当前位置:文档之家› 决胜高考——物理五年内经典好题汇编(电磁学)

决胜高考——物理五年内经典好题汇编(电磁学)

决胜高考——物理五年内经典好题汇编(电磁学)
决胜高考——物理五年内经典好题汇编(电磁学)

决胜高考——物理五年内经典好题汇编(电磁学)

一、选择题

1.(09年全国卷Ⅰ)17.如图,一段导线abcd 位于磁感应强度大小为B 的匀强

磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab 、bc 和cd 的长度均为L ,且0135abc bcd ∠=∠=。流经导线的电流为I ,方向如图中箭头所示。导线段abcd 所受到的磁场的作用力的合力 ( A )

A. 方向沿纸面向上,大小为1)IL B

B. 方向沿纸面向上,大小为1)IL B

C. 方向沿纸面向下,大小为1)IL B

D. 方向沿纸面向下,大小为1)IL B

解析:本题考查安培力的大小与方向的判断.该导线可以用a 和d 之间的直导线长为

L )12(+来等效代替,根据BIl F =,可知大小为BIL )12(+,方向根据左手定则.A 正

确。

2.(09年北京卷)19.如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场。一带电粒子a (不计重力)以一定的初速度由左边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O ′点(图中未标出)穿出。若撤去该区域内的磁场

而保留电场不变,另一个同样的粒子b (不计重力)仍以相同 初速度由O 点射入,从区域右边界穿出,则粒子b ( C ) A .穿出位置一定在O ′点下方 B .穿出位置一定在O ′点上方

C .运动时,在电场中的电势能一定减小

D .在电场中运动时,动能一定减小

解析:a 粒子要在电场、磁场的复合场区内做直线运动,则该粒子一定做匀速直线运动,故对粒子a 有:Bqv=Eq 即只要满足E =Bv 无论粒子带正电还是负电,粒子都可以沿直线穿出复合场区,当撤去磁场只保留电场时,粒子b 由于电性不确定,故无法判断从O ’点的上方或下方穿出,故AB 错误;粒子b 在穿过电场区的过程中必然受到电场力的作用而做类似于平抛的运动,电场力做正功,其电势能减小,动能增大,故C 项正确D 项错误

3.(09年广东物理)12.图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E 。平板S 上有可让粒子通过的狭缝P 和记录粒子

位置的胶片A 1A 2。平板S 下方有强度为B 0的匀强磁场。下列表述正确的是

( ABC )

A .质谱仪是分析同位素的重要工具

B .速度选择器中的磁场方向垂直纸面向外

C .能通过的狭缝P 的带电粒子的速率等于E/B

D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小

解析:由加速电场可见粒子所受电场力向下,即粒子带正电,在速度选择器中,电场力水平向右,洛伦兹力水平向左,如图所示,因此速度选择器中磁场方向垂直纸面向外B 正确;经过速度选择器时满足qvB qE =,可知能通过的狭缝P 的带电粒子的速率等于E/B ,带电粒子进入磁场做匀速圆周运动则有qB

mv

R =,可见当v 相同时,q

m R ∝,所以可以用来区

分同位素,且R 越大,比荷就越大,D 错误。

4.(09年广东理科基础)1.发现通电导线周围存在磁场的科学家是 ( B )

A .洛伦兹

B .库仑

C .法拉第

D .奥斯特

解析:发现电流的磁效应的科学家是丹麦的奥斯特.而法拉第是发现了电磁感应现象。 5.(09年广东理科基础)13.带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用。下列表述正确的是

( B )

A .洛伦兹力对带电粒子做功

B .洛伦兹力不改变带电粒子的动能

C .洛伦兹力的大小与速度无关

D .洛伦兹力不改变带电粒子的速度方向

解析:根据洛伦兹力的特点, 洛伦兹力对带电粒子不做功,A 错.B 对.根据qvB F =,可知大小与速度有关. 洛伦兹力的效果就是改变物体的运动方向,不改变速度的大小。

6.(09年广东文科基础)61.带电粒子垂直匀强磁场方向运动时,其受到的洛伦兹力的方向,下列表述正确的是

D )

A .与磁场方向相同

B .与运动方向相同

C .与运动方向相反

D .与磁场方向垂直

7.(09年山卷)21.如图所示,一导线弯成半径为a 的半圆形闭合回路。虚线MN 右侧有磁感应强度为B 的匀强磁场。方向垂直于回路所在的平面。回路以速度v 向右匀速进入磁场,

直径CD 始络与MN 垂直。从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是 ( ACD ) A .感应电流方向不变 B .CD 段直线始终不受安培力 C .感应电动势最大值E =Bav D .感应电动势平均值14E B av =

π

解析:在闭合电路进入磁场的过程中,通过闭合电路的磁通量逐渐增大,根据楞次定律可知感应电流的方向为逆时针方向不变, A 正确。根据左手定则可以判断,受安培力向下,B 不正确。当半圆闭合回路进入磁场一半时,即这时等效长度最大为a ,这时感应电动势最大E=Bav ,C 正确。感应电动势平均值211224B a E Bav a t v

π?φ===π? ,D 正确。

考点:楞次定律、安培力、感应电动势、左手定则、右手定则

提示:感应电动势公式E t

?φ=

?只能来计算平均值,利用感应电动势公式E B lv =计算时,

l 应是等效长度,即垂直切割磁感线的长度。

8.(09年重庆卷)19.在题19图所示电路中,电池均相同,当电键S 分别置于a 、b 两处时,导线

M M '

N N '

之间的安培力的大小为 a f 、 b f ,判断这两段导线

( D )

A.相互吸引, a f > b f

B.相互排斥, a f > b f

C.相互吸引, a f < b f

D.相互排斥, a f <

b f

9.(09年安徽卷)19. 右图是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹。云室旋转在匀强磁场中,磁场方向垂直照片向里。云室中横放

的金属板对粒子的运动起阻碍作用。分析此径迹可知粒子 ( A )

A. 带正电,由下往上运动

B. 带正电,由上往下运动

C. 带负电,由上往下运动

D. 带负电,由下往上运动

解析:粒子穿过金属板后,速度变小,由半径公式qB

mv r

可知,半径变小,粒子运动方向

为由下向上;又由于洛仑兹力的方向指向圆心,由左手定则,粒子带正电。选A 。 10.(09年宁夏卷)16. 医生做某些特殊手术时,利用电磁血流计来监测通过动

脉的血流速度。电磁血流计由一对电极a 和b 以及磁极N 和S 构成,磁极间的磁场是均匀的。使用时,两电极a 、b 均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血流一起在

磁场中运动,电极a 、b 之间会有微小电势差。在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。在某次监测中,两触点的距离为3.0mm ,血管壁的厚度可忽略,两触点间的电势差为160μV ,磁感应强度的大小为0.040T 。则血流速度的近似值和电极a 、b 的正负为 ( A ) A. 1.3m/s ,a 正、b 负 B. 2.7m/s , a 正、b 负 C .1.3m/s ,a 负、b 正 D. 2.7m/s , a 负、b 正

11.(09年安徽卷)20. 如图甲所示,一个电阻为R ,面积为S 的矩形导线框abcd ,水平旋转在匀强磁场中,磁场的磁感应强度为B ,方向与ad 边垂直并与线框平面成450角,o 、o’ 分别是ab 和cd 边的中点。现将线框右半边obco’ 绕oo’ 逆时针900

到图乙所示位置。在这一过程中,导线中通过的电荷量是 ( A )

A. 2R

B.

