当前位置:文档之家› Bridge Design Manual-LRFD(美国公路桥梁设计规范)

Bridge Design Manual-LRFD(美国公路桥梁设计规范)

Bridge Design Manual-LRFD(美国公路桥梁设计规范)
Bridge Design Manual-LRFD(美国公路桥梁设计规范)

Bridge Design Manual - LRFD

Revised May 2009

? 2009 by Texas Department of Transportation

(512) 302-2453 all rights reserved

Manual Notice 2009-1

From:David P. Hohmann, P.E.

Manual:Bridge Design Manual - LRFD

Effective Date:May 01, 2009

Purpose

This manual documents policy on bridge design in Texas. It assists Texas bridge designers in apply-ing provisions documented in the AASHTO LRFD Bridge Design Specifications, to which

designers should adhere unless directed otherwise by this document.

Changes

This manual revises policy on foundation load calculations; revises policy on live load deflection check; revises policy on use of empirical design method for slab design; updates prestressed con-crete design criteria; revises debonding limits for prestressed concrete design; adds requirements for considering corrosion protection measures; clarifies policy on bearing pad design; revises pol-icy on calculating live load distribution factors for double-tee beams; and corrects minor editorial errors.

This manual has been revised to be current with the AASHTO LRFD Bridge Design Specifications, 4th Edition (2007) and 2008 Interim Revisions.

This revision supersedes version 2008-1.

Contact

For more information about any portion of this manual, please contact the Design Section of the Bridge Division.

Archives

Past manual notices are available in a PDF archive.

Table of Contents

Chapter 1 — About this Manual

Section 1 — Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Chapter 2 — Limit States and Loads

Section 1 — Limit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Limit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Section 2 — Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Live Loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Braking Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Vehicular Collision Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Earthquake Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Vessel Collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Chapter 3 — Superstructure Design

Section 1 — Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Section 2 — Concrete Deck Slabs on Stringers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Detailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Section 3 — Concrete Deck Slabs on U Beams (U40 and U54) . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Detailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Section 4 — Concrete Deck Slabs on Slab Beams, Double-Tee Beams, and Box Beams. . . . . . 3-7 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Detailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Section 5 — Prestressed Concrete I Beams and I Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Section 6 — Prestressed Concrete U Beams (Types U40 and U54). . . . . . . . . . . . . . . . . . . . . . 3-16 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 Detailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 Section 7 — Prestressed Concrete Slab Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 Section 8 — Prestressed Concrete Double-Tee Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23 Section 9 — Prestressed Concrete Box Beams (Types B20, B28, B34, and B40). . . . . . . . . . . 3-25 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26 Section 10 — Cast-in-Place Concrete Slab and Girder Spans (Pan Forms). . . . . . . . . . . . . . . . 3-28 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 Section 11 — Cast-in-Place Concrete Slab Spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30 Section 12 — Straight Plate Girders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32 Section 13 — Curved Plate Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34

Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34

Chapter 4 — Substructure Design

Section 1 — Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Section 2 — Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Section 3 — Abutment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Section 4 — Rectangular Reinforced Concrete Bent Caps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Detailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 Section 5 — Inverted Tee Reinforced Concrete Bent Caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Detailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 Section 6 — Columns for Multi-Column Bents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Chapter 5 — Other Designs

Section 1 — Widenings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Design Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Section 2 — Steel-Reinforced Elastomeric Bearings for Prestressed Concrete Beams. . . . . . . . 5-3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Detailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Section 3 — Strut-and-Tie Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

Structural Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Design Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Section 4 — Corrosion Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

Chapter 1

About this Manual

Contents:

Section 1 — Introduction

Section 1

Introduction

Implementation

Load and Resistance Factor Design (LRFD) is a design methodology that makes use of load and resistance factors based on the known variability of applied loads and material properties. In 1994, the American Association of State Highway and Transportation Officials (AASHTO) published the first AASHTO Load and Resistance Factor Bridge Design Specifications. The Federal Highway Administration (FHWA) has mandated the use of LRFD for all bridges for which the Texas Depart-ment of Transportation (TxDOT) initiates preliminary engineering after October 2007.

Purpose

This manual documents policy on bridge design in Texas. It assists Texas bridge designers in

applying provisions documented in the AASHTO LRFD Bridge Design Specifications, 4th edition, which designers should adhere to unless directed otherwise by this document. Recommendations and examples are available on the TxDOT web site at https://www.doczj.com/doc/125087004.html,/business/contractors_ consultants/bridge/default.htm.

Updates

Updates to this manual are summarized in the following table.

Manual Revision History

Version Publication Date Summary of Changes

2005-1July 2005New manual

2005-2September 2005Revision adding information on deck slabs on slab beams, double-

tee beams, and box beams. Also added information on prestressed

slab beams, prestressed concrete double-tee beams, prestressed con-

crete box beams, and cast-in-place concrete slab and girder spans

(pan forms).

2006-1June 2006Revision adding information on cast-in-place concrete spans,

straight plate girders, and curved plate girders.

2006-2July 2006Revision adding information in Chapter 3 on prestressed concrete U

beams (types U40 and U54) and on concrete deck slabs on U beams

(types U40 and U54), and making minor adjustments to references in

the Chapter 3 section on geometric constraints for steel-reinforced

elastomeric bearings and to the Chapter 4 sections on design criteria

for abutments and design criteria for inverted tee reinforced concrete

bent caps.

Organization

The information in this manual is organized as follows: Chapter 1, About this Manual. Introductory information on the purpose and organization of the

manual.

Chapter 2, Limit States and Loads. General information on limit states and on load factors.

Chapter 3, Superstructure Design. Policy on LRFD design of specific bridge superstructure

components.

Chapter 4, Substructure Design. Policy on LRFD design of specific bridge substructure

components.

Chapter 5, Other Designs. Design guidelines for bridge widenings and steel-reinforced elasto-

meric bearings for prestressed concrete beams and strut-and-tie method. This chapter

also addresses corrosion protection measures.2007-1April 2007Revisions to the design criteria for concrete deck slabs on stringers,

cast-in-place concrete slab spans, rectangular reinforced concrete

bent caps and inverted tee reinforced concrete bent caps. Revisions

to the structural analysis of prestressed concrete I beams, U beams,

slab beams and box beams (Types B20, B28, B34 and B40). Revi-

sions to the geometric constraints for abutment and rectangular

reinforced concrete bent caps. Revisions to the design recommenda-

tions for widenings.

2008-1April 2008Revisions to manual to conform with the 4th Edition of the AASHTO

LRFD Bridge Design Specifications . Adds information in Chapter 5

for strut-and-tie design method. Revision to requirements for foun-

dation load calculations. Revision to interface shear transfer

requirements for prestressed beams. Clarifies policy on live load dis-

tribution factors for beam design. Revision to policy on debonding

design. Corrects inverted tee design formulas.

2009-1May 2009

Revisions to the manual to revise policy on

foundation load calculations; revises policy

on live load deflection check; revises policy

on use of empirical design method for slab

design; updates prestressed concrete design

criteria; revises debonding limits for pre-

stressed concrete design; adds requirements

for considering corrosion protection measures;

clarifies policy on bearing pad design;

revises policy on calculating live load dis-

tribution factors for double-tee beams; and

corrects minor editorial errors.Manual Revision History

Version

Publication Date Summary of Changes

Feedback

Direct any questions or comments on the content of the manual to the Director of the Bridge Divi-sion, Texas Department of Transportation.

Chapter 2

Limit States and Loads

Contents:

Section 1 — Limit States

Section 2 — Loads

Limit States

Limit States Classify all bridge designs as typical bridges when applying the operational importance factor, , to strength limit states. Use = 1.0 for all limit states. See AASHTO LRFD Bridge Design Spec-ifications , Article 1.3.5.

Provisions under Extreme Event I need not be considered except for regions near Big Bend.

Provisions under Extreme Event II must be considered only when vehicular collision or vessel col-lision evaluation is required.

