当前位置:文档之家› 数据结构 多项式 实验报告

数据结构 多项式 实验报告

数据结构 多项式 实验报告
数据结构 多项式 实验报告

数据结构实验报告

实验名称:实验一——多项式的实现

学生姓名:

班级:

班内序号:

学号:

日期:2011年10月29日

1.实验要求

实验目的:

1.熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法

2.学习指针、模板类、异常处理的使用

3.掌握线性表的操作的实现方法

4.学习使用线性表解决实际问题的能力

实验内容:

利用线性表实现一个一元多项式Polynomial

f(x) = a0 + a1x + a2x2 + a3x3+ … + a n x n

要求:

1.能够实现一元多项式的输入和输出

2.能够进行一元多项式相加

3.能够进行一元多项式相减

4.能够计算一元多项式在x处的值

5.能够计算一元多项式的导数(选作)

6.能够进行一元多项式相乘(选作)

7.编写测试main()函数测试线性表的正确性

2. 程序分析

由于多项式是线性结构,故选择线性表来实现,在这个程序中我采用的是单链表结构,每个结点代表一个项,多项式的每一项可以用其系数和指数唯一的表示。如果采用顺序存储,那么对于结点的插入和删除的操作会比较麻烦,而且顺序表的结点个数固定,对于可能发生的情况无法很好的处理,而采用链表就会简单许多,还能自由控制链表的长度。

两个多项式要进行多次的计算,为了保护原始的数据,方便进行以后的计算,故选择把结果存储在一个新建的链表里。

本程序完成的主要功能:

1.输入和输出:需要输入的信息有多项式的项数,用来向系统动态申请内存;多项式

各项的系数和指数,用来构造每个结点,形成链表。输出即是将多项式的内容

向屏幕输出。

2.多项式相加与相减:多项式的加减要指数相同即是同类项才能实现,所以在运算时

要注意判断指数出现的各种不同的情况,分别写出计算方法。将每项运算得到

的结果都插入到新的链表中,形成结果多项式。

3.多项式的求导运算:多项式的求导根据数学知识,就是将每项的系数乘以指数,将

指数减1即可,将每项得到的结果插入到结果多项式的链表中。

4.多项式在某点的值:由用户输入x的值,然后求出每项的值相加即可。

2.1 存储结构

本程序采用的存储结构是单链表结构,其定义的结点包括三部分:系数、指数以及下一个结点的地址。示意图如下:

1.输入多项式

·自然语言描述:

1.设置多项式的项数n;

2.按照多项式的项数申请动态数组coef[]和expn[]存储多项式的系数和指数;

3.按照指数递增的次序输入各项的系数以及指数,分别存入coef和expn;

4.再将输入的系数以及指数赋给每一个结点的coef和expn域;

5.利用头插法将每个结点加入链表。

·伪代码:

1.输入项数n;

2.float* coef1=new float[n1]; int* expn1=new int[n1];

3.运用for循环,循环n次

3.1 term* s=new term;

3.2 s->coef=coef[i];

3.3 s->expn=expn[i];

3.4 r->next=s;

3.5 r=s;

4. 运用头插法将结点插入链表。

时间复杂度:

空间复杂度:

2.输出多项式

·自然语言描述:

1.获取头结点;

2.循环n-1次(n为多项式的项数)

2.1将指针的指向后移;

2.2依照多项式的各种情况,设置输出方式

2.2.1 系数为1且指数不为1和0,输出x^expn+;

2.2.2 系数不为0且指数为0,输出(coef)+;

2.2.3 系数不为0且指数为1,输出(coef)x+;

2.2.4 系数不为0和1,指数不为0和1,输出(coef)x^(expn)+;

3.将指针指向移到最后一个节点。重复2.2中判断,但不输出+号。

·伪代码描述:

1.term* m=front;

2.for(int i=0;i

2.1m=m->next;

2.2if(m->coef==1&&(m->expn!=1&&m->expn!=0))

cout<<"x^"<expn<<"+";

2.3else if(m->coef==1&&m->expn==0)

cout<coef<<"+";

2.4else if(m->coef!=1&&m->expn==0)

cout<coef<<"+";

2.5else if(m->coef!=0&&m->expn==1)

cout<coef<<"x"<<"+";

2.6else if(m->coef==1&&m->expn==1)

cout<<"x"<<"+";

2.7else if(m->coef==0)

cout<<""<<"+";

2.8else

cout<coef<<"x^"<expn<<"+";

3.m=m->next;

3.1if(m->coef==1&&(m->expn!=1&&m->expn!=0))

cout<<"x^"<expn<<"";

3.2else if(m->coef==1&&m->expn==0)

cout<coef;

3.3else if(m->coef!=1&&m->expn==0)

cout<coef;