R

C.

B S R

D.

解析:对线框的右半边(obco ′)未旋转时整个回路的磁通量

BS BS o

12

245sin =

=Φ。对线框的右半边(obco ′)旋转90

o

后,穿进跟穿出的磁通量相等,如右图整个回路的磁通量02=Φ。

BS 2

2-12==ΦΦ?Φ。根据公式R

BS R

q 22=

=

。选A

12.(09年海南物理)2.一根容易形变的弹性导线,两端固定。导线中通有电流,方向如图中箭头所示。当没有磁场时,导线呈直线状态:当分别加上方向竖直向上、水平向右或垂

直于纸面向外的匀强磁场时,描述导线状态的四个图示中正确的是 ( D )

13.(09年海南物理)4.一长直铁芯上绕有一固定线圈M ,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N ,N 可在木质圆柱上无摩擦移动。M 连接在如图所示的电路中,其中R 为滑线变阻器,1E 和2E 为直流电源,S 为单刀双掷开关。下列情况中,可观测到N 向左运动的是 ( C )

A .在S 断开的情况下,S 向a 闭合的瞬间

B .在S 断开的情况下,S 向b 闭合的瞬间

C .在S 已向a 闭合的情况下,将R 的滑动头向c 端移动时

D .在S 已向a 闭合的情况下,将R 的滑动头向d 端移动时 二、非选择题

14.(09年全国卷Ⅰ)26(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。A

是一块平行于x 轴的挡板,与x 轴的距离为,A 的中点在y 轴上,长度略小于。

带点粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。不计重力。求粒子入射速度的所有可能值。

解析:设粒子的入射速度为v,第一次射出磁场的点为'O N ,与板碰撞后再次进入磁场的位置

1N .粒子在磁场中运动的轨道半径为R,有qB

mv R =

…?

粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有=1x θs i n

2R N N O O ='

…? 粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1N N O '

相等.由图可以

看出a x =2……?

设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()a nx x n 2121=-+……?

由??两式得a n n x 1

21++=

……?

若粒子与挡板发生碰撞,有4

21a x x >-……?

联立???得n<3………? 联立???得

a n n m qB v 1

2sin 2++?=

θ

………?

把2

2

sin h

a h +=

θ代入?中得

0,2

2=+=

n mh

h a qBa v o …………?

1,432

21=+=

n mh

h a qBa v …………⑾

2,322

22=+=

n mh

h a qBa v …………⑿

15.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为1l 和2l 的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d 。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。 答案:

2

2

112

2

2

12arcsin(

)2l d dl dl l d

++

解析:本题考查带电粒子在有界磁场中的运动。

粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O 应在分界线上,OP 长度即为粒子运动的圆弧的半径R.由几何关系得

2

2

12)(d R l R -+=………①

设粒子的质量和所带正电荷分别为m 和q,由洛仑兹力公式和牛顿第二定律得

……………②

设P '为虚线与分界线的交点,α='∠P PO ,则粒子在磁场中的运动时间为v

R t α=

1……③

式中有R

l 1sin =α………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.

设粒子的加速度大小为a,由牛顿第二定律得ma qE =…………⑤

由运动学公式有2

2

1at d =

……⑥ 22vt l =………⑦

R

v

m

qvB 2

=

由①②⑤⑥⑦式得

v l d l B

E

2

2

2

2

1

+=

…………⑧

由①③④⑦式得

)2arcsin(22

2

112

2

2

12

1d

l dl dl d l t t ++=

16.(09年天津卷)11.(18分)如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴。一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L,小球过M 点时的速度方向与x 轴的方向夹角为θ.不计空气阻力,重力加速度为g,求

(1) 电场强度E 的大小和方向; (2) 小球从A 点抛出时初速度v 0的大小; (3) A 点到x 轴的高度h. 答案:(1)

q

mg ,方向竖直向上 (2)

θcot 2m

qBL (3)

g

m L B q 2

2

228

解析:本题考查平抛运动和带电小球在复合场中的运动。

(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有

mg qE = ①

q

mg E =

重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。

(2)小球做匀速圆周运动,O ′为圆心,MN 为弦长,θ='∠P O M ,如图所示。设半径为r ,由几何关系知

θsin =r

2L ③

小球做匀速圆周运动的向心力由洛仑兹力白日提供,设小球做圆周运动的速率为v ,有 r

mv qvB 2

=

由速度的合成与分解知

θcos 0=v

v ⑤

由③④⑤式得

θcot 20m

qBL v =

(3)设小球到M 点时的竖直分速度为v y ,它与水平分速度的关系为 θtan 0v v y = ⑦ 由匀变速直线运动规律

gh v 22= ⑧ 由⑥⑦⑧式得

g

m L B q h 22

2

2

8=

17.(09年山东卷)25.(18分)如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。位于极板左侧的粒子源沿x 轴间右连接发射质量为m 、电量为+q 、速度相同、重力不计的带电粒子在0~3t 时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。 已知t=0时刻进入两板间的带电粒子恰好在t 0时,刻经极板边缘射入磁场。上述m 、q 、l 、l 0、B 为已知量。(不

考虑粒子间相互影响及返回板间的情况)

(1)求电压U 的大小。 (2)求

12

时进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

v 图甲

图乙

解析:(1)0t =时刻进入两极板的带电粒子在电场中做匀变速曲线运动,

0t 时刻刚好从极板边缘射出,在y 轴负方向偏移的距离为12

l ,则有

0U E l

=

Eq ma =② 2

01122l at =

联立以上三式,解得两极板间偏转电压为2

02

m l U qt

=④。

(2)

012

t 时刻进入两极板的带电粒子,前

012

t 时间在电场中偏转,后012

t 时间两极板没有

电场,带电粒子做匀速直线运动。带电粒子沿x 轴方向的分速度大小为00

l v t =⑤

带电粒子离开电场时沿y 轴负方向的分速度大小为01

2y v a t = ⑥

带电粒子离开电场时的速度大小为v =

设带电粒子离开电场进入磁场做匀速圆周运动的半径为R ,则有2

v

Bvq m

R

=⑧

联立③⑤⑥⑦⑧式解得0

2l R qB t =

⑨。

(3)02t 时刻进入两极板的带电粒子在磁场中运动时间最短。带电粒子离开磁场时沿y 轴正方向的分速度为'

0y v at =⑩,设带电粒子离开电场时速度方向与y 轴正方向的夹角为α,则0'tan y

v v

α=

,联立③⑤⑩式解得4

π

α=

,带电粒子在磁场运动的轨迹图如图所示,圆弧

所对的圆心角为22

π

α=

,所求最短时间为m i n 14

t T =

,带电粒子在磁场中运动的周期为

2m T Bq

π=

,联立以上两式解得m in 2m t Bq

π=

考点:带电粒子在匀强电场、匀强磁场中的运动。

18.(09年福建卷)22.(20分)

