当前位置:文档之家› 复变函数在极点邻域内的罗朗级数的系数公式

复变函数在极点邻域内的罗朗级数的系数公式

复变函数在极点邻域内的罗朗级数的系数公式
复变函数在极点邻域内的罗朗级数的系数公式

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z = X ? iy , X, y 是实数,x = Rez,y=lmz.r=_i. 中的幅角。 3)arg Z与arctan~y之间的关系如下: X y 当X 0, arg Z= arctan 丄; X y y -0,arg Z= arctan 二 ! X y y :: O,arg Z= arctan -二 J X 4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。 5)指数表示:Z = ZeF,其中V - arg z。 (二)复数的运算 1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2i y1- y2 2.乘除法: 1)若z1 = x1 iy1, Z2 =X2 iy2,贝U 狂h[N×2 一y$2 i x2% x1y2 ; 乙_ X1+ i y_ (x1 十 i 和X—i y_ XX y*y y x;。X Z2 X2+ i% (对讪-X )i2y 2+2X222+ 2X22 2)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则 Z1Z2 = ZIll Z2 e i(t1也; 3.乘幕与方根 1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。 2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小 2.复数的表示

2)若 Z = IZ(COSB+isinT)=∣ze i ^,则 (三)复变函数 1?复变函 数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G 的映射 . 2 ?复初等函数 1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。(注意与实函数不同) 3)对数函数: LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数); 主值:In Z = Inz+iargz 。(单值函数) ?1 LnZ 的每一个主值分支In z 在除去原点及负实轴的 Z 平面内处处解析,且 Inz Z 注:负复数也有对数存在。 (与实函数不同) 3)乘幕与幕函数:a — e bLna (a = 0) ; Z b = e bLnZ (Zn 0) 注:在除去原点及负实轴的 Z 平面内处处解析,且 Z S -bz b j 。 Sin z,cos Z 在 Z 平面内解析,且 Sinz = cosz, CoSZ=-Sinz 注:有界性Sin z 兰1, cosz ≤1不再成立;(与实函数不同) Z ■ Z Z ■ Z ,,,, e -e e +e 4) 双曲函数 ShZ ,chz = 2 2 ShZ 奇函数,ChZ 是偶函数。ShZ I ChZ 在Z 平面内解析,且 ShZ =chz, ChZ i - ShZ O (四)解析函数的概念 1 ?复变函数的导数 1)点可导: f r fZ0;fZ 0 2)区域可导:f Z 在区域内点点可导。 2 ?解析函数的概念 1 f 日 +2kπ ..日 +2kπ ) Z n I cos ----------- 十 ISi n -------- I n n (k =0,12…n -1)(有n 个相异的值) 4)三角函数: iz -iz e -e Sin Z = 2i iz JZ . e +e , sin z , ,cos z ,tgz ,ctgz 2 cos z cosz Sin Z

复变函数积分计算

复变函数积分计算方法总结 1、 一般计算方法:()(,)(,)f z u x y iv x y =+沿有向曲线C 的积分: ()C C C f z dz udx vdy i udy vdx =-++? ?? 若有向光滑曲线C 可以表示为参数方程()()() ()z z t x t iy t t αβ==+≤≤,则: ()[()]()C f z dz f z t z t dt β α '=? ? 2、 柯西积分定理:()f z 在简单闭曲线C 上和内部解析,则: ()0C f z dz =? 由闭路变形原理可得重要积分:10 0, 01 2, 0()n C n dz i n z z π+≠?=? =-?? 可以把各种简单闭路变为圆周进行积分。 3、 柯西积分公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式: 00() 2()f z dz if z z z πΓ=-? 高阶导数公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式: () 01 0()2()()! n n f z i dz f z z z n π+Γ=-? 联系:柯西积分公式是高阶导数公式的特殊情况,高阶导数公式是柯西积分公式的推广。 4、 用洛朗级数展开式的-1次项系数计算积分 00101() ()() (r<) 2()n n n n C n f z f z c z z z z R c dz i z z π∞ +=-∞ = --<= -∑?,其中: 其中C 为环域内任意围绕0z 的正向简单闭路。当1n =-时,-1次项的系数为11()2C c f z dz i π-= ? ,因此 1()2C f z dz ic π-=? 5、 用留数计算复积分 函数()f z 在点0z 的留数定义为:01Re [(),]()2C s f z z f z dz i π= ? ,即洛朗级数展开式中-1 次项的系数。 留数定理:函数()f z 在正向简单曲线C 上处处解析,在C 内部除了有限个孤立奇点12, ... n z z z 外解析,则有:

复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2 y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A ) 1566i - (B )1566i -+ (C )1566i -- (D )15 66 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A ) 4 π (B )4i π (C )(1)4i π+ (D )1i + 3.设C 是从0到12 i π+的直线段,则z C ze dz =? [ ] (A )12e π- (B )12e π-- (C )12ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且 ()2i i f z dz i ππ π-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题 1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则2232 (4)?C z z dz z -+=-?10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02 i z i i z i i i e dz e e e ππ ππππ---==-=?

2 2222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππππππππππππππ------??==- ?????--=-=-=+ ?? ? ?? (3) 1 1 0sin (sin cos )sin1cos1. z zdz z z z =-=-? (4) 20 222 cos sin 1sin sin().2 22 i i z z dz z i ππππ= =?=-? 2.计算积分||C z dz z ??的值,其中C 为正向圆周: (1) 220 0||2 2,022224. 2 i i i z C z e e ie d id i θθ ππθθπ θθπ-==≤≤?==? ?积分曲线的方程为 则原积分I=

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f (?k )n k ?1 ?z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设?k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

在实际应用中柯西积分公式的用途正文

柯西积分公式的应用 姓名:武小娜 班级:2014级数学教育 学号:201430626 摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用. 关键词:解析函数;复积分;柯西积分公式. 1 前言 的相关资料,力求把课本上的知识运用到实践中去. 2 预备知识 2.1 柯西积分定理 设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?c dz z f . 2.2 推广的柯西积分定理

设C 是一条周线,D 为C 之内部,函数)(z f 在闭域C D D +=上解析,则 0)(=?c dz z f . 2.3 复周线柯西积分定理 设D 是有复周线---++++=n C C C Λ210C C 所围成的有界1+n 连通区域,函数 )z (f 在D 内解析,在C D D +=上连续,则0)(=?c dz z f . 2.4 柯西积分公式 3.2 高阶导数公式 设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则函数)(z f 在区域D 内有各阶导数,并且有 这是一个用解析函数)(z f 的边界值表示其各阶导函数内部值的积分公式. 现行教材中,仅应用数学归纳法证明了它的特殊形式——高阶导数公式,而数学归纳法比较繁琐.下面首先给出引理,然后利用该结论导出高阶导数公式一

种简单的证明. 引理 设Γ是一条可求长的曲线,)(z f 是Γ上的连续函数,对于每个自然数m 及复平面C 上的每个点Γ?z ,定义函数 那么每个)(z F m 在区域Γ-=C D 上解析,且 证明:首先证明)(z F m 是区域G 上的连续函数,即要证明,对于G 内的任意点a ,不论0>ε多么小,总存在0>δ,只要δ<-a z (z 在G 内的点),就有 2 ,2r r z r r a >≥->≥-ζζ.于是有(2)得 l r Mm a z a F z F m m m 1)2()()(+-<-, 其中l 为曲线Γ的长. 令 l Mm r a z l r Mm a z m m m 1112)2(+++<-?<-εε.