3.4else if(m->coef!=1&&m->expn==1)

cout<coef<<"x"<<"";

3.5else if(m->coef==1&&m->expn==1)

cout<<"x";

3.6else if(m->coef==0)

cout<<"";

3.7else

cout<coef<<"x^"<expn<<"";

时间复杂度:O(n)

空间复杂度:S(1)

3.多项式的相加相减

·自然语言描述:

1.指针p和q分别指向a和b两个多项式的头结点的下一个节点;

2.将结果多项式的项数置为0;

3.只有p或q非空,进行以下循环:

3.1申请一个term*型的指针d,将其next域赋为NULL;进行判断:

3.3.1如果p和q均非空

3.3.3.1如果p和q的指数相等

将d的系数赋为p、q系数之和,指数不变,将p、q指

向后移;

3.3.3.2如果p->expn>q->expn

复制q到结果多项式(减法系数为q->coef的相反数)

3.3.3.3如果p->expnexpn

复制p到结果多项式

3.3.3.4 判断后将项数++,插入新节点d;

3.3.2如果q为空,p仍存在,逐项将p复制到结果多项式。每进行一次,

项数++,p后移。

3.3.3如果p为空,q仍存在,逐项将q复制到结果多项式(减法将系数

变为原来的相反数)。每进行一次,项数++,q后移。

3.2返回结果多项式的项数

·伪代码描述:

1.工作指针p、q初始化:term* p=front->next;

term* q=b.front->next;

2. int nAdd=0;//加法int nMinus=0;//减法

3. while(p||q)

3.1 term* d=new term;d->next=NULL;

3.3.1 if(p&&q)

3.3.3.1 if(p->expn==q->expn)

d->coef=p->coef+q->coef;d->expn=p->expn;p=p->next;q=q->next

;//加法

d->coef=p->coef-q->coef;d->expn=p->expn;p=p->next;q=q->next;

//减法

3.3.3.2 p->expn>q->expn

d->coef=q->coef;d->expn=q->expn;q=q->next;//加法

d->coef=-q->coef;d->expn=q->expn;

q=q->next;//减法

3.3.3.3p->expnexpn

d->coef=p->coef;d->expn=p->expn;

p=p->next;//加法

d->coef=p->coef;d->expn=p->expn;

p=p->next;//减法

3.3.3.4 nAdd++;add.Insert(d);//加法

nMinus++;min.Insert(d);//减法

3.3.2 while(p)

term* d=new term;d->coef=p->coef;

d->expn=p->expn;d->next=NULL;nAdd++;

add.Insert(d);p=p->next;//加法

term* d=new term;d->coef=(p->coef);

d->expn=p->expn;d->next=NULL;

nMinus++;min.Insert(d);p=p->next;//减法

3.3.3 while(q)

term* d=new term;d->coef=q->coef;

d->expn=q->expn;d->next=NULL;

nAdd++;add.Insert(d);q=q->next;//加法

term* d=new term;d->coef=0-(q->coef);

d->expn=q->expn;d->next=NULL;

nMinus++;min.Insert(d);q=q->next;//减法

3.2 return nAdd; return nMinus;

时间复杂度:O(n)

空间复杂度:O(2)

4.求值

·自然语言描述:

1.将工作指针指向多项式的第一项;

2.将结果result置为0;

3.指针不为空,即进行循环:

3.1 result+=s->coef*(pow(x,s->expn));

3.2 s=s->next;

4.返回result;

·伪代码描述:

1.term* s=front->next;

2.float result=0;

3.while(s)

3.1 result+=s->coef*(pow(x,s->expn));

3.2 s=s->next;

4. return result;

时间复杂度:O(n)

空间复杂度:S(1)

5.求导数

·自然语言描述:

1.将指针指到多项式的第一项的结点:term* p=a.front->next;

2.循环n次

2.1每项求导的系数为:p->coef*p->expn;指数为:p->expn-1;

2.2将新结点插入新链表;

2.3指针p后移。

·伪代码描述:

1. term* p=a.front->next;

2. for(int i=0;i

2.1 term* s=new term;

2.2 if(p->expn)

2.2.1 s->coef=(p->coef)*(p->expn);

2.2.2 s->expn=p->expn-1;

2.2.3p=p->next;

2.2.4 de.Insert(s);

2.3 else

2.3.1 s->coef=0;

2.3.2 s->expn=0;

2.3.3 p=p->next;

2.3.4 de.Insert(s); 时间复杂度:O(n)

空间复杂度:S(1)

3. 程序运行结果

1.测试主函数流程:

测试条件:问题规模n的数量级为1

A多项式每项的系数和指数分别为:<1,0> <2,1> <3,2>

B多项式每项的系数和指数分别为:<2,2> <2,3> <4,5>

X的值为:2

运行出来的结果是:

测试结论:通过测试,本程序具有的功能有:多项式的建立、多项式的输入与输出、多项式的相加及相减,多项式求导以及多项式求值。

4. 总结

1.调试时出现的问题及解决的方法

① 输出多项式的时候有些问题,但经过查看是由于输出时没有将各种情况考虑全面的

结果。

② 相加相减操作:在刚开始的时候,只考虑了p、q指针均非空的情况,计算的结果就

出现了问题,但逐项的运算后,会出现一个还非空但另一个已经遍历完毕的情况,故后又设计让非空的链表继续进行运算,解决了问题。

③ 在插入结点的时候出现了一些问题,经查看是尾插法运用地并不熟练,后运用头插

法将结点插入链表中,编完程序后,又仔细学习了尾插法的操作。

2.心得体会

通过本次实验,我熟悉了链表的相关操作,包括链表的建立、头插法;同时由于多项式的运算中会出现许多种不同的情况,在这方面也锻炼了我的思维严密性。在编写程序的过程中,编译的时候出现了一些错误,但都经过自己的钻研以及与同学探讨成功解决。

3.下一步的改进

①在输出上做一些优化:比如在输出负数时直接输出减号,不再加号和减号同时

出现。还有输出的程序在0的处理上并不十分满意,会进一步优化。

②本程序没有完成多项式的乘法功能,以后会逐步完善。

数据结构实验报告

2013-2014-1学期 《数据结构》实验报告 专业:信息管理与信息系统 班级: 姓名: 学号: 完成日期:2013.12.01

实验名称:二叉树的创建与遍历 一、实验目的 建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。 二、实验要求 1、建立一棵用二叉链表方式存储的二叉树,并对其进行遍历(先序、中序和后序),打印输出遍历结果。 2、从键盘接受扩展先序序列,以二叉链表作为存储结构,建立二叉树,并将遍历结果打印输出。 三、实验步骤(包括所选择的二叉树的创建算法和常用三种遍 历算法的说明、完整的程序代码及必要的注释。) 1、用二叉链表创建二叉树: ①输入根结点值;②若左子树不空,则输入左子树,否则输入一个结束符‘#’;③若右子树不空,则输入右子树,否则输入一个结束符‘#’。 2、遍历该二叉树 (1) 先序遍历(DLR) 若二叉树为空,则结束返回。否则:①访问根结点;②先序遍历左子树;③先序遍历右子树。 (2) 中序遍历(LDR) 若二叉树为空,则结束返回。否则:①中序遍历左子树;②访问根结点;③中序遍历右子树。 (3) 后序遍历(LRD) 若二叉树为空,则结束返回。否则:①后序遍历

左子树;②后序遍历右子树;③访问根结点。 3、程序代码: #include #include #include #define NULL 0 typedef struct BiTNode { char data; struct BiTNode *Lchild,*Rchild; }BiTNode,*BiTree; BiTree Create(BiTree T) { char ch; ch=getchar(); if(ch=='#') T=NULL; else { if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) printf("Error!"); T->data=ch; T->Lchild=Create(T->Lchild); T->Rchild=Create(T->Rchild); } return T; } void Preorder(BiTree T) { if(T) { printf("%c",T->data); Preorder(T->Lchild); Preorder(T->Rchild); } } void zhongxu(BiTree T) { if(T) { zhongxu(T->Lchild); printf("%c",T->data);

数据结构实验报告格式

《数据结构课程实验》大纲 一、《数据结构课程实验》的地位与作用 “数据结构”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。本课程较系统地介绍了软件设计中常用的数据结构以及相应的存储结构和实现算法,介绍了常用的多种查找和排序技术,并做了性能分析和比较,内容非常丰富。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: (1)内容丰富,学习量大,给学习带来困难; (2)贯穿全书的动态链表存储结构和递归技术是学习中的重点也是难点; (3)所用到的技术多,而在此之前的各门课程中所介绍的专业性知识又不多,因而加大了学习难度; (4)隐含在各部分的技术和方法丰富,也是学习的重点和难点。 根据《数据结构课程》课程本身的技术特性,设置《数据结构课程实验》实践环节十分重要。通过实验实践内容的训练,突出构造性思维训练的特征, 目的是提高学生组织数据及编写大型程序的能力。实验学时为18。 二、《数据结构课程实验》的目的和要求 不少学生在解答习题尤其是算法设计题时,觉得无从下手,做起来特别费劲。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 为了帮助学生更好地学习本课程,理解和掌握算法设计所需的技术,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所用到的一些技术。数据结构中稍微复杂一些的算法设计中可能同时要用到多种技术和方法,如算法设计的构思方法,动态链表,算法的编码,递归技术,与特定问题相关的技术等,要求重点掌握线性链表、二叉树和树、图结构、数组结构相关算法的设计。在掌握基本算法的基础上,掌握分析、解决实际问题的能力。 三、《数据结构课程实验》内容 课程实验共18学时,要求完成以下六个题目: 实习一约瑟夫环问题(2学时)