图为可测定比荷的某装置的简化示意图,在第一象

限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3

T,在X 轴上距坐标原点L=0.50m 的P 处为离子的入射口,在Y 上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L=0.50m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。 (1)求上述粒子的比荷

q m

(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;

(3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。 答案(1)

m

q =4.9×710C/kg (或5.0×710C/kg );(2)s t 6109.7-?= ; (3)225.0m S =

解析:第(1)问本题考查带电粒子在磁场中的运动。第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。

(1)设粒子在磁场中的运动半径为r 。如图甲,依题意M 、P 连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得

2

2L r = ①

由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得 r

v

m

qvB 2

= ②

联立①②并代入数据得

m

q =4.9×710C/kg (或5.0×7

10C/kg ) ③

(2)设所加电场的场强大小为E 。如图乙,当粒子子经过Q 点时,速度沿y 轴正方向,依题意,在此时加入沿x 轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有 qvB qE = ④ 代入数据得

C N E /70= ⑤

所加电场的长枪方向沿x 轴正方向。由几何关系可知,圆弧PQ 所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T ,所求时间为t ,则有 T t 0

0360

45= ⑥

v

r T π2=

联立①⑥⑦并代入数据得 s t 6109.7-?= ⑧

(3)如图丙,所求的最小矩形是P P MM 11,该区域面积

2

2r S = ⑨ 联立①⑨并代入数据得 2

25.0m S =

矩形如图丙中P P MM 11(虚线)

19.(09年浙江卷)25.(22分)如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。在

xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q>0)和初速度v 的带电微粒。发射时,这束带电微粒分布在0

(1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求点场强度和磁感应强度的大小和方向。 (2)请指出这束带电微粒与x 轴相交的区域,并说明理由。

(3)若这束带电微粒初速度变为2v ,那么它们与x 轴相交的区域又在哪里?并说明理由。

答案:(1)

m v qR

;方向垂直于纸面向外;(2)见解析;(3)与x 同相交的区域范围是

x>0。

解析:本题考查带电粒子在复合场中的运动。

带电粒子平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E ,由

qE mg =

可得 q

mg E =

方向沿y 轴正方向。

带电微粒进入磁场后,将做圆周运动。 且 r=R

如图(a )所示,设磁感应强度大小为B 。由 R

mv qvB 2

=

得 qR

mv B =

方向垂直于纸面向外

(2)这束带电微粒都通过坐标原点。

方法一:从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,其圆心位于其正下方的Q 点,如图b 所示,这束带电微粒进入磁场后的圆心轨迹是如图b 的虚线半圆,此圆的圆心是坐标原点为。

方法二:从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动。如图b

示,高P 点与O ′点的连线与y 轴的夹角为θ,其圆心Q 的坐标为(-Rsin θ,Rcos θ),圆周运动轨迹方程为

()()2

2

2cos sin R R y R x =-++θθ

x =0 x=-Rsin θ y=0 或 y=R(1+cos θ) (3)这束带电微粒与x 轴相交的区域是x>0

带电微粒在磁场中经过一段半径为r ′的圆弧运动后,将在y 同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c 所示。靠近M 点发射出来的带电微粒在突出磁场后会射向x 同正方向的无穷远处国靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场。所以,这束带电微粒与x 同相交的区域范围是x>0.

20.(09年江苏卷)14.(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B 的匀强磁场与盒面垂直。A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U 。加速过程中不考虑相对论效应和重力作用。

(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比; (2)求粒子从静止开始加速到出口处所需的时间t ;

(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E ㎞。 解析:(1)设粒子第1次经过狭缝后的半径为r 1,速度为v 1

qu=

12

mv 12

qv 1B=m

2

1

1

v r

解得

1r =

同理,粒子第2次经过狭缝后的半径

2r =则

21:r r =

(2)设粒子到出口处被加速了n 圈

2

2

1222nqU m v

v qvB m R m T qB

t nT

π===

=

解得 2

2BR t U

π=

(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即2qB f m

π=

当磁场感应强度为B m 时,加速电场的频率应为2m B m qB f m

π=

粒子的动能

2

12K E m v

=

当Bm f ≤m f 时,粒子的最大动能由B m 决定

2

m m m v qv B m

R

=

解得222

2m km q B R E m

=

当Bm f ≥m f 时,粒子的最大动能由f m 决定

2m m v f R π=

解得 222

2km m E m f R π=

21.(09年江苏物理)15.(16分)如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l 、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d ,磁感应强度大小为B 、方向与导轨平面垂直。长度为2d 的绝缘杆将导体棒和正方形的单匝线框连接在一起组

成“”型装置,总质量为m ,置于导轨上。导体棒中通以大小恒为I 的电流(由外接

恒流源产生,图中未图出)。线框的边长为d (d < l ),电阻为R ,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。重力加速度为g 。求:

(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q ; (2)线框第一次穿越磁场区域所需的时间t 1;

(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离χm 。

解析:(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W

由动能定理 s i n 40

m g d W B I l d α+-= 且Q W =-

解得 B I l d

m g d Q -=αs i n 4 (2)设线框刚离开磁场下边界时的速度为1v ,则接着向下运动2d 由动能定理 21

1

s i n

202

m g d B I l d m v

α-=-

装置在磁场中运动时收到的合力

sin '

F mg F α=-

感应电动势 ε=Bd υ 感应电流 'I =

R

ε

安培力 ''F B I d =

由牛顿第二定律,在t 到t+t ?时间内,有t

m

F v ?=?

t

mR v d B g v ???

?

?

?

?

-=?∑∑22sin α

有2

3

112sin B d v gt m R

α=-

解得

23

12sin B d R

t m g α

=

(3)经过足够长时间后,线框在磁场下边界与最大距离m x 之间往复运动

由动能定理 s i n ()0m m m g x BIl x d α--= 解得 s i n m B I l d x B I l m g α

=

-

22.(09年四川卷)25.(20分)如图所示,轻弹簧一端连于固定点O ,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V 0=20 m/s 竖直向下射出小球P,小球P 到达O 点的正下方O 1点时速度恰好水平,其大小V=15 m/s.若O 、O 1相距R=1.5 m,小球P 在O 1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1

kg 的静止绝缘小球N 相碰。碰后瞬间,小球P 脱离弹簧,小球N 脱离细绳,同时在空间加上竖直向上的匀强电场E 和垂直于纸面的磁感应强度B=1T 的弱强磁场。此后,小球P 在竖直平面内做半径r=0.5 m 的圆周运动。小球P 、N 均可视为质点,小球P 的电荷量保持不变,不计空气阻力,取g=10 m/s 2。那么, (1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?