For typical multi-column bridges, determine design loads for foundations at Service Limit State I. Foundation loads for single column bents and other non-typical substructures should be determined by Service Limit State I and Service Limit State IV . For Service Limit State IV , include the verti-cal wind pressure as specified in Article 3.8.2. For foundation loads on typical multi-column bents and abutments, use the multiple presence fac-tor, m, per AASHTO LRFD Bridge Design Specifications , Article

3.6.1.1.2. Distribute the live load equally to all supporting foundations, assuming all lanes are loaded.

Follow the procedures described in the TxDOT Geotechnical Manual, which is available on the internet at ftp://https://www.doczj.com/doc/125087004.html,/pub/txdot-info/gsd/manuals/geo.pdf , to determine the size and length of foundations.

Check live load deflection using AASHTO LRFD Bridge Design Speci-fications , Articles 2.5.2.6.2 and 3.6.1.3.2. Ensure that the

calculated deflection does not exceed Span/800 using a live load distribution factor equal to number of lanes divided by number of girders. If the bridge has pedestrian sidewalks, the deflection limit is Span/1000.

ηI ηI

Loads

Live Loads

Use HL93 design live load as described in Article 3.6.1.2 of the AASHTO LRFD Bridge Design Specifications unless design for a special vehicle is specified or warranted.

Design widenings for existing structures using HL93. Rate existing structures using AASHTO Stan-dard Specifications and HS20 loading. Show load rating and design loads on the bridge plan, for example, HS20 (Existing) HL93 (New).

Do not use the reduction in the multiple presence factor (m) based on Average Daily Truck Traffic (ADTT) on the bridge as suggested in the AASHTO LRFD Bridge Design Specifications under commentary on Article 3.6.1.1.2, Multiple Presence of Live Load.

For simple-span bridges, do not apply the provisions for two design trucks as described in Article

3.6.1.3.1 of the AASHTO LRFD Bridge Design Specifications.

Disregard recommendations to investigate negative moment and reactions at interior supports for pairs of the design tandem provided in the commentary provided in the AASHTO LRFD Bridge Design Specifications under Article 3.6.1.3.1, Application of Design Vehicular Live Loads. Braking Force

Take the braking force, BR, as 5% of the design truck plus lane load or 5% of the design tandem plus lane load. See Article 3.6.4 in the AASHTO LRFD Bridge Design Specifications.

Vehicular Collision Force

See Article 3.6.5 in the AASHTO LRFD Bridge Design Specifications. Ongoing TxDOT-sponsored research supports the following policy:

Abutments and retaining walls—Due to the soil behind abutments and retaining walls, the collision force in Article 3.6.5 need not be considered.

Bents—Bents adjacent to roadways with design speeds of 50 mph or less need not meet the require-ments of Article 3.6.5. Bents adjacent to roadways with design speeds greater than 50 mph and located within 30 feet of the edge of roadway (defined as edge of lane nearest the column) must meet at least one of the following requirements:

Protect with an approved barrier. The Bridge Division can provide details of acceptable barriers.

Design for 400-kip load. Use a high collision strut between the columns if necessary

Validate that the structure will not collapse by analyzing the structure considering removal of any single column. Analyze using Extreme Event II Limit State. Use 1.25 load factor for all dead loads and 0.5 load factor for live load. Consider live load only on the permanent travel lanes, not the shoulder lanes.

Special considerations include the following:

Single-column bents—Generally single-column bents have sufficient mass and will meet the requirements of Article 3.6.5. No further analysis is required for columns with a gross cross-

sectional area in excess of 20 sq. ft. and a least dimension of no less than 3 ft.

For structures within 50 ft. of the center line of a railway track, meet the requirements of AREMA or the governing railroad company.

Earthquake Effects

Except for regions near Big Bend that are susceptible to seismic ground motion, disregard provi-sions such as Article 3.10 in the AASHTO LRFD Bridge Design Specifications pertaining to

earthquake loads unless specified otherwise.

Vessel Collision

TxDOT requires that all bridges crossing waterways with documented commercial vessel traffic comply with AASHTO LRFD Bridge Design Specifications, Article 3.14. For widening of existing structures, at least maintain the current strength of the structure relative to possible vessel impact, and increase the resistance of the structure where indicated if possible. Consult the TxDOT Bridge Division for assistance interpreting and applying these design requirements.

Chapter 3

Superstructure Design

Contents:

Section 1 — Overview

Section 2 — Concrete Deck Slabs on Stringers

Section 3 — Concrete Deck Slabs on U Beams (U40 and U54)

Section 4 — Concrete Deck Slabs on Slab Beams, Double-Tee Beams, and Box Beams Section 5 — Prestressed Concrete I Beams and I Girders

Section 6 — Prestressed Concrete U Beams (Types U40 and U54)

Section 7 — Prestressed Concrete Slab Beams

Section 8 — Prestressed Concrete Double-Tee Beams

Section 9 — Prestressed Concrete Box Beams (Types B20, B28, B34, and B40)

Section 10 — Cast-in-Place Concrete Slab and Girder Spans (Pan Forms)

Section 11 — Cast-in-Place Concrete Slab Spans

Section 12 — Straight Plate Girders

Section 13 — Curved Plate Girders

Chapter 3 — Superstructure Design Section 1 — Overview

Section 1

Overview

Introduction

This chapter documents policy on Load and Resistance Factor Design (LRFD) of specific bridge superstructure components.

Section 2

Concrete Deck Slabs on Stringers

Materials

Use Class S concrete (?'c = 4.0 ksi). If the deck will be subjected regularly to deicing chemicals based on district policy, add the following plan note: For Class S concrete in slab, use one of the mix design options 1 through 5 required by Item 421.

Use Grade 60 reinforcing steel. Use uncoated reinforcing steel unless the deck will be subjected regularly to de-icing chemicals based on district policy, in which case use epoxy-coated reinforcing steel.

Waterproof deck slabs with one of the two classes of treatment specified in Item 428, “Concrete Surface Treatment,” of the Texas Standard Specifications.

Geometric Constraints

TxDOT standard deck slabs are 8 in. and 8.5 in. with top clear cover of 2 in. and 2.5 in. respec-tively. Use the 8.5-in deck slab for bridges where regular use of deicing salts is anticipated. Both deck slabs use 1.25-in. bottom clear cover.

Reinforce standard deck slabs as shown in Chapter 5 of the Bridge Detailing Manual, available at http://crossroads/org/gsd/books/det/index.htm.

Design Criteria

With standard deck slabs, use the following beam spacing and overhang width limits:

Maximum clear span (or distance between flange quarter points of steel beams) is 8.667 ft. If permitting use of prestressed concrete panels, ensure clear span is acceptable based on limits

shown on standard drawing PCP.

Typical overhang is 3.0 ft. measured from the center line of the beam to the edge of the slab.

Maximum overhang measured from edge of slab to face of beam top flange (or steel beam flange quarter point) is the lesser of 3.917 ft. or 1.3 times the depth of beam, which prevents

excessive torsion on fascia beams during slab placement. At span ends, reduce the limit from

3.917 ft. to 3.083 ft. to account for reduced wheel load distribution.

Minimum overhang is 0.5 ft. measured from edge of slab to face of beam top flange to allow sufficient room for the slab drip bead.

Do not use the empirical design method specified in Article 9.7.2 of the AASHTO LRFD Bridge Design Specifications . Use the Tradi-tional Design method specified in Article 9.7.3 of the AASHTO LRFD Bridge Design Specifications .

Place main reinforcing steel parallel to the skew up to 15 degree skews. Place reinforcing steel per-pendicular to beams for skews more than 15 degrees, and use corner breaks. Provide at

least #5’s at 6 inches for main reinforcement.

Overhang strength for extreme events, described in Article 9.5.5 of the AASHTO LRFD Bridge Design Specifications , is satisfied through TxDOT’s rail crash testing.

When calculating the cracking moment of a member in accordance with Article 5.7.3.3.2, take the modulus of rupture,

Detailing

In overhangs, use a 3-in. space between outermost Bars D to minimize slab damage from rail impacts. Space Bars T at 9 in. to provide better crack control at construction joints, precast panel ends, and control joints placed at interior bent locations with continuous slab/simple span construction.