数据结构课程设计报告一元多项式的计算

数据结构课程设计报告题目:一元多项式计算 院(系):计算机与信息科学学院 专业:软件工程 班级:软件1202班 学号:02 05 40 姓名:陈潇潇刘敏易庆鹏 指导教师:彭代文 2013年12月

目录 一、课程设计介绍 ........................错误!未定义书签。 1.1课程设计目的 (3) 1.2课程设计内容 (3) 1.2课程设计要求 (3) 二、需求设计 ............................错误!未定义书签。 2.1课设题目粗略分析 (3) 2.2原理图介绍.......................... 错误!未定义书签。 2.2.1 功能模块图...................... 错误!未定义书签。 2.2.2 流程图分析 (4) 三、需求分析 .............................错误!未定义书签。 3.1存储结构 (5) 3.2算法描述 (6) 四、调试与分析 ...........................错误!未定义书签。(1)调试过程 .......................... 错误!未定义书签。(2)程序执行过程...................... 错误!未定义书签。参考文献.................................错误!未定义书签。总结.....................................错误!未定义书签。附录(关键部分程序清单)...............错误!未定义书签。

一、课程设计介绍 1.1课程设计目的 ⑴熟悉使用c语言编码程序,解决实际问题; ⑵了解数据结构与算法的设计方法,具备初步的独立分析和设计能力。 ⑶初步掌握软件开发过程的分析能力,系统设计,程序编码,测试等基本能力。 ⑷提高综合运用的能力,运用所学理论知识与独立分析能力。 1.2课程设计内容 一元多项式计算 任务:⑴能够按照指数降序排列建立并输出多项式 ⑵能够完成两个多项式的相加,并将结果输入 ⑶在上交资料中请写明:存储结构、多项式相加的基本过程的算法(可以使用程序流程图)、源程序、测试数据和结果、算法的时间复杂度、另外可以提出算法的改进方法 1.3课程设计要求 ⑴学生必须仔细阅读《数据结构》课程设计方案,认真主动完成课设的要求。有问题及时主动通过各种方式与教师联系沟通。 ⑵学生要发挥自主学习的能力,充分利用时间,安排好课设的时间计划,并在课设过程中不断检测自己的计划完成情况,及时的向教师汇报。 ⑶课程设计按照教学要求需要一周时间完成,一周中每天(按每周5天)至少要上3-4小时的机来调试C语言设计的程序,总共至少要上机调试程序30小时。 ⑷课程设计在期末考试之前交。最好一起上交。 ⑸同班同学之间最好不要相同。源代码可以打印,但是下面模块要求的内容必须手写。 二、需求设计 2.1 课设题目粗略分析 建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果

数据结构课程设计多项式运算

#include #include #include"malloc.h" #define OK 1 #define ERROR 0 #define OVERFLOW -1 #define NULL 0 typedef int Status; typedef struct ElemType{ float coef; //多项式系数 int exp; //多项式指数 }ElemType;//数据类型 typedef struct Polynomial{ ElemType data; struct Polynomial *next; }*Polyn,Polynomial;//多项式结构体 void Insert(Polyn p,Polyn head) { /*将新的结点插入链表,如果系数为零,则释放该结点; 如果指数为新时将结点直接插入;否则查找插入位置, 方法:比较该结点指数与首元结点及其他结点的指数, 直到该结点指数大于等于链表内某结点的指数,相等则合并这两项;大于则插入到其前驱*/ if(p->data.coef==0) {free(p);p=NULL;} //如果插入项的系数为零时,释放其结点将其删除

else { Polyn q1,q2; q1=head; q2=head->next; while(q2&& p->data.exp < q2->data.exp) { //查找多项式某项的插入位置,使多项式按指数降幂排列 q1=q2; q2=q2->next; } if(q2&& p->data.exp == q2->data.exp) { //将多项式指数相同相进行合并 q2->data.coef += p->data.coef; free(p); if(!q2->data.coef) { //如果多项式的系数为零的话,将其删除即释放期结点 q1->next=q2->next; free(q2); } } else { //如果是新建的多项式,指数为新时将结点插入 p->next=q2; q1->next=p; } } }