(2)请通过计算并比较相关物理量,判断小球P 、N 碰撞后能否在某一时刻具有相同的速度。 (3)若题中各量为变量,在保证小球P 、N 碰撞后某一时刻具有相同速度的前提下,请推导出

r 的表达式(要求用B 、q 、m 、θ表示,其中θ为小球N 的运动速度与水平方向的夹角)。 解析:(1)设弹簧的弹力做功为W ,有:

2

2

01122

m gR W m v m v +=

-

代入数据,得:W = 2.05-J ②

(2)由题给条件知,N 碰后作平抛运动,P 所受电场力和重力平衡,P 带正电荷。设P 、N 碰后的速度大小

分别为v 1和V ,并令水平向右为正方向,有: 1m v m v M V =±+ ③ 而: 1B qr v m

=

若P 、N 碰后速度同向时,计算可得V

有: m v B qr

V M

+=

P 、N 速度相同时,N 经过的时间为N t ,P 经过的时间为P t 。设此时N 的速度V1的方向与水平方向的夹角为

θ,有:

1

1

cos V V V v θ=

= ⑥

11sin sin N gt V v θθ== ⑦

代入数据,得:

4

N t =

对小球P ,其圆周运动的周期为T ,有: 2m T Bq

π=

经计算得: N t <T ,

P 经过P t 时,对应的圆心角为α,有: 2P t T α

π

=

当B 的方向垂直纸面朝外时,P 、N 的速度相同,如图可知,有: 1απθ=+

联立相关方程得: 1215

P t s π=

比较得, 1N P t t ≠,在此情况下,P 、N 的速度在同一时刻不可能相同。 当B 的方向垂直纸面朝里时,P 、N 的速度相同,同样由图,有: 2a πθ=-, 同上得: 215

P t π

=

比较得, 2N p t t ≠,在此情况下,P 、N 的速度在同一时刻也不可能相同。 (3)当B 的方向垂直纸面朝外时,设在t 时刻P 、N 的速度相同,N P t t t ==, 再联立④⑦⑨⑩解得: ()()222

210,1,2sin g

n m

r n B q πθθ

++????==

当B 的方向垂直纸面朝里时,设在t 时刻P 、N 的速度相同N P t t t ==,

同理得: ()22

2

sin m g

r B q πθθ

-=

考虑圆周运动的周期性,有: ()()222

210,1,2sin g

n m r n B q πθθ

++????==

(给定的B 、q 、r 、m 、θ等物理量决定n 的取值)

23.(09年海南物理)16.(10分)如图,ABCD 是边长为a 的正方形。质量为m 、电荷量为e 的电子以大小为0v 的初速度沿纸面垂直于BC 变射入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC 边上的任意点入射,都只能从A 点射出磁场。不计重力,求: (1)次匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。

解析:(1)设匀强磁场的磁感应强度的大小为B 。令圆弧

AEC 是自C 点垂直于BC 入射的电子在磁场中的运行

轨道。电子所受到的磁场的作用力

0f ev B =

应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外。圆弧

AEC 的圆心在CB 边或其延长线上。依题意, 圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a 按照牛顿定律有

2

02

v f m

=

联立①②式得

0m v B ea

=

(2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于B C 入射电子在A 点沿DA 方向射出,且自BC 边上其它点垂直于入射的电子的运动轨道只能在BAEC 区域

中。因而,圆弧

AEC 是所求的最小磁场区域的一个边界。 为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设02

π

θ≤<

)的情形。该电子的运动轨迹qpA 如图所示。

图中,圆 AP 的圆心为O ,pq 垂直于BC 边 ,由③式知,圆弧 AP 的半径仍为a ,在D 为原点、DC 为x 轴,AD 为y 轴的坐标系中,P 点的坐标(,)x y 为

sin [(cos )]cos x a y a z a a θθθ==---=-④

这意味着,在范围02

π

θ≤≤

内,p 点形成以D 为圆心、a 为半径的四分之一圆周 AFC ,

它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界。

因此,所求的最小匀强磁场区域时分别以B 和D 为圆心、a 为半径的两个四分之一圆周

AEC 和 AFC 所围成的,其面积为

2

221122()422

S a a a ππ-=-=

评分参考:本题10分。第(1)问4分,①至③式各1分;得出正确的磁场方向的,再给1

分。第(2)问6分,得出“圆弧

AEC 是所求磁场区域的一个边界”的,给2分;得出所求磁场区域的另一个边界的,再给2分;⑥式2分。

24.(09年重庆卷)25.(19分)如题25图,离子源A 产生的初速为零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场。已知HO=d ,HS=2d ,MNQ ∠=90°。(忽略粒子所受重力)

(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角?; (2)求质量为m 的离子在磁场中做圆周运动的半径;

(3)若质量为4m 的离子垂直打在NQ 的中点1S 处,质量为16m 的离子打在2S 处。求1S 和2S 之间的距离以及能打在NQ 上的正离子的质量范围。

解析:

高中物理电磁学总复习试题

物理总复习电磁学 复习容:高二物理(第十三章 电场、第十四章 恒定电流、第十五章 磁场、第十六章 电磁感应、第十七章 变交电流、第十八章 电磁场与电磁波) 复习围:第十三章~第十八章 电磁学 §.1 第十三章 电场 1. (1)电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移给另一个物体或者从物体的一部分转移到另一部分. (2)应用起电的三种方式:摩擦起电(前提是两种不同的物质发生摩擦)、感应起电(把电荷移近不带电的导体(不接触导体),使导体带电)、接触带电. 注意:①电荷量e 称为元电荷电荷量C 1060.119-?=e ;②电子的电荷量e 和电子的质量m 的比叫做电子的比荷 C/kg 1076.111?=e m e . ③两个完全相同的带电金属小球接触时................电荷量分配规律:原带异种电荷的先中和后平分;原带同种电荷的总电荷量平分. 2. 库仑定律. ⑴适用对象:点电荷. 注意:①带电球壳可等效点电荷. 当带电球壳均匀带电时,我们可等效在球心处有一个点电荷;球壳不均匀带电荷时,则等效点电荷就靠近电荷多的一侧. ②库仑力也是电场力,它只是电场力的一种. ⑵公式:2 21r Q Q k F ?=(k 为静电力常量等于229/c m N 109.9??). 3.(1)电场:只要有电荷存在,电荷周围就存在电场(电场是描述自身的物理量...........),电场的基本性质是它对放入其中的电荷有力的作用,这种力叫做电场力. (2)ⅰ. 电场强度(描述自身的物理量........): E = F / q 这个公式适用于一切电场,电场强度E 是矢量,物理学中规定电场中某点的场强方向跟正电荷在该点的电场力的方向相同,即正电荷受的电场力方向,即E 的方向为负电荷受的电场力的方向的反向. 此外F = Eq 与2 21r Q Q k F ?=不同就在于前者适用任何电场,后者只适用于点电荷. 注意:①对检验电荷(可正可负)的要求:一是电荷量应当充分小;二是体积也要小. ②E = F / q 中F 是检验电荷所受电场力,q 为检验电荷的电量 ③凡是“描述自身的物理量”统统不能说××正此,××反比(下同). ⅱ. 点电荷的电场场强2 r kQ E =对象就必须是以点电荷Q 为场源电荷的电量,因此它只适用于点电荷形成的电场. 注意:若两个点电荷相距为r ,将两个点电荷移近至r 趋近于零,由2 r kQ E =知,这时的E 为无穷大.(×)(这时的 两个点电荷不能看作质点了,不符和2 r kQ E =的适用条件) 4. 电场线:电场线上每一点的切线方向与该点的场强方向一致(与电场线的走向方向相同的那一个方向). ①电场线的疏密程度表示场强的大小,电场线越密(疏)场强越大(小). ②电场线的分布情况可用实验来摸拟,而电场线都是假想的线. 相等的平行直线. 附:若电场线平行,但间距不等,则这样的电场不存在.[简证:假设存在,W AB = qES =U AB q ,因为E 不同(由于间距不同造成)且S 相同,所以S E U S E q q U AB AB ?=???=?] ④点电荷的电场线分布是直线型(如图).

