先应手动操作使机床回参考点。将工作方式旋钮置于“手动”,按下“回参考点”按键,健内指示灯亮之后,按“+X”健及“+Z”键,刀架移动回到机床参考点 3、设置毛坯,并使用夹具放置毛坯 通过三爪卡盘将工件夹紧。 4、选择刀具并安装

数控加工工艺毕业设计论文

日照职业技术学院毕业设计(论文) 数控加工工艺 姓名 : 付卫超 院部:机电工程学院 专业:数控设备应用与维护 指导教师:张华忠 班级: 11级数控设备应用与维护二班 2014年05月

随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为效率和质量是先进制造技术的主体。高速、高精加工技术可极大提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切屑用量,对一些工艺问题(如对刀点、加工路线等)也需要做一些处理,并在加工过程掌握控制精度的方法,才能加工出合格的产品。 本文根据数控机床的特点。针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切屑用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度、加工效率、简化工序等方面的优势。 关键词工艺分析加工方案进给路线控制尺寸

第1章前言-----------------------------------第2页第2章工艺方案的分析-------------------------第3页 2.1 零件图-------------------------------第3页 2.2 零件图分析---------------------------第3页 2.3 零件技术要求分析---------------------第3页 2.4 确定加工方法-------------------------第3页 2.5 确定加工方案-------------------------第4页第3章工件的装夹-----------------------------第5页 3.1 定位基准的选择-----------------------第5页 3.2 定位基准选择的原则-------------------第5页 3.3 确定零件的定位基准-------------------第5页 3.4 装夹方式的选择-----------------------第5页 3.5 数控车床常用的装夹方式---------------第5页 3.6 确定合理装夹方式---------------------第5页第4章刀具及切削用量-------------------------第6页 4.1 选择数控刀具的原则-------------------第6页 4.2 选择数控车削刀具---------------------第6页 4.3 设置刀点和换刀点---------------------第6页 4.4 确定切削用量-------------------------第7页第5章轴类零件的加工-------------------------第8页 5.1 轴类零件加工工艺分析-----------------第8页 5.2 轴类零件加工工艺---------------------第11页 5.3 加工坐标系设置-----------------------第13页 5.4 保证加工精度方法---------------------第14页 参考文献 ---------------------------------第15页

数控车床仿真软件实习教程

一、数控加工仿真系统的运行 单击【开始】按钮,在【程序】中选择【数控加工仿真系统】,在弹出的子菜单中单击【加密锁管理程序】,如图1所示。 图1 单击【加密锁管理程序】,WINDOWS XP右下角任务栏会出现如图2所示的电话形状图标。 图2 再次进入【程序】菜单中的【数控加工仿真系统】,在弹出的子菜单中单击【数控加工仿真系统】,如图3所示。

图3 单击【数控加工仿真系统】弹出系统登陆界面,如图4所示。直接单击【快速登陆】按钮进入系统。 图4

二、数控加工仿真系统的基本用户界面 1.选择机床 在主界面下,单击下拉菜单中的【机床】,在弹出的下拉子菜单中单击【选择机床】;或者单击图标 菜单中的图标,如图5所示,系统将会弹出选择机床子界面,将【控制系统】选为【FANUC】,然后在选择【FANUC OI Mate】【机床类型】【选车床】然后在选择机床的生产厂家【南京第二机床厂】选项,然后单击确定,如图6。 图5

图6

机械操作面板 图7 图5所示为数控加工仿真系统的主界面,用户可以通过操作鼠标或键盘来完成数控机床的仿真操作。它包括下拉菜单;图标菜单;机械操作面板;机床操作面板和数控机床动画仿真五部分组成。 2.图标菜单 3.机械操作面板 数控仿真加工系统的机械操作面板即为真实机床操作面板上的操作区,其各键名称功能见图7。

模式旋钮上的功能: 为编辑模式,在此模式下才可以进行程序的输入和修改 . 为手动模式在此模式下可以进行手动操作. 为微米模式,指针对准1则为1微米模式,对准10为10微米模式,以此类推,同时在微米模式下激活手轮旋钮.手轮共有100个小格,指针对准哪个数字则每个小格单位为多少微米。 模式旋钮 主轴正转 倍率开关 主轴反转