The deck slab must be at least 8 inches thick or 8.5 inches thick when deicing chemicals are used.

r

f

Section 3

Concrete Deck Slabs on U Beams (U40 and U54)

Materials

Use Class S concrete (?'c= 4.0 ksi). If the deck will be subjected regularly to deicing chemicals based on district policy, add the following plan note: For Class S concrete in slab, use one of the mix design options 1 through 5 required by Item 421.

Use Grade 60 reinforcing steel. Use uncoated reinforcing steel unless the deck will be subjected regularly to de-icing chemicals based on district policy, in which case use epoxy-coated reinforcing steel.

Waterproof deck slabs with one of the two classes of treatment specified in Item 428, “Concrete Surface Treatment,” of the TxDOT Standard Specifications.

Geometric Constraints

TxDOT standard deck slabs are 8 in. and 8.5 in. with top clear cover of 2 in. and 2.5 in. respec-tively. Use the 8.5-in deck slab for bridges where regular use of deicing salts is anticipated. Both deck slabs use 1.25-in. bottom clear cover.

Reinforce the cast-in-place portion of the slab with #5 bars spaced at 6 in. in the transverse direc-tion and #4 bars spaced at 9 in. in the longitudinal direction

Design Criteria

With standard deck slabs, use the following beam spacing and overhang width limits:

Maximum clear span is 8.583 ft. If permitting use of prestressed concrete panels, ensure clear span is acceptable based on limits shown on standard drawing PCP.

Typical overhang is 6 ft. 9 in. measured from the center line of the bottom of the exterior beam to the edge of the slab.

Maximum overhang is 3.917 ft. measured from slab edge to beam flange edge. At span ends, reduce the 3.917-ft. limit to 3.083 ft. to account for reduced wheel load distribution.

Minimum overhang is 0.5 ft. measured from slab edge to beam top flange edge to allow sufficient room for the slab drip bead.

For overhangs (measured from the centerline of the outside beam to the edge of the slab) in excess of 7 ft. 3 in., check the outside web-to-bottom flange joint of the exterior beam for ade-

quacy under construction loads.

Do not use the empirical design method specified in Article 9.7.2 of the AASHTO LRFD Bridge Design Specifications. Use the Tradi-tional Design method specified in Article 9.7.3 of the AASHTO LRFD Bridge Design Specifications.

Place main reinforcing steel parallel to the skew up to 15 degree skews. Place reinforcing steel per-pendicular to beams for skews more than 15 degrees, and use corner breaks.

Overhang strength for extreme events, described in Article 9.5.5 of the AASHTO LRFD Bridge Design Specifications, is satisfied through TxDOT’s rail crash testing.

Detailing

In overhangs, use a 3-in. space between outermost Bars D to minimize slab damage from rail

impacts. Space Bars T at 9 in. to provide better crack control at construction joints, precast panel ends, and control joints placed at interior bent locations with continuous slab/simple span

construction.

城市道路交通设计规范

中华人民共和国国家标准 城市道路交通规划设计规范 Code for transport planning on urban road GB 50220-95 主编单位:中华人民共和国建设部 批准部门:中华人民共和国建设部 施行日期:1995年9月1日 关于发布国家标准《城市道路交通规划设计规范》的通知 建标[1994]808号 根据国家计委计综(1986)250号文的要求,由建设部会同有关部门共同制订的《城市道路交通规划设计规范》已经有关部门会审,先批准《城市道路交通规划设计规范》GB50220-95为强制性国家标准,自1995年9月1日起施行。 本标准由建设部负责管理,具体解释等工作由上海同济大学负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 1995年1月14日

城市道路交通规划设计规范 第一章总则 第一条为了加强城市道路管理,保障城市道路完好,充分发挥城市道路功能,促进城市经济和社会发展,制定本条例。 第二条本条例所称城市道路,是指城市供车辆、行人通行的,具备一定技术条件的道路、桥梁及其附属设施。 第三条本条例适用于城市道路规划、建设、养护、维修和路政管理。 第四条城市道路管理实行统一规划、配套建设、协调发展和建设、养护、管理并重的原则。 第五条国家鼓励和支持城市道路科学技术研究,推广先进技术,提高城市道路管理的科学技术水平。 第六条国务院建设行政主管部门主管全国城市道路管理工作。省、自治区人民政府城市建设行政主管部门主管本行政区域内的城市道路管理工作。县级以上城市人民政府市政工程行政主管部门主管本行政区域内的城市道路管理工作。 1 总则 1.0.1 为了科学、合理地进行城市道路交通规划设计,优化城市用地布局,提高城市的运转效能,提供安全、高效、经济、舒适和低公害的交通条件,制定本规范。 1.0.2 本规范适用于全国各类城市的城市道路交通规划设计。 1.0.3 城市道路交通规划应以市区内的交通规划为主,处理好市际交通与市内交通的衔接、市域范围内的城镇与中心城市的交通联系。 1.0.4 城市道路交通规划必须以城市总体规划为基础,满足土地使用对交通运输的需求,发挥城市道路交通对土地开发强度的促进和制约作用。 1.0.5 城市道路交通规划应包括城市道路交通发展战略规划和城市道路交通综合网络规划两个组成部分。 1.0.6 城市道路交通发展战略应包括下列内容: 1.0.6.1 确定交通发展目标和水平; 1.0.6.2 确定城市交通方式和交通结构; 1.0.6.3 确定城市道路交通综合网络布局、城市对外交通和市内的客货运设施的选址和用地规模;

公路桥梁抗震设计的设防标准研究

【摘要】本文通过对国内外桥梁的抗震规范进行了细致的比较分析,以及对抗震桥梁的使用功能分类与重要性等因素的研究,提出了公路桥梁的抗震设防的标准,为中国公路桥梁的抗震设计规范的修订及完善提供了重要的依据。 【关键词】公路桥梁;抗震;设防标准 公路桥梁的抗震设防是指在地震作用下能够按照设计要求,实现预期功能的桥梁工程的预防措施。桥梁按照设定的可靠性要求以及抗震技术要求,一般是由设计地震动参数和建筑其使用功能的重要性决定的,这就是桥梁抗震设防的标准。当前,我国的《公路工程抗震设计规范》中,明确提出直接以基本烈度作为设防烈度,而且考虑到结构重要性系数,实际上没有明确的规定公路桥梁的结构抗震设防标准。而抗震设防标准是对结构抗震设防要求高低尺度的衡量,它直接关系到公路桥梁结构的安全度与工程造价的多少,是在抗震设计中不可回避的问题。 1.公路桥梁抗震的三水准设防与二阶段设计 多级抗震设防是被国内外的建筑物抗震规范中广泛运用的手段,其三水准设防设想,是通过二阶段设计实现的。 1.1三水准设防 若桥梁结构其设计的基准期是y,那么公路桥梁“小震不坏,中震可修,大震不倒”的抗震设计目标中,小震、中震、大震则分别约为y年63%、y年10%、y年3%。 在地震的作用下,桥梁的结构性能目标可分为三类,即桥梁构件没有任何损坏,结构保持在弹性范围内;桥梁构件出现可以修复的损坏,修复后可以正常使用;桥梁构件损坏严重,但整个结构其非弹性变形依然受到控制,同结构倒塌的临界变形还有一定的距离,震后能够修复,震时紧急救援车还可以通过。为实现公路桥梁的抗震设计目标,一般可以采用三水准的方法进行抗震设防。设防水准以及相应的性能目标如下表: 1.2二阶段设计 公路桥梁的抗震规范征求意见的稿拟中,所采用的二级设防,二阶段设计是满足“小震不坏,大震不倒”这一目标的,认为“中震可修”是自动满足的。所以,我国当前实际上应用的同公路桥梁抗震规范拟稿中的提议是一致的,即:在公路桥梁的抗震设计中,均采用二级设防,二阶段设计的方法,但是二者的二级设防,二阶段设计的内容是不完全相同的,在实际的应用过程中,为了能够保证结构的抗震安全性,所采取的二级设防、二阶段设计,实际上满足了“中震不坏、大震不倒”的目标,而“小震不坏”这一目标会自动满足。 2.公路桥梁抗震设防的重要性以及使用功能分类 2.1建筑抗震设防重要性的分类 根据建筑对社会、政治、经济以及文化的影响程度,将建筑抗震设防类别的重要性划分为以下几类。甲类:重大建筑工程和地震时可能发生严重次生灾害的建筑,如:大型桥梁,危险品等;抗震设防标准应高于本地区抗震设计基本地震加速度值a的要求,其值应按批准的地震安全性评价结果确定,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求;当a=0.4g时,应该按照a>0.4g的要求。乙类:地震时使用功能不能中断或需尽快恢复的建筑,如:医院,发电厂等;抗震设防标准应符合本地区抗震设计基本地震加速度值a的要求,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求。丙类:一般的建筑,如:一般的民用或工业建筑;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求。丁类:抗震次要建筑,如:一般仓库;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求,设计基本地震加速度值a减半,但最小值不得小于0.05g。 依据建筑物重要性来确定的抗震设防类别,决定了建筑抗震设计所采用的地震带来的损坏的大小以及应该采取的抗震措施的等级,而且地震的作用随着抗震设防类别的差异,可以