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

高考物理最新电磁学知识点之静电场知识点总复习

高考物理最新电磁学知识点之静电场知识点总复习 一、选择题 1.如图所示,一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电荷量很小)固定在P点,用E表示两极板间电场强度,U表示电容器的电压,Ep表示正电荷在P点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则() A.E变大,Ep变大B.U变小,Ep不变C.U变大,Ep变小D.U不变,Ep不变2.真空中静电场的电势φ在x正半轴随x的变化关系如图所示,x1、x2、x3为x轴上的三个点,下列判断正确的是() A.将一负电荷从x1移到x2,电场力不做功 B.该电场可能是匀强电场 C.负电荷在x1处的电势能小于在x2处的电势能 D.x3处的电场强度方向沿x轴正方向 3.如图所示,真空中有两个带等量正电荷的Q1、Q2固定在水平x轴上的A、B两点。一质量为m、电荷量为q的带电小球恰好静止在A、B连线的中垂线上的C点,由于某种原因,小球带电荷量突然减半。D点是C点关于AB对称的点,则小球从C点运动到D点的过程中,下列说法正确的是( ) A.小球做匀加速直线运动 B.小球受到的电场力可能先减小后增大 C.电场力先做正功后做负功

D.小球的机械能一直不变 4.在如图所示的电场中, A、B两点分别放置一个试探电荷, F A、F B分别为两个试探电荷所受的电场力.下列说法正确的是 A.放在A点的试探电荷带正电 B.放在B点的试探电荷带负电 C.A点的电场强度大于B点的电场强度 D.A点的电场强度小于B点的电场强度 5.如图所示,三条平行等间距的虚线表示电场中的三个等势面,电势分别为10V、20V、30V,实线是一带电粒子(不计重力)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是() A.粒子在三点所受的电场力不相等 B.粒子必先过a,再到b,然后到c C.粒子在三点所具有的动能大小关系为E kb>E ka>E kc D.粒子在三点的电势能大小关系为E pc<E pa<E pb 6.图中展示的是下列哪种情况的电场线() A.单个正点电荷B.单个负点电荷 C.等量异种点电荷D.等量同种点电荷 7.如图所示,将一带电小球A通过绝缘细线悬挂于O点,细线不能伸长。现要使细线偏离竖直线30°角,可在O点正下方的B点放置带电量为q1的点电荷,且BA连线垂直于 OA;也可在O点正下方C点放置带电量为q2的点电荷,且CA处于同一水平线上。则 为()

高考物理电磁学大题习题20题Word版含答案及解析

高考物理电磁学大题习题20题 1.如图所示,虚线MO 与水平线PQ 相交于O ,二者夹角θ=30°,在MO 左侧存在电场强度为 E 、方向竖直向下的匀强电场,MO 右侧某个区域存在磁感应强度为B 、垂直纸面向里的匀强 磁场,O 点处在磁场的边界上。现有一群质量为m 、电量为+q 的带电粒子在纸面内以不同的速度(0≤v ≤ E B )垂直于MO 从O 点射入磁场,所有粒子通过直线MO 时,速度方向均平行于PQ 向左。不计粒子的重力和粒子间的相互作用力,求: (1)粒子在磁场中的运动时间。 (2)速度最大的粒子从O 开始射入磁场至返回水平线POQ 所用时间。 (3)磁场区域的最小面积。 【答案】(1)23m qB π(2))m t qB π=或23m qB π(3)22 24 4(12m E S q B π-?= 或22 24 (3m E q B π 【解析】 【详解】(1)粒子的运动轨迹如图所示,设粒子在匀强磁场中做匀速圆周运动的半径为R ,周期为T ,粒子在匀强磁场中运动时间为t 1, 则2 mv qvB R =,即mv R qB =,22R m T v qB ππ==,11233m t T qB π== (2)设粒子自N 点水平飞出磁场,出磁场后应做匀速运动至OM ,设匀速运动的距离为x ,匀速运动的时间为t 2,由几何关系知:

tan R x θ= ,2x t v =,2t =过MO 后粒子做类平抛运动,设运动的时间为t 3,则: 2 33122qE R t m = 又:E v B = ,3t = 则速度最大的粒子自O 进入磁场至重回水平线POQ 所用的时间123t t t t =++ 联立解得:t = (3)由题知速度大小不同的粒子均要水平通过OM ,其飞出磁场的位置均应在ON 的连线上,故磁场范围的最小面积S ?是速度最大的粒子在磁场中的轨迹与ON 所围成的面积。扇形 OO N '的面积21 3S R π= OO N ?'的面积为:22 cos30sin 30S R R =??= ' 又S S S ?=-' 联立解得2224m E S q B ?=或22 24(3m E q B π。 2.如图甲所示,两平行金属板接有如图乙所示随时间t 变化的电压U ,两板间电场可看作均匀的,且两金属板外无电场,两金属板长L =0.2 m ,两板间距离d =0.2 m .在金属板右侧边界MN 的区域有一足够大的匀强磁场,MN 与两板中线OO ′垂直,磁感应强度为B ,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO ′连续射入电场中,已知每个粒子速度v 0=105 m/s ,比荷=108 C/kg ,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的. (1)试求带电粒子射出电场时的最大速度; (2)任意时刻从电场射出的带电粒子,进入磁场时在MN 上的入射点和在MN 上出射点的距离是一确定的值s ,试通过计算写出s 的表达式(用字母m 、v 0、q 、B 表示). 【答案】(1)。方向:斜向右上方或斜向右下方,与初速

高考物理最新电磁学知识点之磁场知识点总复习

高考物理最新电磁学知识点之磁场知识点总复习 一、选择题 1.如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m、带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场(图示方向)中.设小球带电荷量不变,小球由棒的下端以某一速度上滑的过程中一定有() A.小球加速度一直减小 B.小球的速度先减小,直到最后匀速 C.杆对小球的弹力一直减小 D.小球受到的洛伦兹力一直减小 2.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。分别加速氘核和氦核,下列说法正确的是() A.它们在磁场中运动的周期相同 B.它们的最大速度不相等 C.两次所接高频电源的频率不相同 D.仅增大高频电源的频率可增大粒子的最大动能 3.为了降低潜艇噪音可用电磁推进器替代螺旋桨。如图为直线通道推进器示意图。推进器前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B=10.0T,方向竖直向下,若在推进器前后方向通以电流I=1.0×103A,方向如图。则下列判断正确的是() A.推进器对潜艇提供向左的驱动力,大小为4.0×103N B.推进器对潜艇提供向右的驱动力,大小为5.0×103N C.超导励磁线圈中的电流方向为PQNMP方向