复变函数的积分及其计算方法

复变函数的积分及其计算方法 石睿 (北京林业大学工学院自动化10-1班,学号:101044118) 摘要:复变函数的积分是研究解析函数的一个重要工具,解析函数的很多重要性质都是通过复积分证明的。本文主要介绍柯西定理和柯西积分公式。 关键词:柯西定理;柯西积分公式 引言:首先介绍复积分的概念、性质和计算法,然后介绍解析函数积分的柯西积分定理及其推广——复合闭路定理. 在此基础上,建立柯西积分公式,然后利用这一重要公式证明解析函数的导数仍然是解析函数这一重要结论. 复积分的概念: 设C 是平面上一条光滑的简单曲线,其起点为A ,终点为B 。函数f(z)在C 上有定义。把曲线C 任意分成n 个小弧段。设分点为A=z 0,z 1,…,z n-1,z n =B,其中z k =x k +iyl k (k=0,1,2,…,n),在每个弧段 zk-1zk 上任取一点ζ k =ξ k +i η k ,做合式k n k k n k k k k n Δz )f(ζ)z (z )f(ζ S ∑∑==-?=-?= 1 1 1,其中 k k k k k y i x z z z ?+?=-=?-1 。 记 当λ→0时,如果和式的极限存在,且此极限值不依赖与ζk 的选择,也不依赖对 C 的分法,那么就称此极限值为f(z)沿曲线C 自A 到B 的复积分,记作 复积分的计算方法: 复积分可以通过两个二元实变函数的线积分来计算 设 ???==,)(,)(:t y y t x x C .βα≤≤t 则???'+'+'-'=β α β α t t y t y t x u t x t y t x v i t t y t y t x v t x t y t x u z z f C d )}()](),([)()](),([{d )}()](),([)()](),([{d )( ?'+'+= β αt t y i t x t y t x iv t y t x u d )}()()]}{(),([)](),([{ |,|max 1k n k z ?=≤≤λ.)(lim d )(1 0k n k k C z f z z f ??=∑ ? =→ζλ

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

复变函数总结完整版

第一章 复数 1 2i =-1 1-=i 欧拉公式 z=x+iy 实部Re z 虚部 Im z 2运算 ① 2121Re Re z z z z =?≡ 21Im Im z z = ②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z ++±=±+±=± ③ ()()()() 122121212112212122112 1y x y x i y y x x y y y ix y ix x x iy x iy x z z ++-=-++=++=? ④ ()()()()2 2 222 1212222212122222211222121y x y x x y i y x y y x x iy x iy x iy x iy x z z z z z z +-+++=-+-+== ⑤iy x z -= 共轭复数 ()() 22y x iy x iy x z z +=-+=? 共轭技巧 运算律 P1页 3代数,几何表示 iy x z += z 与平面点()y x ,一一对应,与向量一一对应 辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3… 把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z 4如何寻找arg z 例:z=1-i 4 π - z=i 2π z=1+i 4 π z=-1 π 5 极坐标: θcos r x =, θsin r y = ()θθsin cos i r iy x z +=+= 利用欧拉公式 θθθ sin cos i e i +=

复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作 x=Re(z),y=Im(z)。 arg z=θ?θ?称为主值 -π<θ?≤π, Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点ξk并作和式S n=ξ(z k-z k-1)=ξ?z k记?z k= z k- z k-1, 弧段z k-1 z k的长度=,n),当0时,不论对c的分发即ξk的取法如何,S n有唯一的极限,则称该极限值为函数f(z) 沿曲线C的积分为: =ξ?z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作 (C圆周正方向为逆时针方向) 例题:计算积分 ,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0.

∵f(z)=1 S n=ξ(z k-z k-1)=b-a ∴ =b-a,即 =b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设ξk=z k-1,则 ∑1= ( )(z k-z k-1) 有可设ξk=z k,则 ∑2= ( )(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得: = - vdy + i + udy 再设z(t)=x(t)+iy(t) (≤t≤) = 参数方程书写:z=z0+(z1-z0)t(0≤t≤1);z=z0+re iθ,(0≤θ≤2π) 例题1:积分路线是原点到3+i的直线段 解:参数方程 z=(3+i)t =′ =(3+i)3 =6+i 例题2:沿曲线y=x2计算( )