公路桥梁设计规范答疑汇编--问题举例

公路桥梁设计规范答疑汇编--问题举例 1、在条文说明中的第3.3.1中的第3款:“应首先考虑与桥涵相连的公路路段的路基宽度,保持桥面净宽与路肩同宽。”主要疑惑是:路肩指的是硬路肩还是土路肩? 2、规范第3.3.2条中规定:“在不通航和无流筏的水库中区域内,梁底面或拱顶底面离开水面的不应小于计算浪高的0.75倍加上0.25m。” 问题如下: (1)以上条款中的0.25m指的是在浪高的0.75倍上加的一个安全值,还是指高于支承垫石顶面高度0.25m?(2)在水库区域内的通航桥的不通航孔,以上条款是否适用? (3)此处的水面是指计算水位还是最高洪水位? (4)最终梁底净空是否需要满足第 3.3.2条中的所有条款?即是否需满足该条最后一段所要求的并同时满足表3.3.2的要求? 3、(1)规范第3.3.6条规定天然气管道不是顺桥过。是所有的天然气管道不得过,还是对直径和压力有限制?在城市桥梁及城市郊区公路桥梁的设计中,此条经常不能满足。 (2)煤气管道是否等同于天然气条文取用?管道与桥梁的交叉如何考虑?高压线的定义是多少电压? 4、(1)规范第3.5.8条中纵坡大于1%的桥梁非常普通,对于空心板等大规模工厂化制作的上部结构,梁底水平如何操作(每根梁的纵坡可能都不同)? (2)规范第3.5.8条中“某一规定坡度”具体数值是多少? 对于纵、横坡较大的空心板桥,如果不能使用球冠支座,梁底只能做垫块,空心板预制比较困难,景观较差,如何处理? 5、规范第3.6.4条规定水泥混凝土桥面铺装面层(不含整平层和垫层)的厚度不宜小于80mm,混凝土强度等级不应低于C40。 条文中,关于“不含整平层和垫层”的含义,如采用沥青混凝土桥面,有两种不同的理解,一是沥青混凝土下的混凝土铺装,只算是“整平层和垫层”,可不按第3.6.4条的厚度及强度要求;二是沥青混凝土下的混凝土铺装,不是整平层和垫层,是桥面铺装(根据条文解释,似这样理解也是符合精神的),应符合第3.6.4条的厚度及强度要求。 6、《公路桥涵设计通用规范》(JTG D60-2004)第3.7.2条“跨越河流或海湾的特大、大、中桥宜设置水尺或标志,较高墩台宜设围栏、扶梯等”。 请问:(1)本条中“较高墩台”中的“较高”二字有没有一个明确的幅度或范围,即“多高”才算“较高”?(2)本条中“较高墩台宜设围栏、扶梯等”中,设置围栏、扶梯的目的是什么?是为了方便桥墩台的养护还是其他目的?

美国公路运输的发展趋势

美国公路运输的发展趋势 美国是世界上高速公路发展最迅速、路网最发达、设施最完善的国家之一, 其高速公路网的建成,提高了运输效率,扩大了资源和商品的流通,促进了社会的发展和科学技术的进步, 并在很大程度上影响了美国人的生活方式 ? 美国是世界上高速公路发展最迅速、路网最发达、设施最完善的国家之一,其高速公路网的建成, 提高了运输效率, 扩大了资源和商品的流通, 促进了社会的发展和科学技术的进步, 并在很大程度上影响了美国人的生活方式。 一、政府重视高速公路的规划与建设 1916年, 美国国会制定了联邦资助公路法案, 全美开始发展公路建设。 1937年,美国在加利福尼亚州建成了第一条长 11.2公里的高速公路。第二次世界大战后期,美国政府认识到国防对公路建设的依赖性, 1944年美国国会又出台了联邦资助道路法案,确立了以联邦和州立法形式予以保障高速公路建设, 规定凡列入国家规划的高速公路建设都能得到联邦政府的资金援助,由此加快了全美高速公路的建设步伐。 20世纪 50年代初到 70年代末, 美国的高速公路建设发展速度很快, 平均每年建成 3000公里。在高速公路建设中, 美国政府很注重公路建设的走向和布局, 既考虑与城市道路网的连接,又注意偏远、荒漠地区的建设发展需要。 20世纪 80年代后期,美国高速公路网已基本形成。目前,全美公路总长度达到 630多万公里,是铁路运营里程的 65倍,其中高速公路总长度已达 88500多公里。现阶段的美国高速公路建设已经可以满足国内交通运输、国防建设及国民经济发展的需要, 今后建设的重点及国民经济发展的需要, 今后建设的重点是完善高速公路与航空、铁路及水运等各种交通运输方式之间的联运, 加强对高速公路的科学管理和维护,提高运力,降低交通事故。 二、城市高速公路发展迅速 美国是一个经济发达的国家,城市人口集中,汽车保有量大,城市高速公路的建设大多数从城市的外环路和辐射路以及城内交通流量大的路段开始, 逐步形成了以高

《城市道路交通规划设计规范》

城市道路交通规划设计规范 1总则 1.0.1为了科学、合理地进行城市道路交通规划设计,优化城市用地布局,提高城市的运转效能,提供安全、高效、经济、舒适和低公害的交通条件,制定本规范。 1.0.2本规范适用于全国各类城市的城市道路交通规划设计。 1.0.3城市道路交通规划应以市区内的交通规划为主,处理好市际交通与市内交通的衔接、市域范围内的城镇城镇与中心城市的交通联系。 1.0.4城市道路交通规划必须以城市总体规划为基础,满足土地使用对规划的需求,发挥城市道路交通对土地开发强度的促进和制约作用。 1.0.5城市道路交通规划应包括城市道路交通发展战略规划和城市道路交通综合网络规划两个组成部分。 1.0.6城市道路交通发展战略规划应包括下列内容: 1.0.6.1确定交通发展目标和水平; 1.0.6.2确定城市交通方式和交通结构; 1.0.6.3确定城市道路交通综合网络布局、城市对外交通和市内的客货运设施的选址和用地规模; 1.0.6.4.提出实施城市道路交通规划过程中的重要技术经济对策; 1.0.6.5提出有关交通发展和交通需求管理政策的建议; 1.7城市道路交通综合网络规划应包括下列内容: 1.0.7.1确定城市公共交通系统、各种交通的衔接方式、大型公共换乘枢纽和公共交通场站设施的分布和用地范围; 1.0.7.2确定各级城市道路红线宽度、横断面形式、主要交叉口的形式和用地范围,以及广场、公共停车场、桥梁、渡口的位置和用地范围; 1.0.7.3平衡各种交通方式的运输能力和运量; 1.0.7.4对网络规划方案作技术经济评估; 1.0.7.5提出分期建设与交通建设项目排序的建议。 1.0.8城市客运交通应按照市场经济的规律,结合城市社会经济发展水平,优先发展公共交通,组成公共交通、个体交通优势互补的多种方式客运网络,减少市民出行时耗。 1.0.9城市货运交通宜向社会化、专业化、集装化的联合运输方式发展。 1.0.10城市道路交通规划设计除应执行本规范的规定外,尚应符合国家现行的有关标准、规范的规定。 2术语 2.1标准货车 以载重量4-5T的汽车为标准车,其他型号的载重汽车,按其车型的大小分别乘以相应的换算系数,折算成标准货车,其换算系数宜按本规范附录A.0.1的规定取值。 2.2乘客平均换算系数 衡量乘客直达程度的指标,其值为乘车出行人次与换算人次之和除以乘车出行人次。