D.通过改变流过超导励磁线圈或推进器的电流方向可以实现倒行功能 4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平 面(未画出)。一群比荷为q m 的负离子以相同速率v0(较大),由P点在纸平面内向不同 方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧足够大荧光屏上,离子重力不计。则下列说法正确的是() A.离子在磁场中的运动轨迹半径可能不相等 B.由Q点飞出的离子在磁场中运动的时间最长 C.离子在磁场中运动时间一定相等 D.沿PQ方向射入的离子飞出时偏转角最大 5.如图所示,用一细线悬挂一根通电的直导线ab(忽略外围电路对导线的影响),放在螺线管正上方处于静止状态,与螺线管轴线平行,可以在空中自由转动,导线中的电流方向由a指向b。现给螺线管两端接通电源后(螺线管左端接正极),关于导线的受力和运动情况,下列说法正确的是() A.在图示位置导线a、b两端受到的安培力方向相反导线ab始终处于静止 B.从上向下看,导线ab从图示位置开始沿逆时针转动 C.在图示位置,导线a、b两端受到安培力方向相同导线ab摆动 D.导线ab转动后,第一次与螺线管垂直瞬间,所受安培力方向向上 6.如图,一正方体盒子处于竖直向上匀强磁场中,盒子边长为L,前后面为金属板,其余四面均为绝缘材料,在盒左面正中间和底面上各有一小孔(孔大小相对底面大小可忽略),底面小孔位置可在底面中线MN间移动,让大量带电液滴从左侧小孔以某一水平速度进入盒内,若在正方形盒子前后表面加一恒定电压U,可使得液滴恰好能从底面小孔通过,测得小孔到M点的距离为d,已知磁场磁感强度为B,不考虑液滴之间的作用力,不计一切阻力,则以下说法正确的是()

高中物理电学实验习题大全(含答案)

电学实验 测定金属的电阻率 1.在“测定金属的电阻率”的实验中,所测金属丝的电阻大约为5,先用伏安法测出该金属丝的电阻,然后根据电阻定律计算出该金属材料的电阻率。用米尺测出该金属丝的长度L,用螺旋测微器测量该金属丝直径时的刻度位置如图所示。 (1)从图中读出金属丝的直径为______________mm。 (2)实验时,取来两节新的干电池、开关、若干导线和下列器材: A.电压表0~3 V,内阻10 k B.电压表0~15 V,内阻50 k C.电流表0~0.6A,内阻0.05 D.电流表0~3 A,内阻0.01 E.滑动变阻器,0~10 F.滑动变阻器,0~100 ①要较准确地测出该金属丝的电阻值,电压表应选_______________,电流表应选______________,滑动变阻器选_____________(填序号)。 ②实验中,某同学的实物接线如图所示,请指出该实物接线中的两处明显错误。 错误l:_____________________________;

错误2:_____________________________。 2.为了测量某根金属丝的电阻率,根据电阻定律需要测量长为L的金属丝的直径D.电阻R。某同学进行如下几步进行测量: (1)直径测量:该同学把金属丝放于螺旋测微器两测量杆间,测量结果如图,由图可知,该金属丝的直径d= 。 (2)欧姆表粗测电阻,他先选择欧姆×10档,测量结果如图所示,为了使读数更精确些,还需进行的步骤是。 A.换为×1档,重新测量 B.换为×100档,重新测量 C.换为×1档,先欧姆调零再测量 D.换为×100档,先欧姆调零再测量 (3)伏安法测电阻,实验室提供的滑变阻值为0~20Ω,电流表0~0.6A(内阻约0.5Ω),电压表0~3V(内阻约5kΩ),为了测量电阻误差较小,且电路便于调节,下列备选电路中,应该选择。 3.在测定金属电阻率的实验中,某同学连接电路如图(a)所示.闭合开关后,发现电路有故障(已知电源、电表和导线均完好,电源电动势为E):

高考物理电磁学知识点之磁场技巧及练习题附解析

高考物理电磁学知识点之磁场技巧及练习题附解析 一、选择题 1.如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接,已如导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为 A.2F B.1.5F C.0.5F D.0 2.科学实验证明,足够长通电直导线周围某点的磁感应强度大小 I B k l =,式中常量 k>0,I为电流强度,l为该点与导线的距离。如图所示,两根足够长平行直导线分别通有电流3I和I(方向已在图中标出),其中a、b为两根足够长直导线连线的三等分点,O为两根足够长直导线连线的中点,下列说法正确的是( ) A.a点和b点的磁感应强度方向相同 B.a点的磁感应强度比O点的磁感应强度小 C.b点的磁感应强度比O点的磁感应强度大 D.a点和b点的磁感应强度大小之比为5:7 3.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60?角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则() A.ω1∶ω2=1∶1B.ω1∶ω2=2∶1 C.t1∶t2=1∶1D.t1∶t2=2∶1 4.为了降低潜艇噪音可用电磁推进器替代螺旋桨。如图为直线通道推进器示意图。推进器前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B=10.0T,方向竖直向下,若在推进器前后方向通以

高中物理电磁学试题选

高中物理电磁学部分试题选 填空题(把答案填在题中的括号内)。 0.1.1如图3-51所示,在厚金属板M附近放置一个负点电荷Q,比较图中a、b、c三点的 场强E a、E b、E c大小关系为();电势U a、U b、U c高低关系为(). 图3-51 0.1.2带电量为q1、q2,质量分别为m1和m2的两带异种电荷的粒子,其中q1=2q2,m1= 4m2,均在真空中.两粒子除相互之间的库仑力外,不受其它力作用.已知两粒子到某固定点的距离皆保持不变,由此可知两粒子一定做()运动,该固定点距两带电粒子的距离之比L1∶L2=(). 0.1.3在一次雷雨闪电中,两块云之间的电势差均为109V,从一块云移到另一块云的电量 均为30C,则在这次闪电中放出的能量是()J. 0.1.4如图3-52所示,在电场为竖直方向的匀强电场中,质量为m、带电量为-q的质点P, 沿直线AB斜向下运动,直线AB与竖直方向间的夹角为θ,若AB长度为L,则A、B两点间的电势差为(). 图3-52 0.1.5用三个完全相同的金属环,将其相互垂直放置,并把相交点焊接起来成为如图3-53 所示的球形骨架,如整个圆环的电阻阻值为4Ω,则A、C间的总电阻阻值R AC=()。(A、B、C、D、E、F为六个相交焊接点,图中B点在外,D点在内) 图5-53

0.1.6电路如图3-54所示,R1=R3=R,R2=2R,若在b、d间接入理想电压表,读数为 ();若在b、d间接入内阻为R的电压表,读数为()。 图5-54 0.1.7如图3-55所示的图线,a是某电源的U-I图线,b是电阻R的U-I图线,这个电源 的内电阻等于( ),用这个电源和两个电阻R串联成闭合电路,电源输出的电功率等于( )。 图3-55 0.1.8如图3-56所示电路中,已知R1=100Ω,右边虚线框内为黑盒,情况不明,今用电 压表测得U AC=10V,U CB=40V.则A、B间总电阻R AB是( )。 图5-56 0.1.9电饭锅工作时有两种状态:一种是锅内水烧干前的加热状态,另一种是锅内水烧干 后的保温状态。如图3-57所示是电饭锅电路的示意图,S是感温材料制造的开关,R1是电阻,R2是加热用的电阻丝,那么当开关S接通时,电饭锅所处的工作状态为()。如果要使R2在保温状态时的功率是加热状态时的1/9,那么R1/R2=()。 图3-57