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

数据结构中实现一元多项式简单计算

数据结构中实现一元多项式简单计算: 设计一个一元多项式简单的计算器。 基本要求: 一元多项式简单计算器的基本功能为: (1)输入并建立多项式; (2)输出多项式; (3)两个多项式相加,建立并输出和多项式; (4)两个多项式相减,建立并输出差多项式; #include #include #define MAX 20 //多项式最多项数 typedef struct//定义存放多项式的数组类型 { float coef; //系数 int exp; //指数 } PolyArray[MAX]; typedef struct pnode//定义单链表结点类型 { float coef; //系数 int exp; //指数 struct pnode *next; } PolyNode; void DispPoly(PolyNode *L) //输出多项式 { PolyNode *p=L->next; while (p!=NULL) { printf("%gX^%d ",p->coef,p->exp); p=p->next; } printf("\n"); } void CreateListR(PolyNode *&L,PolyArray a,int n) //尾插法建表 { PolyNode *s,*r;int i; L=(PolyNode *)malloc(sizeof(PolyNode)); //创建头结点 L->next=NULL; r=L; //r始终指向终端结点,开始时指向头结点for (i=0;i

数据结构-多项式

一.实验目的: 理解线性表的基本逻辑结构,完成链表及循环链表的实现 通过实验进一步理解线性表的逻辑结构和存储结构,提高使用理论知识指导解决实际问题的能力,熟练掌握链表的实际应用。 二.实验内容: 题目:一元多项式运算 问题描述: 设计算法实现一元多项式的简单运算。 基本要求: (1)输入并建立多项式; (2)输出多项式; (3)多项式加法 (4)多项式减法。 测试数据: (1)(2x+5x8-3.1x11)+(7-5x8+11x9)=(-3.1x11+11x9+2x+7) (2)(6x-3-x+4.4x2-1.2x9)-(―6x―3-+5.4x2-x2+7.8x15) =(―7.8x15―1.2x9+12x―3―x) (3)(1+x+x2+x3+x4+x5)+(―x3―x4)=(1+x+x2+x5) (4)(x+x3)+(―x―x3)=0 (5)(x+x100)+(x100+x200)=(x+2x100+x200) (6)(x+x2+x3)+0=x+x2+x3 三. 实验方案(程序设计说明)

(一)算法设计思路: 1.将两个多项式的系数和指数分别存放在新建的两个链表中; 2.其中一个链表A的指针不动,遍历另一个链表B,指数相等 时系数相加,删除该数,链表B从头开始,链表A移向下个 数据域; 3.直到链表B为空或者链表A遍历完成结束。 (二)算法流程图:

(三)界面设计说明: 请输入多项式的长度: 开始 输入多项式长 度N 以及系数 m,指数n A →n= B →n? Y N j++ 系数相加存放在A 表 i++ 结束 创建链表A ,B ,链表A 从i=0 开始循环,链表B 从j=0开始 i>N? N Y i>N? N Y

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

数据结构一元多项式的加减乘

#ifndef _POL YNOMIAL_H #define _POL YNOMIAL_H #include using namespace std; #include //#define ElemType char typedef struct // 项的表示,多项式的项作为LinkList的数据元素 { float coef; // 系数 int expn; // 指数 }term, ElemType; typedef struct LNode // 结点类型 { ElemType data; struct LNode *next; }LNode,*Link,*Position; typedef struct LinkList // 链表类型 { Link head,tail; // 分别指向线性链表中的头结点和最后一个结点 int len; // 指示当前线性链表中数据元素的个数 }LinkList; typedef LinkList polynomial; void InitList(LinkList &P); void CreatPolyn(polynomial &P,int m); void DestroyPolyn(polynomial &P); void CreatePolyn(polynomial &P,int m);//建立表示一元多项式的有序链表P void DestroyPolyn(polynomial &P);//销毁一元多项式P void PrintPolyn(polynomial P);//打印 int PolyLength(polynomial P);//项数 void AddPolyn(polynomial &Pa,polynomial &Pb);//相加运算 void SubtractPolyn(polynomial &Pa,polynomial &Pb);//相减运算 void MultiplyPolyn(polynomial &P,polynomial &Pa,polynomial &Pb);//相乘运算 int cmp(term a,term b);//依a的指数值<(或=)(或>)b的指数值,分别返回-1,0,+1 int LocateElemP(LinkList L,ElemType e,Position *q, int(*compare)(ElemType,ElemType)); int MakeNode(Link *p,ElemType e); int InsFirst(LinkList *L,Link h,Link s);