公路桥涵设计通用规范2015

公路桥涵设计通用规范JTGD60-2015 1总则 1.0.1为规范公路桥涵设计,按照安全、耐久、适用、环保、经济和美观的原则,制定本规范。 1.0.2本规范适用于新建和改建各等级公路桥涵的设计。 1.0.3公路桥涵结构的设计基准期为100年。 1.0.4公路桥涵主体结构和可更换部件的设计使用年限不应低于表1.0.4的规定。 1.0.5特大、大、中、小桥及涵洞按单孔跨径或多孔跨径总长分类规定见表1.0.5。 注:1.单孔跨径系指标准跨径。

2.梁式桥、板式桥的多孔跨径总长为多孔标准跨径的总长;拱式桥为两端桥台内起拱线间的距离;其他形式桥梁为桥面系行车道长度。 3.管涵及箱涵不论管径或跨径大小、孔数多少,均称为涵洞。 4.标准跨径:梁式桥、板式桥以两桥墩中线间距离或桥墩中线与台背前缘间距为准;拱式桥和涵洞以净跨径为准。 1.0.6公路桥涵应进行抗风、抗震、抗撞等减灾防灾设计。 1.0.7公路桥涵设计应满足环境保护和资源节约的有关要求。 1.0.8公路桥涵设计除应符合本规范的规定外,尚应符合国家和行业现行有关标准的规定。 2术语和符号 2.1术语 2.1.1设计基准期designreferenceperiod为确定可变作用等的取值而选用的时间参数。 2.1.2设计使用年限designworking/servicelife在正常设计、正常施工、正常使用和正常养护条件下,桥涵结构或结构构件不需进行大修或更换,即可按其预定目的使用的年限。 2.1.3极限状态limitstates整个结构或结构的一部分超过某—特定状态就不能满足设计规定的某一功能要求,此特定状态为该功能的极限状态。 2.1.4承载能力极限状态ultimatelimitstates对应于结构或结构构件达到最大承载力或不适于继续承载的变形的状态。

公路桥梁设计规范答疑汇编--问题举例

公路桥梁设计规范答疑汇编-- 问题举例 1、在条文说明中的第3.3.1 中的第3 款:“应首先考虑与桥涵相连的公路路段的路基宽度,保持桥面净宽与路肩同宽。”主要疑惑是:路肩指的是硬路肩还是土路肩? 2、规范第3.3.2 条中规定:“在不通航和无流筏的水库中区域内,梁底面或拱顶底面离开水面的不应小于计算浪高的0.75 倍加上0.25m。” 问题如下: (1)以上条款中的0.25m 指的是在浪高的0.75 倍上加的一个安全值,还是指高于支承垫石顶面高度0.25m?(2)在水库区域内的通航桥的不通航孔,以上条款是否适用? (3)此处的水面是指计算水位还是最高洪水位? (4)最终梁底净空是否需要满足第 3.3.2 条中的所有条款?即是否需满足该条最后一段所要求的并同时满足表 3.3.2 的要求? 3、(1)规范第3.3.6 条规定天然气管道不是顺桥过。是所有的天然气管道不得过,还是对直径和压力有限制?在城市桥梁及城市郊区公路桥梁的设计中,此条经常不能满足。 (2)煤气管道是否等同于天然气条文取用?管道与桥梁的交叉如何考虑?高压线的定义是多少电压? 4、(1)规范第3.5.8 条中纵坡大于1%的桥梁非常普通,对于空心板等大规模工厂化制作的上部结构,梁底水平如何操作(每根梁的纵坡可能都不同)? (2)规范第3.5.8 条中“某一规定坡度”具体数值是多少?对于纵、横坡较大的空心板桥,如果不能使用球冠支座,梁底只能做垫块,空心板预制比较困难,景观较差,如何处理? 5、规范第3.6.4 条规定水泥混凝土桥面铺装面层(不含整平层和垫层)的厚度不宜小于80mm,混凝土强度等级不应低于C40 。 条文中,关于“不含整平层和垫层”的含义,如采用沥青混凝土桥面,有两种不同的理解,一是沥青混凝土下的混凝土铺装,只算是“整平层和垫层” ,可不按第3.6.4 条的厚度及强度要求;二是沥青混凝土下的混凝土铺装,不是整平层和垫层,是桥面铺装(根据条文解释,似这样理解也是符合精神的),应符合第3.6.4 条的厚度及强度要求。 6、《公路桥涵设计通用规范》(JTG D60-2004 )第3.7.2条“跨越河流或海湾的特大、大、中桥宜设置水尺或标志,较高墩台宜设围栏、扶梯等” 。 请问:(1)本条中“较高墩台”中的“较高”二字有没有一个明确的幅度或范围,即“多高”才算“较高”? (2)本条中“较高墩台宜设围栏、扶梯等”中,设置围栏、扶梯的目的是什么?是为了方便桥墩台的养护还是 其他目的? 7、规范第4.1.4 条:“作用的设计值规定为作用的标准值乘以相应的作用分项系数”。相应的分项系数在规范中没

《重庆市城市道路交通规划及路线设计规范》(送审稿)

基本符号 一、交通 ADT:年平均日交通量 DHV:设计小时交通量 K:DHV与ADT之比值 D:交通量方向分配 N基本:一条机动车道理论通过能力 N可能:一条机动车道考虑各种修正系数后通过能力 N设计:多车道考虑影响和道路分类后,设计建议通过能力取值 r1:通行能力车道宽度修正系数 r2:通行能力平交口间距修正系数 r3:通行能力平曲线修正系数 r4:通行能力道路纵坡修正系数 r5:通行能力沿途条件修正系数 l1:交叉口间距 λ1:交叉口有效通行时间 v/c:理想条件下,最大服务交通量与基本通行能力之比值 二、建筑限界 Wc:机动车车行道宽度或机动车与非机动车混合行驶车行道宽度(m)Wmc:机动车路缘带宽度(m) Wa:路侧带宽度(m) Wb:非机动车车行道宽度(m) Wbm:非机动车路缘带宽度(m) Wp——人行道宽度(m) Wg——绿化带宽度(m) Wf——设施带宽度(m) Wl——侧向净宽(m) Wsc——机动车行安全带宽度(m) Wdm——中间分隔带宽度(m) Wsm——中间分车带宽度(m) e——建筑限界顶角宽度e=w1 j——隧道内检修道宽度(m)最小值0.75m r——隧道内人行道宽度(m)最小值1.0m hc:机动车车行道最小净高(m) hb:非机动车车行道最小净高(m) hp:行人最小净高(m) Wr:道路红线宽度(m) Ws:路肩宽度(m)