高考物理电磁学知识点之磁场真题汇编附解析

高考物理电磁学知识点之磁场真题汇编附解析一、选择题 1.我国探月工程的重要项目之一是探测月球3 2He含量。如图所示,3 2 He(2个质子和1个 中子组成)和4 2 He(2个质子和2个中子组成)组成的粒子束经电场加速后,进入速度选择器,再经过狭缝P进入平板S下方的匀强磁场,沿半圆弧轨迹抵达照相底片,并留下痕迹M、N。下列说法正确的是() A.速度选择器内部的磁场垂直纸面向外B.平板S下方的磁场垂直纸面向里 C.经过狭缝P时,两种粒子的速度不同D.痕迹N是3 2 He抵达照相底片上时留下的2.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是() A.M带正电,N带负电 B.M的速率大于N的速率 C.洛伦磁力对M、N做正功 D.M的运行时间大于N的运行时间 3.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( ) A.轨迹为pb,至屏幕的时间将小于t B.轨迹为pc,至屏幕的时间将大于t C.轨迹为pa,至屏幕的时间将大于t

D.轨迹为pb,至屏幕的时间将等于t 4.对磁感应强度的理解,下列说法错误的是() A.磁感应强度与磁场力F成正比,与检验电流元IL成反比 B.磁感应强度的方向也就是该处磁感线的切线方向 C.磁场中各点磁感应强度的大小和方向是一定的,与检验电流I无关 D.磁感线越密,磁感应强度越大 5.下列关于教材中四幅插图的说法正确的是() A.图甲是通电导线周围存在磁场的实验。这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高 D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理 6.如图所示,两平行直导线cd和ef竖直放置,通以方向相反大小相等的电流,a、b两点位于两导线所在的平面内.则 A.b点的磁感应强度为零 B.ef导线在a点产生的磁场方向垂直纸面向里 C.cd导线受到的安培力方向向右 D.同时改变了导线的电流方向,cd导线受到的安培力方向不变 7.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射人水平放置,电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子入磁场和射出磁场的M、N两点间的距离d随着U1和U2的变化情况为(不计重力,不考虑边缘效应)()

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理电学经典试题

高中物理电学经典试题

实验:电表的改装 基础过关:如果某电流表内阻为R g Ω,满偏电流为I g uA ,要把它改装为一个UV 的电压表,需 要_____联一个阻值为________________Ω的电阻;如果要把它改装为一个IA 的电流表,则应____联一个阻值为_ ______________Ω的电阻. 1.电流表的内阻是R g =200Ω,满刻度电流值是I g =500微安培,现欲把这电流表改装成量程为1.0V 的电压表,正确的方法是 [ ] A .应串联一个0.1Ω的电阻 B .应并联一个0.1Ω的电阻 C .应串联一个1800Ω的电阻 D .应并联一个1800Ω的电阻 2.(2011年临沂高二检测)磁电式电流表(表头)最基本的组成部分是磁铁和放在磁铁两极之间的线圈,由于线圈的导线很细,允许通过的电流很弱,所以在使用时还要扩大量程.已知某一表头G ,内阻R g =30 Ω,满偏电流I g =5 mA ,要将它改装为量程为0~3 A 的电流表,所做的操作是( ) A .串联一个570 Ω的电阻 B .并联一个570 Ω的电阻 C .串联一个0.05 Ω的电阻 D .并联一个0.05 Ω的电阻 3.如图2-4-17所示,甲、乙两个电路,都是由一个灵敏电流表G 和一个变阻器R 组成,下列说法正确的是( ) A .甲表是电流表,R 增大时量程增大 B .甲表是电流表,R 增大时量程减小 C .乙表是电压表,R 增大时量程增大 D .乙表是电压表,R 增大时量程减小 4.用两只完全相同的电流表分别改装成一只电流表和一只电压表.将它们串联起来接入电路中,如图2-4-21所示,此时( ) A .两只电表的指针偏转角相同 B .两只电表的指针都不偏转 C .电流表指针的偏转角小于电压表指针的偏转角 D .电流表指针的偏转角大于电压表指针的偏转角 5.(2011年黄冈高二检测)已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 6、用相同的灵敏电流计改装成量程为3V 和15V 两个电压表,将它们串联接人电路中,指针偏角之比为______,读数之比________。用相同电流计改装成0.6A 和3A 的两个电流表将它们并联接入电路中,指针偏角之比_______,读数之比_________. 7.一只电流表,并联0.01Ω的电阻后,串联到电路中去,指针所示0.4A ,并联到0.02Ω的电阻后串联 到同一电路中去(电流不变),指针指示0.6A 。则电流表的内阻R A =_______Ω 8.在如图所示的电路中,小量程电流表的内阻为100Ω满偏 电流为 1mA,R 1=900ΩR 2=999100 Ω.(1)当S 1和 S 2均断开时,改装所成的表是什么表?量程多大?(2)当S 1和 S 2均闭合时,改装所成的表是什么表?量程多 大? 9.一电压表由电流表G 与电阻R 串联而成,如图所示,若在使用中发现此电压表计数总比准确值稍小一些,可以加以改正的措施是 10、有一量程为100mA 内阻为1Ω的电流表,按如图所示的电路改 装,量程扩大到1A 和10A 则图中的R 1=______ G R 2 R 1 S 1 S 2 R G G 公共 10A 1A R 1 R 2