复变函数积分方法

论求解复变函数积分的方法 摘要: 复变函数中,很多时候都需要我们求解函数的积分。事实上,整本书的知识虽然是涉及到各个方面的,但是,这些方面的学习到最后也是为我们求复变函数的积分做准备的。在整本书的不同章节,我们都有学到求积分的方法,可见,求复变函数的积分的方法是多种的。在这里,我对复变函数的积分计算方法进行了探讨,结合我们课本上介绍的,和我自己在网上看到的一些知识,介绍我们比较常用的几种方法。 关键词:复变函数复积分计算方法积分定理柯西公式 正文: 我们学习复变函数这本书,首先,我们要了解什么是复变函数,复变函数是以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数是复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=?(z)。这个记号表示,?(z)是z通过规则?而确定的复数。如果记z=x+i y,w=u+i v,那么复变函数w=?(z)可分解为w=u(x,y)+i v(x,y);所以一个复变函数w=?(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。 在复变函数的学习中,求解积分是不可避免的一部分。在复变函数中学习积分的时候,我第一反应就是:在高等数学中,我们也有学习过积分方面的相关知识。 在高等数学中,我们有学过求解不定积分与定积分,而学习求解不定积分与定积分又关系到微分和求导,导数的学习与积分的学习密切相关。在高等数学中我们学习了一般的积分、二重积分、三重积分,由此引申出来的曲线积分、曲面积分等各方面的知识。在学习复变函数的时候,我发现有很多知识都与高等数学中积分的知识是相关连的,所以,关于求解复变函数积分的方法中,有部分的知识是有用到高等数学的知识点的。这是我对复变函数积分求解的一点点体会。下面,我就复变函数的两类曲线积分求解的几种方法进行讨论。 第一种,把复变函数积分化为实变量的实函数曲线积分,复变函数中有虚实两部分,把复变函数化成实变量的实函数曲线积分,就可以转化为高等数学的题目,就可以运用高等数学的知识解答。对于求解曲线积分,我们总结起来可以概括出一句话,就是两个方法加一个

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章复变函数 第二章解析函数 u (x, y ) iv (x, y )可导与解析的 概念。 二、柯西——黎曼方程 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 幕函数与根式函数 3、对数函数 1 ,(3)在单值解析分枝上:(In z ) 'k z k iz iz e e cosz 2 iz iz e e sin z 2i 5、反三角函数(了解) 掌握利用C-R 方程 U x V y 掌握复变函数的导数: U y 判别复变函数的可导性与解析性。 V x f '⑵匚U x iV x iU y V y U x iU y iV x n n r (cos i sin ) (cosn i sin n n in r e 单值函数 1 i arg z 2 k n n r e k =o 、 1、2、 …、n-1) n 多值函数 2、 指数函数:w e z e x (cos y i sin y) 性质:(1)单值.(2) 复平面上处处解析, (e z )' (3)以 2 i 为周期 w Lnz lnz i(arg z 2k ) lnz i2k (k=0、土 1、土 2 . ) 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 、复变数和复变函数 U x, y 二、复变函数的极限与连续 iv x, y 极限 lim f (z) z z 0 连续 lim f (z) f (z 0) z z 0 、复变函数w f (z ) 1、 性质:(1 )多值函数,(2) 除原点及负实轴处外解析 4、三角函数: 反正弦函数 w Arc sin z 丄L n(iz 、1 z 2) i

关于复变函数积分求解总结

关于求积分的各种方法的总结 摘要:函数的积分问题是复变函数轮的主要内容,也是其基础部分,因此有必要总结归纳求积分的各种方法.其主要方法有:利用柯西积分定理,柯西积分公式和用留数定理求积分等方法.现将这些方法逐一介绍. 关键词:积分,解析,函数,曲线 1.利用定义求积分 例1、计算积分()dz ix y x c ?+-2,积分路径C 是连接由0到i +1的直线段. 解:()10≤≤=x x y 为从点0到点i +1的直线方程,于是 ()dz ix y x c ?+-2 ()()iy x d ix y x i ++-= ?+10 2 ()()ix x d ix x x ++-= ?1 2 ()dx x i i ?+=1 21 3 1i -- =. 2.利用柯西积分定理求积分 柯西积分定理:设()z f 在单连通区域 D 内解析,C 为D 内任一条周线,则 ()0=?dz z f c . 柯西积分定理的等价形式:设C 是一条周线, D 为C 之内部,()z f 在闭域 C D D +=上解析,则()0=?dz z f c . 例2、求dz i z z c ? +cos ,其中C 为圆周13=+i z , 解:圆周C 为()13=--z z ,被积函数的奇点为i -,在C 的外部, 于是, i z z +cos 在以C 为边界的闭圆13≤+i z 上解析, 故由柯西积分定理的等价形式得dz i z z c ? +cos 0=. 如果D 为多连通区域,有如下定理: 设D 是由复周线---+++=n C C C C C 210所构成的有界多连通区域,()z f 在D 内