Wsh:硬路肩宽度(m) Wsp:保护性路肩宽度 i(%):路拱设计坡度 三、平面与纵断面设计 V:设计车速 i:道路中心线纵坡度(%) r:道路中心线转角(O) S:停车视距、会车视距或道路侧向视距 R:机动车道中线圆曲线半径 Lc:超高缓和段长度(m) b:超高施转轴至路面边缘的宽度 ε——超高渐变率 △i——超高横坡度与路拱坡度的代数差 μ——横向力系数 △W:车道曲线加宽值 Wc:平曲线段车道宽 Wn:直线段车道宽 N:车道数 Uc:弯道上车体几何宽 Cc:弯道车侧净距 ic:弯道富裕量 iH:合成纵坡 ih:横向超高坡度或路面横坡 iz:纵向坡度 四、平、立交设计 S1、S2、S3:导游岛端部偏移距 Q1、Q2:导流岛内移距 R0、R1、R2:导流岛端部半径 Wa、Wb、Wc:导流岛宽度 La、Lb、Lc:导流岛长度 Vd:转向弯道设计车速 Lw:交织长度 re:进口道缘石半径 reg:出口道缘石半径 A:回旋线参数 Ls:回旋线长度 NC:分流前或合流后主线车道数 NF:分流后或合流前主线车道数 NE:匝道车道数

城市轨道交通桥梁设计常用规范(截止2015年12月31日)

序号规范名称有效版本1《地铁设计规范》GB50157-2013 2《城市轨道交通工程设计文件编制深度规定》建质2013-160号3《城市轨道交通技术规范》GB50490-2009 4《城市轨道交通工程项目建设标准》建标104-2008 5《城际铁路设计规范》TB10623-2014 6《高速铁路设计规范》TB10621-2014 7《跨座式单轨交通设计规范》GB50458-2008 8《内河通航标准》GB50139-2014 9《混凝土结构设计规范》(2015版)GB50010-2010 10《铁路混凝土结构耐久性设计规范》TB10005-2010 11《铁路混凝土工程预防碱-骨料反应技术条件》TB/T3054-2002 12《铁路桥涵设计基本规范》TB10002.1-2005 13《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005 14《铁路桥涵混凝土和砌体结构设计规范》TB10002.4-2005 15《铁路桥涵地基和基础设计规范》(2009版)TB10002.5-2005 16《铁路工程抗震设计规范》GB50111-2006 17《城市轨道交通结构抗震设计规范》GB50909-2014 18《混凝土结构加固设计规范 》GB50367-2013 19《混凝土结构后锚固技术规程》JGJ145-2013 20《铁路桥梁钢结构设计规范 》TB10002.2-2005 21《铁路结合梁设计规定》TBJ 24-89 22《钢-混凝土组合桥梁设计规范》GB50917-2013 23《公路钢混组合桥梁设计与施工规范》JTG/T D64-01-2015 24《公路钢结构桥梁设计规范》JTG D64-2015 25《钢结构设计规范》GB50017-2003 26《新建时速200公里客货共线铁路设计暂行规定》铁建设2005-285号27《铁路工程设计防火规范》TB10063-2007 28《铁路工程地质勘察规范》TB10012-2007 29《城市轨道交通岩土工程勘察规范》GB50307-2012 30《市政工程勘查规范》CJJ56-2012 31《城市地下管线探测技术规程》CJJ61-2003 32《铁路工程基桩检测技术规程》TB10218-2008 33《建筑基桩检测技术规范》JGJ106-2014 34《铁路桥涵工程施工安全技术规程》TB10303-2009 35《铁路桥梁盆式橡胶支座》TB/T2331-2013 36《铁路桥梁球形支座》TB/T3320-2013 37《桥梁球型支座》GB/T17955-2009 38《城市轨道交通桥梁盆式支座》CJ/T464-2014 39《城市轨道交通桥梁球型钢支座》CJ/T482-2015 40《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB1499.1-2008 41《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB1499.2-2007 42《钢筋混凝土用钢筋焊接网》GB/T1499.3-2010 43《预应力混凝土用螺纹钢筋》GB/T20065-2006 44《预应力混凝土用钢绞线》GB/T5224-2014 45《预应力混凝土桥梁用塑料波纹管》JT/T529-2004 46《预应力混凝土用金属波纹管》JG225-2007 47《预应力筋用锚具、夹具和联结器》GB/T14370-2007 48《铁路工程预应力筋用夹片式锚具、夹具和连接器技术条件》TB/T3193-2008 49《碳素结构钢》GB/T700-2006 50《桥梁用结构钢》GB/T714-2015 51《低合金高强度结构钢》GB/T1591-2008 52《电弧螺柱焊用圆柱头焊钉》GB/T10433-2002 53《钢结构焊接规范》GB50661-2011 54《钢结构高强度螺栓连接技术规程》JGJ82-2011 55《铁路钢桥高强度螺栓连接施工规定》TBJ214-92 56《金属熔化焊焊接接头射线照相》GB/T3323-2005 57《无损检测 焊缝磁粉检测》JB/T6061-2007铁路桥涵规范的修订内容见铁道部、铁总相关文件 (一)设计规范 (截止2015年12月31日) 拉索、缆索、冷铸 镦头锚、索鞍、索 夹等材料规范不在 此列表中

高速公路互通立交景观设计规范标准

高速公路互通立交景观设计规 一、国法规 鉴于互通立交桥在高速公路建设中的特殊重要地位,各国十分重视高速公路互通立交桥的景观设计。我国国家交通部1998年关于发布《公路环境保护设计规》(JTJ/T006--98),下面摘录关于互通立交桥景观设计的几条规定: 条文6.2.2.1公路上的桥梁、互通式立交、隧道和服务区、管理设施等作为一个景点,设计时应使构造物本身各部位比例协调。 条文6.2.2.2各景点设计路段应充分结合工程和自然景观,宜具有一定风格,且与地域景观协调一致。各景观设计路段之间的过渡应自然。 条文6.3.4.4互通式立交区及服务区围,有条件时宜作景观绿化设计。 二、设计手法 公路互通立交桥景观环境要素包罗万象,但我们不应将精力集中在耗费大量人力、物力、财力的人造景观上,而应重点体现对原有的建筑景观资源的保护、利用和开发,以及公路主体与原有自然及社会环境的相融--“不破坏就是最大的保护”。 从互通立交桥景观设计入手,例如通过植物高低的变化引导视线,构造景观的节奏感;从互通立交桥线形入手,优化平纵组合、改善线形,使其流畅连续,确保车辆快速安全通过,提供舒适的行车条件,营造出“车在路上走、人在画中游”的优美的公路交通环境; 从互通立交桥结构入手,要求边坡以曲线柔美自然流畅的曲面为主,挡墙由高至低或由低至高渐变且与路线线形吻合为主要造型,边沟以隐蔽、宽浅或远离路基为首选。 互通立交桥周围的山岭、坡地、河流,构成美丽的风景,千变万化的植被体现出一种自然美。互通立交桥作为一种构造物,既要满足车辆通行的基本要求,又要达到自然景观与再造景观的和谐统一。 互通立交桥匝道大量曲线的设置,使公路线形能更好地适应地形,增加了互通立交桥的曲线美,给人以幽静和耐人寻味的感觉。曲线丰富的变化和节奏感,驾驶员行驶在上面,眼睛左右移动,不断扫视整个视域,并把视线引向远方,避免了驾驶员遇到紧急情况而手慌脚乱。

美国交通拥堵评价指标体系

交通工程小课堂 2012年第19期 顾 问:杨晓光 汪 涛 特约编辑:敖翔龙 王晓逸 道路负荷度采用的是高峰时段道路交通实际流量(Volume )与道路承载能力(Capacity)的比值(V/C)。 道路负荷度达到或者超过E 级水平(≥0.86)的路段被定义为拥堵路段。 (2)拥堵持续时间 拥堵持续时间反映的是交通拥堵时间影响整个出行时间的强度。基于道路负荷度计算,以15分钟为间隔,统计E 级(V/C≥0.86)交通拥堵路段的拥堵时长。这可以用于判断特定路段交通拥堵时间延长、减少或者无变化。 (3)交通事故率 交通事故会在一定程度上降低道路的通行能力。据调查,在中型城市,由交通事故造成的拥堵高达60%。在某些特定区域,交通事故率会成为最重要的交通拥堵因素。 通过测算各等级道路三年的实际交通事故率,与MPO (大都市交通规划机构)定义的各等级道路平均事故率相比较, 误时长和立体交叉口饱和度。交叉口信号灯控制延误时长在55-88秒之间,被定义为E 级以上拥堵水平。立体交叉口饱和度越高,拥堵发生率越大。 2 美国特大城市交通畅通性数据报告摘选 由德克萨斯交通运输研究院提供的《2010年城市畅通性报告》,更加准确地描述了美国439个城市的交通拥堵状况。 2009年,全美交通拥堵成本持续上升,达到1150亿美元,是1982年240亿美元的四倍多,总的燃油浪费量达到147.6亿升,相当于阿拉斯加石油管道130天的输送量。自从1984年 城市畅通性报告发布以来,计算拥堵的方法经历了多次改进,《2010年城市畅通性报告》有显著改善,加入了通勤机动车 延误、非高峰时段出行延误和通勤压力指数等新的评价手段。现摘录部分报告数据和评价指标以供参阅。 统计项目(2009年) 系统评价(2009年)