数据结构一元多项式的计算

课程设计成果 学院: 计算机工程学院班级: 13计科一班 学生姓名: 学号: 设计地点(单位): 设计题目:一元多项式的计算 完成日期:年月日 成绩(五级记分制): _________________ 教师签名:_________________________ 目录 1 需求分析 ......................................................................... 错误!未定义书签。 2 概要设计 ......................................................................... 错误!未定义书签。 2.1一元多项式的建立 ............................................................... 错误!未定义书签。 2.2显示一元多项式 ................................................................... 错误!未定义书签。 2.3一元多项式减法运算 ........................................................... 错误!未定义书签。 2.4一元多项式加法运算 ........................................................... 错误!未定义书签。 2.5 设计优缺点.......................................................................... 错误!未定义书签。3详细设计 .......................................................................... 错误!未定义书签。 3.1一元多项式的输入输出流程图........................................... 错误!未定义书签。 3.2一元多项式的加法流程图................................................... 错误!未定义书签。 3.3一元多项式的减法流程图.................................................. 错误!未定义书签。 3.4用户操作函数....................................................................... 错误!未定义书签。4编码 .................................................................................. 错误!未定义书签。5调试分析 .......................................................................... 错误!未定义书签。4测试结果及运行效果...................................................... 错误!未定义书签。5系统开发所用到的技术.................................................. 错误!未定义书签。参考文献 ............................................................................. 错误!未定义书签。附录全部代码................................................................... 错误!未定义书签。

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

数据结构 多项式 实验报告

数据结构实验报告 实验名称:实验一——多项式的实现 学生姓名: 班级: 班内序号: 学号: 日期:2011年10月29日 1.实验要求 实验目的: 1.熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法 2.学习指针、模板类、异常处理的使用 3.掌握线性表的操作的实现方法 4.学习使用线性表解决实际问题的能力 实验内容: 利用线性表实现一个一元多项式Polynomial f(x) = a0 + a1x + a2x2 + a3x3+ … + a n x n 要求: 1.能够实现一元多项式的输入和输出 2.能够进行一元多项式相加 3.能够进行一元多项式相减 4.能够计算一元多项式在x处的值 5.能够计算一元多项式的导数(选作) 6.能够进行一元多项式相乘(选作) 7.编写测试main()函数测试线性表的正确性 2. 程序分析 由于多项式是线性结构,故选择线性表来实现,在这个程序中我采用的是单链表结构,每个结点代表一个项,多项式的每一项可以用其系数和指数唯一的表示。如果采用顺序存储,那么对于结点的插入和删除的操作会比较麻烦,而且顺序表的结点个数固定,对于可能发生的情况无法很好的处理,而采用链表就会简单许多,还能自由控制链表的长度。 两个多项式要进行多次的计算,为了保护原始的数据,方便进行以后的计算,故选择把结果存储在一个新建的链表里。 本程序完成的主要功能: 1.输入和输出:需要输入的信息有多项式的项数,用来向系统动态申请内存;多项式

各项的系数和指数,用来构造每个结点,形成链表。输出即是将多项式的内容 向屏幕输出。 2.多项式相加与相减:多项式的加减要指数相同即是同类项才能实现,所以在运算时 要注意判断指数出现的各种不同的情况,分别写出计算方法。将每项运算得到 的结果都插入到新的链表中,形成结果多项式。 3.多项式的求导运算:多项式的求导根据数学知识,就是将每项的系数乘以指数,将 指数减1即可,将每项得到的结果插入到结果多项式的链表中。 4.多项式在某点的值:由用户输入x的值,然后求出每项的值相加即可。 2.1 存储结构 本程序采用的存储结构是单链表结构,其定义的结点包括三部分:系数、指数以及下一个结点的地址。示意图如下: 1.输入多项式 ·自然语言描述: 1.设置多项式的项数n; 2.按照多项式的项数申请动态数组coef[]和expn[]存储多项式的系数和指数; 3.按照指数递增的次序输入各项的系数以及指数,分别存入coef和expn; 4.再将输入的系数以及指数赋给每一个结点的coef和expn域; 5.利用头插法将每个结点加入链表。 ·伪代码: 1.输入项数n; 2.float* coef1=new float[n1]; int* expn1=new int[n1]; 3.运用for循环,循环n次 3.1 term* s=new term; 3.2 s->coef=coef[i]; 3.3 s->expn=expn[i]; 3.4 r->next=s; 3.5 r=s; 4. 运用头插法将结点插入链表。 时间复杂度: 空间复杂度: 2.输出多项式 ·自然语言描述: 1.获取头结点; 2.循环n-1次(n为多项式的项数) 2.1将指针的指向后移; 2.2依照多项式的各种情况,设置输出方式 2.2.1 系数为1且指数不为1和0,输出x^expn+; 2.2.2 系数不为0且指数为0,输出(coef)+; 2.2.3 系数不为0且指数为1,输出(coef)x+;

数据结构实验报告

《用哈夫曼编码实现文件压缩》 实验报告 课程名称数据结构 实验学期2015至2016学年第一学期 学生所在系部计算机学院 年级2014专业班级物联B142班 学生姓名杨文铎学号201407054201 任课教师白磊 实验成绩