复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1)模:22z x y =+; 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

复变函数积分计算方法

()()()0 1 1. lim n k k T k C f z dz f z λ?→==?∑? (定义法) 2. ()d d d d d C C C f z z u x v y v x u y =-++? ??

1.计算函数()Re f z z =沿下列曲线的积分. (2)2C 为从点0z =到点11z =再到点 21z i =+的折线. 解:从点0z =到点11z =的直线段参数方程为z x =(01)x ≤≤,在它上有 ()1,Re z x z x '==,则 1 1 210,10 1 Re 1 22x I z dz x dx ==?= = ??, 从点11z =再到点21z i =+的直线段参数方程为1(01),z yi y =+≤≤在它上有 (),z y i '=Re 1z =,则 1 1 201,10 Re 1 i I z dz i dy iy i +==?==? ?,

于是由复积分对积分路径的可加性可得 2121 Re .2C z dz I I i =+=+? 4.计算()||f z z =沿下列曲线的积分. (1)1C 为从11z =-到21z =的直线段; (2)2C 为从11z =-到21z =的上半圆周; (3)3C 为从11z =-到21z =的下半圆周. 解:(1)直线段1C 的参数方程为 (11),z x x =-≤≤在它上有()1,z x '=||||z x =,则 1101 110 11 || || 1;22C z dz x dx x dx x dx --==-+=+=????(2)上半圆周2C 的参数方程为

复变函数积分复习题答案

3.1计算积分 2C z dz ? ,其中C 是: (1)原点到()2i +的直线段; (2)原点到2再到()2i +的折线; (3)原点到i 再沿水平到()2i +的折线。 解:(1)C 的参数方程为()()22201z t i t ti t =+=+≤≤ ()2dz i dt =+ 于是 ()()()222 1 222113 C i i d z d t i z t +++== ? (2)12C C C =+,1C 参数方程为()02z t t =≤≤, 2C 参数方程为()201z it t =+≤≤ ()()1 2 2 21 2 2 2 2 1 22113 C C C z dz z dz z dz t dt id it i t += +=+=+? ???? (3)12C C C =+,1C 参数方程为()01z it t =≤≤, 2C 参数方程为()02z t i t =+≤≤ ()()()1 2 2 1 2 2 2 22 1 2113 C C C z dz z dz z dz it idt dt t i i += +++==????? 3.2设C 是,i z e θ θ=是从π-到π的一周,计算: (1) ()Re C z dz ? ;(2)()Im C z dz ?;(3)C zdz ? 解:cos sin i z e i θ θθ==+,()sin cos dz i d θθθ=-+ (1)()()Re cos sin cos C z dz i d i π π θθθθπ-=-+=??; (2)()()Im sin sin cos C z dz i d π π θθθθπ-=-+=-? ?; (3) ()()cos sin sin cos 2C zdz i i d i π π θθθθθπ-=--+=? ? 3.3计算积分C z zdz ? ,其中C 是由直线段11,0x y -≤≤=及上半单位圆周组成的正向闭 曲线。 解:12C C C =+,1C 表示为z x iy =+,()11,0x y -≤≤=; 2C 表示为()cos sin 0z x iy i θθ θπ=+=+≤≤,()sin cos dz i d θθθ=-+,

相关主题
文本预览
相关文档 最新文档