(完整版)高中物理电磁学优质习题整理

例3-1 【新课标全国Ⅰ】关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()。 A 安培力的方向可以不垂直于直导线 B 安培力的方向总是垂直于磁场的方向 C 安培力的大小与通电直导线和磁场方向的夹角无关 D 将直导线从中点折成直角,安培力的大小一定变为原来的一半 例3-2 图中装置可演示磁场对通电导线的作用.电磁铁上、下两磁极之间某一水平面内固定两条平行金属 导轨,是置于导轨上并与导轨垂直的金属杆。当电磁铁线圈两端、,导轨两端、, 分别接到两个不流电源上时,便在导轨上滑动。下列说法正确的是()。 A若接正极,接负极,接正极,接负极,则向右滑动B若接正极,接负极,接负极, 接正极,则向右滑动 C若接负极,接正极,接正极,接负极,则向左滑动D若接负极,接正极,接负极,接正极,则向左滑动 例3-3 如图所示,磁感应强度大小为的匀强磁场方向斜向右上方,与水平方向所夹 的锐角为45°。将一个34金属圆环置于磁场中,圆环的圆心为,半径为,两条半径 和0 相互垂直,且沿水平方向。当圆环中通以电流I时,圆环受到的安培力大小为()。 A 2 B 32 CD 2 例3-4 如图所示,边长为的等边三角形导体框是由3根电阻均为 3 的导体棒构成, 磁感应强度为的匀强磁场垂直导体框所在平面,导体框两顶点与电动势为,内阻为 的电源用电阻可忽略的导线相连,则整个线框受到的安培力大小为()。 A 0B3 C2 D 例4-1 如图所示,在倾角为的光滑斜面上,垂直斜面放置一根长为、质量为的直导体棒,当通以图示方向电流I时,欲使导体棒静止在斜面上,可加一平行于纸面的匀强磁场,当外加匀强磁场的磁感应强度的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,下列说法中正确的是()。 A 此过程中磁感应强度逐渐增大 B 此过程中磁感应强度先减小后增大 C 此过程中磁感应强度的最小值为sin D 此过程中磁感应强度的最大值为 tan 例4-2 【上海卷】如图所示,质量为、长度为的直导线用两绝缘细线悬挂于、′, 并处于匀强磁场中,当导线中通以沿正方向的电流,且导线保持静止时悬线与 竖直方向夹角为。磁感应强度方向和大小可能为()。 A 正向,tan B 正向, C 负向,tan D 延悬线向上,sin 例4-3 【新课标全国Ⅰ卷】如图,一长为10 的金属棒用两个完全相同的弹 簧水平地悬挂在匀强磁场中,磁场的磁感应强度大小为0.1 ,方向垂直于纸面向里;弹簧上端固定,下端 与金属棒绝缘。金属棒通过开关与一电动势为12 的电池相连,电路总电阻为2Ω。已知开关断开时两弹簧的伸长量均为0.5 ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 ,重力加速度大小取10 / 2。判断开关闭合后金属棒所受安培力的方向,并 求出金属棒的质量。 例5-1 如图所示,一个长方形线框静止放在同一平面内直导线附近,线框可以自由移动, 直导线固定不动。当直导线和线框中分别通以图示方向的恒定电流′和时,则线框的受 力情况和运动情况是()。 A 线框四个边受到安培力的作用 B 线框仅左边和右边受到安培力 C 线框向左运动 D 线框向右运动

高考物理知识点总结:电磁学

高考物理知识点总结:电磁学 1 一、电磁感应1。电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电 动势的那部分导体相当于电源。(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。2。磁通量(1)定义:磁感应强度B 与垂直磁场方向的面积S 的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S 与B 不垂直,应以B 乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁 通量为正、反两面穿入的磁感线的代数和。3。楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般 情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量。②阻碍 什幺———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何 阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。④阻 碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少。(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形 式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的

高中物理20种电磁学仪器

高中物理20种电磁学仪器 1.电视机原理 1.电视机的显像管中,电子束的偏转是用磁偏转技术实现的.电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示.磁场方向垂直于圆面.磁场区的中心为O,半径为r.当不加磁场时,电子束将通过O点而打到屏幕的中心M点.为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少? 解析:如图所示,电子在磁场中沿圆弧ab运动,圆心为O,半径为R,以v表示电子进入磁=场时的速度,m、e分别表示电子的质量和电荷量,则 1 2 eUmv 2 evB 2 mv R 又有tan 2 r R 由以上各式解 得: B 12mv re tan 2 2.电磁流量计 2.电磁流量计广泛应用于测量可导电液体(如污水)在管中的流量(在单位 时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横 截面为长方形的一段管道.其中空部分的长、宽、高分别为图中的a、b、c.流 量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金 属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度B的匀强磁场,磁场方向垂直前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R的电流表的两端连接,I表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为() A. Ic bR Ba B. I b aR Bc

C.IcRa Bb D.IRbc Ba 3.质谱仪 3.如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束轰击,失去 一个电子变成正一价的分子离子。分子离子从狭缝s1 以很小的速度进入电压为U的加速电场区(初速不 计),加速后,再通过狭缝s2、s3射入磁感强度为B 的匀强磁场,方向垂直于磁场区的界面PQ。最后,分 子离子打到感光片上,形成垂直于纸面而且平行于狭 缝s3的细线。若测得细线到狭缝s3的距离为d,试 导出分子离子的质量m的表达式。 解析:以m、q表示离子的质量电量,以v表示离子从狭缝s2 射出时的速度,由功能关系可得 射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得 式中R为圆的半径。感光片上的细黑线到s3缝的距离d=2R 解得 4.磁流体发电 4.磁流体发电是一种新型发电方式,图1和图2是其工作原理示意图。图1中的长方体是发电导管,其中空部分的长、高、宽分别为l、a、b,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻R1相连。整个发电导管处于图2中磁

高中物理电学试题及答案(经典)

高中物理电学试题及答案 一、选择题(25×4=100分) 1、如图,A、B是两个带电量为+Q和-Q的固定的点电荷,现将另一个点电荷+q从A 附近的A附近的a沿直线移到b,则下列说法中正确的是: A、电场力一直做正功 B、电场力一直做负功 C、电场力先做正功再做负功 D、电场力先做负功再做正功 2、在第1题的问题中,关于电势和电势能下列说法中正确的是: A、a点比b点的电势高,电荷+q在该点具有的电势能大 B、a点比b点的电势高,电荷+q在该点具有的电势能小 C、{ D、a点和b点的电势一样高,电荷+q在两点具有的电势能相等 E、a点和b点电势高低的情况与电荷+q的存在与否无关 3、如图所示,两个完全相同的金属小球用绝缘丝线悬挂在同一 位置,当给两个小球带有不同电量的同种电荷,静止时,两 小球悬线与竖直线的夹角情况是: A、两夹角相等 B、电量大的夹角大 C、电量小的夹角大 D、无法判断 4、在第3题的问题中若将两小球互相接触一下再静止时应是: A、夹角都增大,但不一定再相等 B、夹角仍为原值 C、夹角有增大和减小,但两夹角的和不变 D、夹角都增大了相同的值 5、如图所示,这是一个电容器的电路符号,则对于该电容器的正确说法是: A、是一个可变电容器 B、) C、有极性区别,使用时正负极不能接错 D、电容值会随着电压、电量的变化而变化 E、由于极性固定而叫固定电容 6、如图所示的电路,滑动变阻器的电阻为R,其两个固定接 线柱在电压恒为U的电路中,其滑片c位于变阻器的中点, M、N间接负载电阻R f=R/2,,关于R f的电压说法正确的是: A、R f的电压等于U/2 B、R f的电压小于U/2 C、R f的电压大于U/2 D、R f的电压总小于U 7、在第6题的问题中,如果将滑动变阻器b端断开,则关于 R f的电压变化范围说法正确的是: A、U/2-U B、0-U C、U/3-U D、0-U/2 8、如图所示的电路中,当变阻器R的阻值增加时,关于通过电源的电流和路端电压说法正 确的是: A、通过电源的电流I将增大 B、! C、通过电源的电流I将减小 D、路端电压将增大 E、路端电压将减小 9、在第7题的问题中,关于通过R的电流和R两端的电压说法正确的是: A、R两端的电压将增大 B、R两端的电压将减小

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

相关主题
文本预览
相关文档 最新文档