用哈夫曼编码实现文件压缩 1、了解文件的概念。 2、掌握线性表的插入、删除的算法。 3、掌握Huffman树的概念及构造方法。 4、掌握二叉树的存储结构及遍历算法。 5、利用Haffman树及Haffman编码,掌握实现文件压缩的一般原理。 微型计算机、Windows系列操作系统、Visual C++6.0软件 根据ascii码文件中各ascii字符出现的频率情况创建Haffman树,再将各字符对应的哈夫曼编码写入文件中,实现文件压缩。 本次实验采用将字符用长度尽可能短的二进制数位表示的方法,即对于文件中出现的字符,无须全部都用S为的ascii码进行存储,根据他们在文件中出现的频率不同,我们利用Haffman算法使每个字符能以最短的二进制数字符进行存储,已达到节省存储空间,压缩文件的目的,解决了压缩需要采用的算法,程序的思路已然清晰: 1、统计需压缩文件中的每个字符出现的频率 2、将每个字符的出现频率作为叶子节点构建Haffman树,然后将树中结点引向 其左孩子的分支标“0”,引向其右孩子的分支标“1”;每个字符的编码 即为从根到每个叶子的路径上得到的0、1序列,这样便完成了Haffman 编码,将每个字符用最短的二进制字符表示。 3、打开需压缩文件,再将需压缩文件中的每个ascii码对应的haffman编码按bit 单位输出。 4、文件压缩结束。 (1)构造haffman树的方法一haffman算法 构造haffman树步骤: I.根据给定的n个权值{w1,w2,w3…….wn},构造n棵只有根结点的二叉 树,令起权值为wj。 II.在森林中选取两棵根结点权值最小的树作左右子树,构造一棵新的二叉树,置新二叉树根结点权值为其左右子树根结点权值之和。 III.在森林中删除这两棵树,同时将得到的二叉树加入森林中。 IV.重复上述两步,知道只含一棵树为止,这棵树即哈夫曼树。 对于haffman的创建算法,有以下几点说明: a)这里的Haffman树采用的是基于数组的带左右儿子结点及父结点下标作为

一元多项式的计算数据结构课程设计

一元多项式的计算—加,减 摘要(题目)一元多项式计算 任务:能够按照指数降序排列建立并输出多项式; 能够完成两个多项式的相加、相减,并将结果输入; 目录 1.引言 2.需求分析 3.概要设计 4.详细设计 5.测试结果 6.调试分析 7.设计体会 8.结束语 一:引言: 通过C语言使用链式存储结构实现一元多项式加法、减法和乘法的运算。按指数

降序排列。 二:需求分析 建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果 三:概要设计 存储结构:一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项。链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数、指数以及指向下一个多项式项结点的指针。创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加、相减操作。 1.单连表的抽象数据类型定义: ADT List{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={| ai-1, ai∈D,i=2,…,n} 基本操作: InitList(&L) //操作结果:构造一个空的线性表 CreatPolyn(&L) //操作结果:构造一个以单连表存储的多项试 DispPolyn(L) //操作结果:显示多项试 Polyn(&pa,&pb) //操作结果:显示两个多项试相加,相减的结果 } ADT List 2.本程序包含模块: typedef struct LNode //定义单链表 { }LNode,*LinkList; void InitList(LinkList &L) //定义一个空表 { } void CreatPolyn(LinkList &L) //用单链表定义一个多项式 { } void DispPolyn(LinkList L) //显示输入的多项式

数据结构-多项式相加

数据结构课程设计 2012年12月 班级:XXX 学号:XXX 姓名: XXX 指导教师:XXX

一元稀疏多项式计算器 【问题描述】 设计一个一元稀疏多项式简单计算器 【基本要求】 一元多项式简单计算器的基本功能是: 1,输入并建立多项式; 2,输出多项式,输出形式为整数序列:n,c1,e1,c2,c2,...,cn,en,其中n是多项式的项数,ci和ei分别是第i项的系数和指数,序列按指数降序排列; 3,多项式a和b相加,建立多项式a+b; 4,多项式a和b相减,建立多项式a-b. 【算法设计思想】 ①一般情况下的一元n次多项式可写成pn(x)=p1xe1+p2xe2+……+pmxem 其中,p1是指数为ei的项的非零系数,且满足0≦e1

【实现提示】 用带表头结点的单链表存储多项式。 【程序代码】 #include #include typedef struct node { float coef; int expn; struct node *next; }Lnode, *polynmial; void create(polynmial &L); //输入并建立多项式L void display(polynmial L); //显示,输出多项式L void sort(polynmial &L); //多项式L按指数排序 void reverse(polynmial &L); //逆置 void select(); //用户选择加减操作 void add(polynmial La, polynmial Lb, polynmial &Lc); //多项式La,Lb相加void subtract(polynmial La, polynmial Lb, polynmial &Ld); //多项式La减去Lb,结果给Ld void create(polynmial &L) //输入并建立多项式L { int i, n; static struct node *p; scanf("%d", &n); L = (struct node *)malloc (sizeof(struct node)); L->next = NULL; for(i = 0; i < n; i++) { p = (struct node *)malloc(sizeof(struct node)); scanf("%f %d", &p->coef, &p->expn); p->next = L->next; L->next = p; } } void display(polynmial L)//显示,输出多项式L { struct node *p, *q; int flag = 0; int k = 0; q = L->next; while(q)