数控加工工艺分析的一般步骤与方法

数控加工工艺分析的一般步骤与方法 程序编制人员在进行工艺分析时,要有机床说明书、编程手册、切削用量表、标准工具、夹具手册等资料,根据被加工工件的材料、轮廓形状、加工精度等选用合适的机床,制定加工方案,确定零件的加工工序,各工序所用刀具、夹具和切削用量等。此外,编程人员应不断总结、积累工艺分析方面的实际经验,编写出高质量的数控加工工序。 一、机床的合理选用 在数控机床上加工零件时,一般用两种情况。第一种情况:有零件图样和毛坯,要选择适合加工该零件的数控机床。第二种情况:已有了数控机床,要选择适合在该机床上加工的零件。无论何种情况,考虑的主要因素有,毛坯的材料种类、零件轮廓复杂程度、尺寸大小、加工精度、零件数量、热处理要求等。概括起来有三点:①要保证加工零件的技术要求,加工出合格产品。②有利于提高生产率。③尽可能降低生产成本及加工费用。 二、数控加工零件工艺性分析 数控加工工艺分析涉及面广,在此仅从数控加工的可能性和方便性两方面加以分析。 ㈠零件图样上尺寸数据的给出应符合编程方便的原则

1.零件图尺寸标注方法应适应数控加工的特点,在数控加工零件图上,应以同一基准引注尺寸或是直接给出坐标尺寸。这种标注方法即便于编程,也便于尺寸间的相互协调,在保持设计基准、工艺基准、检测基准与编程原点设置的一致性方面带来很大方便。由于零件设计人员一般在尺寸标注中较多的考虑装配等使用性能方面,而不得不采用局部分散的标注方法,这样就会给工序安排与数控加工带来许多不便。由于数控加工精度和重复定位精度都很高,不会因产生较大的积累误差而破坏使用性能,因此可以将局部的分散标注法改为同一基准引注尺寸或直接给出坐标尺寸的标注法。 2.构成零件轮廓的几何要素的条件应充分 在手工编程时,要计算基点或节点坐标。在自动编程时,要对构成零件轮廓的所有几何要素进行定义。因此在分析零件图时,要分析几何要素的给定条件是否充分。如圆弧与直线、圆弧与圆弧在图样上相切,但根据图上给定尺寸,在计算相切条件时,变成了相交或相离状态。由于构成零件几何元素条件的不充分,使编程时无法下手。遇到这种情况,应与零件设计者协商解决。 (二)零件各加工部位的结构工艺性应符合数控加工的特点⑴零件的内腔和外形最好采用统一的几何类型和尺寸。这样可以减少刀具的规格和换刀次数,使编程方便,生产效益提高。

(数控加工)宇龙数控加工仿真系统实验指导书精编

(数控加工)宇龙数控加工仿真系统实验指导书

数控加工仿真实验指导书(适用本、专科各专业)

数控编程仿真实验要求 壹、实验目的 “数控机床加工程序编制”(简称数控编程)课程,是机械和机电等各类专业本、专科教学计划中开设的壹门应用性和实践性很强的专业课程。学好本课程,不仅要掌握数控编程的基本理论知识和编程方法,更重要的是要通过壹定的实践教学,在实践教学中运用所掌握的机械加工工艺知识、数控编程的理论知识、数控编程的方法编制零件加工程序,且完成对零件的数控加工。采用仿真软件在计算机上进行模拟加工,是完成这壹实践教学的有效手段。因此,在各专业本、专科“数控编程”课程的教学计划中均设有“仿真实验”这壹实践教学环节。其实验的目的是: 1.熟悉且学会运用计算机仿真技术,模拟数控车床、数控铣床完成零件加工的全过程; 2.为后续的“数控编程实训”,实地操作数控机床进行数控加工,积累和打下操作技能训练的基础。 二、实验要求 1.熟悉且掌握FANUC0i系统仿真软件面板操作过程; 2.按给定车削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工; 3.按给定铣削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工; 4.按实验内容,编写实验报告。

三、课时安排 注:表中课时带括号者,指实验学时可调整 四、实验报告编程内容 1.简要叙述FANUC0i系统仿真软件面板操作过程; 2.按给定零件图样,编制的车削加工程序; 3.按给定零件图样,编制的铣削加工程序。 五、指导书及联系题: 1.数控加工仿真FANUC0i系统面板操作简介 2.仿真加工零件图样 2010年9月修订 宇龙数控加工仿真系统实验指导书主要内容

数控车仿真软件操作指导

数控车仿真软件操作指导

8、数控加工仿真系统 依次点击“开始→程序→数控加工仿真系统→数控加工仿真系统”(或双击桌面上的数控加工仿真系统快捷图标),系统将弹出如图1-38所示的用户登录界面。 图1-38 登录界面 单击“快速登录”进入仿真软件主界面,如图1-39所示。 仿真系统界面由以下三方面组成: ①菜单栏及快捷工具栏:(图形显示调节及其它快捷功能图标) ②机床显示区域:三维显示模拟机床,可通过视图选项调节显示方式。 ③系统面板区域:通过对该区域的操作,执行仿真对刀、参数设置及完成仿真加工。