《城市道路交通规划设计规范》.doc

关于发布国家标准《城市道路交通规划设计规范》的通知 建标[1994]808号 根据国家计委计综(1986)250号文的要求,由建设部会同有关部门共同制订的《城市道路交通规划设计规范》已经有关部门会审,现批准《城市道路交通规划设计规范》GB50220—95为强制性国家标准,自一九九五年九月一日起施行。 本标准由建设部负责管理,具体解释等工作由上海同济大学负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九五年一月十四日 1总则 1.0.1为了科学、合理地进行城市道路交通规划设计,优化城市用地布局,提高城市的运转效能,提供安全、高效、经济、舒适和低公害的交通条件,制定本规范。 1.0.2本规范适用于全国各类城市的城市道路交通规划设计。 1.0.3城市道路交通规划应以市区内的交通规划为主,处理好市际交通与市内交通的衔接、市域范围内的城镇与中心城市的交通联系。 1.0.4城市道路交通规划必须以城市总体规划为基础,满足土地使用对交通运输的需求,发挥城市道路交通对土地开发强度的促进和制约作用。 1.0.5城市道路交通规划应包括城市道路交通发展战略规划和城市道路交通综合网络规划两个组成部分。 1.0.6城市道路交通发展战略规划应包括下列内容: 1.0.6.1确定交通发展目标和水平;

1.0.6.2确定城市交通方式和交通结构; 1.0.6.3确定城市道路交通综合网络布局、城市对外交通和市内的客货运设施的选址和用地规模; 1.0.6.4提出实施城市道路交通规划过程中的重要技术经济对策; 1.0.6.5提出有关交通发展政策和交通需求管理政策的建议。 1.0.7城市道路交通综合网络规划应包括下列内容: 1.0.7.1确定城市公共交通系统、各种交通的衔接方式、大型公共换乘枢纽和公共交通场站设施的分布和用地范围; 1.0.7.2确定各级城市道路红线宽度、横断面形式、主要交叉口的形式和用地范围,以及广场、公共停车场、桥梁、渡口的位置和用地范围; 1.0.7.3平衡各种交通方式的运输能力和运量; 1.0.7.4对网络规划方案作技术经济评估; 1.0.7.5提出分期建设与交通建设项目排序的建议。 1.0.8城市客运交通应按照市场经济的规律,结合城市社会经济发展水平,优先发展公共交通,组成公共交通、个体交通优势互补的多种方式客运网络,减少市民出行时耗。 1.0.9城市货运交通宜向社会化、专业化、集装化的联合运输方式发展。 1.0.10城市道路交通规划设计除应执行本规范的规定外,尚应符合国家现行的有关标准、规范的规定。 1总则 1.0.1为了科学、合理地进行城市道路交通规划设计,优化城市用地布局,提高城市的运转效能,提供安全、高效、经济、舒适和低公害的交通条件,制定本规范。 1.0.2本规范适用于全国各类城市的城市道路交通规划设计。

公路桥涵设计通用规范-JTG-D60-2004

1总则 1.0.1为使公路桥涵的设计符合技术先进、安全可靠、耐久适用、经济合理的要求,制定本规范。 1.0.2本规范适用于公路桥涵的一般钢筋混凝土及预应力混凝土结构构件的设计,不适用于轻骨料混凝土及其他特种混凝土桥涵结构构件的设计。 1.0.3本规范按照国家标准《公路工程结构可靠度设计统一标准》 GB/T50283规定的设计原则编制。基本术语、符号按照国家标准《工程结构设计基本术语和通用符号》GBJ 132和国家标准《道路工程术语标准》GBJ 124的规定采用。 1.0.4本规范采用以概率理论为基础的极限状态设计方法,按分项系数的设计表达式进行设计。 本规范采用的设计基准期为100年。 1.0.5公路桥涵应进行以下两类极限状态设计: 1承载能力极限状态:对应于桥涵及其构件达到最大承载能力或出现不适于继续承载的变形或变位的状态; 2正常使用极限状态:对应于桥涵及其构件达到正常使用或耐久性的某项限值的状态。 1.0.6公路桥涵应考虑以下三种设计状况及其相应的极限状态设计: 1持久状况:桥涵建成后承受自重、车辆荷载等持续时间很长的状况。该状况桥涵应作承载能力极限状态和正常使用极限状态设计; 2短暂状况:桥涵施工过程中承受临时性作用(或荷载)的状况。该状况桥涵应作承载能力极限状态设计,必要时才作正常使用极限状态设计; 3偶然状况:在桥涵使用过程中偶然出现的如罕遇地震的状况。该状况桥涵仅作承载能力极限状态设计。

1.0.7公路桥涵应根据其所处环境条件进行耐久性设计。结构混凝土耐久性的基本要求应符合表1.0.7的规定。 表1.0.7结构混凝土耐久性的基本要求 环境 类别环境条件最大 水灰比最小水泥用量 最低混凝土强度等级最大氯离子含量(%)最大碱含量 Ⅰ温暖或寒冷地区的大气环境;与无侵蚀性的水或土接触的环境0.55 275C25 0.30 3.0Ⅱ严寒地区的大气环境、使用除冰盐环境;滨海环境0.50 300C30 0.15 3.0Ⅲ海水环境0.45 300C35 0.10 3.0 Ⅳ受侵蚀性物质影响的环境0.40 325C35 0.10 3.0 注:1有关现行规范对海水环境结构混凝土中最大水灰比和最小水泥用量有更详细规定时,可参照执行; 2表中氯离子含量系指其与水泥用量的百分率; 3当有实际工程经验时,处于Ⅰ类环境中结构混凝土的最低强度等级可比表中降低一个等级; 4预应力混凝土构件中的最大氯离子含量为0.06%,最小水泥用量为 350kg/m3,最低混凝土强度等级为C40或按表中规定Ⅰ类环境提高三个等级,其他环境类别提高二个等级;5特大桥和大桥混凝土中的最大碱含量宜降至 1.8kg/m3,当处于Ⅲ类、Ⅳ类或使用除冰盐和滨海环境时,宜使用非碱活性骨料。特大桥、大桥的含义见本规范表5.1.2注说明。 1.0.8位处Ⅲ类或Ⅳ类环境的桥梁,当耐久性确实需要时,其主要受拉钢筋宜采用环氧树脂涂层钢筋;预应力钢筋、锚具及连接器应采取专门防护措施。 1.0.9水位变动区有抗冻要求的结构混凝土,其抗冻等级不应低于表1.0.9的规定。

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读 近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。 二、《规范》的定位 《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。 三、特点及主要修订内容 《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。 《规范》主要吸收了近年来国内外在桥梁抗震概念设计、延性抗震设计、减隔震设计以及构造措施等方面的成熟研究成果,修订和完善了相关设计规定和计算方法,增强了《规范》体系的完整性以及设计和计算方法的适用性和可操作性。 具体来讲,《规范》的主要修订内容包括: (一)在基本要求方面:增加了桥梁结构抗震体系的内容,明确了B类和C类梁桥可采用的抗震体系包括延性抗震体系和减隔震体系两类。细化了抗震概念设计的内容,增加了梁式桥一联内桥墩的刚度比要求和多联梁式桥相邻联的基本周期比要求。