数据结构实验报告及心得体会

2011~2012第一学期数据结构实验报告 班级:信管一班 学号:201051018 姓名:史孟晨

实验报告题目及要求 一、实验题目 设某班级有M(6)名学生,本学期共开设N(3)门课程,要求实现并修改如下程序(算法)。 1. 输入学生的学号、姓名和 N 门课程的成绩(输入提示和输出显示使用汉字系统), 输出实验结果。(15分) 2. 计算每个学生本学期 N 门课程的总分,输出总分和N门课程成绩排在前 3 名学 生的学号、姓名和成绩。 3. 按学生总分和 N 门课程成绩关键字升序排列名次,总分相同者同名次。 二、实验要求 1.修改算法。将奇偶排序算法升序改为降序。(15分) 2.用选择排序、冒泡排序、插入排序分别替换奇偶排序算法,并将升序算法修改为降序算法;。(45分)) 3.编译、链接以上算法,按要求写出实验报告(25)。 4. 修改后算法的所有语句必须加下划线,没做修改语句保持按原样不动。 5.用A4纸打印输出实验报告。 三、实验报告说明 实验数据可自定义,每种排序算法数据要求均不重复。 (1) 实验题目:《N门课程学生成绩名次排序算法实现》; (2) 实验目的:掌握各种排序算法的基本思想、实验方法和验证算法的准确性; (3) 实验要求:对算法进行上机编译、链接、运行; (4) 实验环境(Windows XP-sp3,Visual c++); (5) 实验算法(给出四种排序算法修改后的全部清单); (6) 实验结果(四种排序算法模拟运行后的实验结果); (7) 实验体会(文字说明本实验成功或不足之处)。

三、实验源程序(算法) Score.c #include "stdio.h" #include "string.h" #define M 6 #define N 3 struct student { char name[10]; int number; int score[N+1]; /*score[N]为总分,score[0]-score[2]为学科成绩*/ }stu[M]; void changesort(struct student a[],int n,int j) {int flag=1,i; struct student temp; while(flag) { flag=0; for(i=1;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1; } for(i=0;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1;

数据结构一元多项式报告

一元多项式计算: 程序要求: 1)、能够按照指数降序排列建立并输出多项式; 2)、能够完成两个多项式的相加、相减,并将结果输入。 概要设计: 1.功能:将要进行运算的多项式输入输出。 2.数据流入:要输入的多项式的系数与指数。 3.数据流出:合并同类项后的多项式。 4.程序流程图:多项式输入流程图如图3.2.1所示。 5.测试要点:输入的多项式是否正确,若输入错误则重新输入 2、多项式的加法 (1)功能:将两多项式相加。 (2)数据流入:输入函数。 (3)数据流出:多项式相加后的结果。 (4)程序流程图:多项式的加法流程图如图3.2.2所示。 (5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

3、多项式的减法 (1)功能:将两多项式相减。 (2)数据流入:调用输入函数。 (3)数据流出:多项式相减后的结果。 (4)程序流程图:多项式的减法流程图如图3.2.3所示。 (5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

详细代码: #include #include #include using namespace std; struct Node { float coef;//结点类型 int exp; }; typedef Node polynomial;

struct LNode { polynomial data;//链表类型 LNode *next; }; typedef LNode* Link; void CreateLink(Link &L,int n); void PrintList(Link L); void PolyAdd(Link &pc,Link pa,Link pb); void PolySubstract(Link &pc,Link pa,Link pb); void CopyLink(Link &pc,Link pa); void PolyMultiply(Link &pc,Link pa,Link pb); int JudgeIfExpSame(Link pa,Link e); void DestroyLink(Link &L); int CompareIfNum(int i); void DestroyLink(Link &L) { Link p; p=L->next; while(p) { L->next=p->next; delete p; p=L->next; } delete L; L=NULL; } //创建含有n个链表类型结点的项,即创建一个n项多项式void CreateLink(Link &L,int n) { if(L!=NULL) { DestroyLink(L); } Link p,newp; L=new LNode; L->next=NULL; (L->data).exp=-1;//创建头结点 p=L; for(int i=1;i<=n;i++) { newp=new LNode; cout<<"请输入第"<

相关主题
文本预览
相关文档 最新文档