图1-39 仿真软件主界面 (1)数控仿真软件的基本操作 ◆对项目文件的操作 1)项目文件的作用 保存操作结果,但不包括操作过程。 2)项目文件包括的内容 ①机床、毛坯、经过加工的零件、选用的刀具和夹具、在机床上的安装位置和方式; ②输入的参数:工件坐标系、刀具长度和半径补偿数据; ③输入的数控程序。 3)对项目文件的操作

①新建项目文件 打开菜单“文件\新建项目”;选择新建项目后,就相当于回到重新选择机床后的初始状态。 ②打开项目文件 打开选中的项目文件夹,在文件夹中选中并打开后缀名为“.MAC”的文件。注意:“.MAC”文件只有在仿真软件中才能被识别,因此只能在仿真软件中打开,而不能直接打开。 ③保存项目文件 打开菜单“文件\保存项目”或“另存项目”;选择需要保存的内容,按下“确认”按钮。如果保存一个新的项目或者需要以新的项目名保存,选择“另存项目”,内容选择完毕后输入另存项目名,“确认”保存。 保存项目时,系统自动以用户给予的文件名建立一个文件夹,所有内容均放在该文件夹中,默认保存在用户工作目录相应的机床系统文件夹内。 提示:在保存项目文件时,实际上是一个文件夹内保存了多个文件,这些文件中包含了“2)”中所讲到的所有内容,这些文件共同构成一个完整的仿真项目,因此文件夹中的任一文件丢失都会造成项目内容的不完整,需特别注意。 ◆其他操作 1)零件模型 如果仅想对加工的零件进行操作,可以选择“导入\导出零件模型”,零件模型的文件以“.PRT”为后缀。 2)视图变换的选择 在工具栏中选之一,它们分别对应于菜单“视图”下拉菜单的“复位”、“局部放大”、“动态缩放”、“动态平移”、“动态旋转”、“绕X轴旋转”、“绕Y轴旋转”、“绕Z轴旋转”、“左视图”、“右视图”、“俯视图”、“前视图”。或者可以将光标置于机床显示区域内,点

数控加工工艺

第五讲一、备课教案

二、讲稿 第二章数控加工工艺基础 第二节数控加工工艺分析 2.2.1数控加工零件的工艺性分析 在选择并决定数控加工零件及其加工内容后,应对零件的数控加工工艺性进行全面、认真、仔细的分析。主要内容包括产品的零件图样分析、结构工艺性分析和零件安装方式的选择等内容。 (1)零件图样分析 首先应熟悉零件在产品中的作用、位置、装配关系和工作条件,搞清楚各项技术要求对零件装配质量和使用性能影响,找出主要的和关键的技术要求,然后对零件图样进行分析。 ①尺寸标注方法分析零件图上尺寸标注方法应适应数控加工的特点,如图2-6(a)所示,在数控加工零件图上,应以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。由于零件设计人员一般在尺寸标注中较多地考虑装配等使用方面特征,而不得不采用如图2-6(b)所示的局部分散的标注方法,这样就给工序安排和数控加工带来诸多不便。由于数控加工精度和重复定位精度都很高,不会因产生较大的累积误差而破坏零件的使用特性,因此,可将局部的分散标注法改为同一基准标注或直接给出坐标尺寸的标注法。 图2-6 零件尺寸标注分析 ②零件图的完整性和准确性分析构成零件轮廓的几何元素(点、线、面)的条件(如相切、相交、垂直和平性等),是数控编程的重要依据。手工编程时,要依据这些条件计算每个节点的坐标;自动编程时,则要根据这些条件才能对构成零件的所有几何元素进行定义,无论哪一条件不明确,变成都无法进行。因此,在分析零件图样时,务必要分析几何元素的给定条件是否充分,发现问题及时与设计人员协商解决。 ③零件技术要求分析零件的技术要求主要是指尺寸精度、形状精度、位置精度、表面粗糙度及热处理等。这些要求在保证零件使用性能的前提下,应经济合理。过高的精度和表面粗糙度要求会使工艺过程复杂、加工困难、成本提高。 ④零件材料分析在满足零件功能的前提下,应选用廉价、切削性能好的材料。而且,材料选择应立足国内,不要轻易选用贵重或紧缺的材料。 图2-7 内槽结构工艺性对比

相关主题
文本预览
相关文档 最新文档