公路桥梁扩建设计规范

公路桥梁扩建设计规范 一、概述 近年来,随着我国公路交通运输的发展,早期修建的高速公路通行能力日趋饱和,部分四车道的高速公路已不能满足交通量的增长需求,因此对其进行改扩建,由四车道加宽为六车道或八车道,提高其通行能力已成为当务之急。桥梁在现代高速公路中占有较大比重,加上桥梁加宽存在技术复杂、实施难度高、对现状交通影响大的特点,因此桥梁加宽设计成为高速公路改扩建工程的重点。本文重点探讨高速公路桥梁改扩建设计中的若干问题,分析了桥梁拼接加宽设计的几种主要方式和连接部构造处理,为类似工程提供参考。 二、桥梁改扩建的设计原则 根据现有道路构造物的特点、改扩建的整体要求及桥涵结构物加宽加固的特殊性,重点提出以下设计原则: 1.首先收集旧桥的设计、竣工资料和地质资料,对全线原有桥梁构造物进行归类分析和现场调查,进行必要的研究、论证,以选择合理可行的建设方案。 2.桥涵构造物的改扩建,本着“安全、适用、经济、美观和有利环保”的原则,因地制宜,尽量利用原有构造物,灵活运用新、旧桥梁设计规范。桥梁的拼接加宽宜采用与原桥同跨径、同结构型式,力求标准化、装配化、外观一致性。 3.对现有老桥逐一进行检测、验算、分析归类,合理确定加固利用方案,提高其承载能力。 4.在确定桥涵构造物加宽加固方案的过程中,应充分注重结构的耐久性和可靠性要求,同时考虑施工的可实施性和方便性,降低后期养护成本。 5.在研究桥梁改、扩建方案时,应将拟实施的技术方案与施工期的交通组织统筹考虑,做到技术方案与交通组织方案的协调统一,努力实现“施工过程不中断交通”的目标,将施工期对现有交通的影响程度降到最低。 6.桥梁、涵、通的改、扩建应充分考虑沿线群众对通行的净空要求,了解沿线城镇发展和交通规划情况,做好沟通协调工作,促进社会、经济的和谐发展。通过顶升、下挖、拆除重建等方式,适当提高净空标准,方便群众生活和促进地方经济发展,努力提高人民群众的满意度,降低改扩建的实施难度。 7.部分路段沿线城镇化水平较高,从减少拆迁占地、降低工程造价和可持续发展理念出发,充分做好桥梁改扩建方案的比选论证,注重提升土地和城市空间利用率。 8.强调桥梁的美学和环保要求:老桥的加宽应考虑与原桥的外观一致性;跨线桥和分离式立交在拆除重建的过程中,应注意桥梁结构型式与周围景观的协调性;距居民区较近的

道路交通规划设计规范

城市道路交通规划设计规范 2004-5-9 关于发布国家标准《城市道路交通规划设计规范》的通知 建标[1994]808号 根据国家计委计综(1986)250号文的要求,由建设部会同有关部门共同制订的《城市道路交通规划设计规范》已经有关部门会审,现批准《城市道路交通规划设计规范》GB50220—95为强制性国家标准,自一九九五年九月一日起施行。 本标准由建设部负责管理,具体解释等工作由上海同济大学负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九五年一月十四日 1总则 1.0.1为了科学、合理地进行城市道路交通规划设计,优化城市用地布局,提高城市的运转效能,提供安全、高效、经济、舒适和低公害的交通条件,制定本规范。 1.0.2本规范适用于全国各类城市的城市道路交通规划设计。 1.0.3城市道路交通规划应以市区内的交通规划为主,处理好市际交通与市内交通的衔接、市域范围内的城镇与中心城市的交通联系。 1.0.4城市道路交通规划必须以城市总体规划为基础,满足土地使用对交通运输的需求,发挥城市道路交通对土地开发强度的促进和制约作用。

通综合网络规划两个组成部分。 1.0.6城市道路交通发展战略规划应包括下列内容: 1.0.6.1确定交通发展目标和水平; 1.0.6.2确定城市交通方式和交通结构; 1.0.6.3确定城市道路交通综合网络布局、城市对外交通和市内的客货运设施的选址和用地规模; 1.0.6.4提出实施城市道路交通规划过程中的重要技术经济对策; 1.0.6.5提出有关交通发展政策和交通需求管理政策的建议。1.0.7城市道路交通综合网络规划应包括下列内容: 1.0.7.1确定城市公共交通系统、各种交通的衔接方式、大型公共换乘枢纽和公共交通场站设施的分布和用地范围; 1.0.7.2确定各级城市道路红线宽度、横断面形式、主要交叉口的形式和用地范围,以及广场、公共停车场、桥梁、渡口的位置和用地范围; 1.0.7.3平衡各种交通方式的运输能力和运量; 1.0.7.4对网络规划方案作技术经济评估; 1.0.7.5提出分期建设与交通建设项目排序的建议。 1.0.8城市客运交通应按照市场经济的规律,结合城市社会经济发展水平,优先发展公共交通,组成公共交通、个体交通优势互补的多种方式客运网络,减少市民出行时耗。 1.0.9城市货运交通宜向社会化、专业化、集装化的联合运输方式发展。 1.0.10城市道路交通规划设计除应执行本规范的规定外,尚应符合国家现行的有关标准、规范的规定。 1总则

道路桥梁设计通用规范要求

道路桥梁设计通用规范要求 在计算支点截面和跨中截面弯矩时,其计算跨径取梁肋之间的距离。 由于板厚与肋高之比小于1/4,支点弯矩取-0.7M,跨中弯矩取0.5M(当大于1/4,支点弯矩取-0.7M,跨中弯矩取0.7M)M为简支梁求得的跨中弯矩。 可变荷载不同时组合表:汽车制动力,流水压力,冰压力,支座摩阻力;多个偶然作用不同时参与组合。 永久作用效应的分项系数表;汽车荷载效应(含汽车冲击力、离心力)的分项系数,取1.4;当某个可变作用在效应组合中其值超过汽车荷载的分项系数应采用汽车荷载的分项系数,对专为承受某作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载,其分项系数取与汽车荷载同值。在作用组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载外的其他的可变作用效应的分项系数,取1.4,但风荷载的分项系数取1.1;在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他可变作用效应的组合系数,当永久作用与汽车荷载和人群荷载(或其他一种可变作用)组合时,人群荷载(或其他一种可变作用)的组合系数取0.80;当除汽车荷载(含汽车冲击力、离心力)外尚有两种其他可变作用参与组合时,其组合系数取0.70;当除汽车荷载(含汽车冲击力、离心力)外尚有三种其他可变作用参与组合时,其组合系数取0.60;尚有四种及多于四种的可变作用参与组合时,取0.50。

设计弯桥时,当离心力与制动力同时参与组合时,制动力标准值或设计值按70%取用。 偶然组合:永久作用标准值效应应与可变作用某种代表值效应、一种偶然作用标准值效应相结合。偶然作用的效应分项系数取1.0;与偶然作用同时出现的可变作用,可根据观测资料和工程经验取用适当的代表值。地震作用标准值及其代表式按现行《公路工程抗震设计规范》规定采用。 公路桥涵结构按正常使用极限状态设计时,短期、长期效应组合。 结构构件当需进行弹性阶段截面应力计算时,除特别指明外,各作用效应的分项系数及组合系数应取为1.0;各项应力限值应按设计规范规定采用。 构件在吊装、运输时构件重力乘以动力系数; 永久作用常用材料的重力密度 预加力在结构进行正常使用极限状态设计和使用阶段构件应力计算时,应作为永久作用计算其主效应和次效应,并应计入相应阶段的预应力损失,但不计入预加力偏心距增大引起的附加效应。在结构进行承载力极限状态设计时,预加力不作为作用,而将预应力钢筋作为结构抗力的一部分,但在连续梁等超静定结构中,仍需考虑预加力引起的次效应。

相关主题
文本预览
相关文档 最新文档