当前位置:文档之家› 基于PtCZOAl2O3催化剂的多种碳氢燃料水蒸气重整制氢技术的实验研究

基于PtCZOAl2O3催化剂的多种碳氢燃料水蒸气重整制氢技术的实验研究

基于PtCZOAl2O3催化剂的多种碳氢燃料水蒸气重整制氢技术的实验研究
基于PtCZOAl2O3催化剂的多种碳氢燃料水蒸气重整制氢技术的实验研究

北京工业大学

硕士学位论文

基于Pt/CZO/Al<,2>O<,3>催化剂的多种碳氢燃料水蒸气重整制

氢技术的实验研究

姓名:邓福山

申请学位级别:硕士

专业:热能工程

指导教师:纪常伟

20090501

大庆石化公司制氢装置用转化催化剂

大庆石化公司制氢装置用转化催化剂 招标采购技术要求 1、项目介绍: 制氢装置转化催化剂是一种高效的烃类水蒸气转化催化剂,活性组分是NiO,作用是将烃类与水在转化炉内反应转化为氢气。 2、买方的基础条件 2.1使用装置简介 制氢装置由原料精制、转化系统、中变及冷却分液系统、热工系统和公用工程等部分组成,原料精制部分采用湿法脱硫(MDEA溶液吸收)对原料进行初步净化,然后再用ZnO脱硫剂进行精脱硫的方法进行原料净化,转化部分采用烃类-水蒸汽转化法制氢、采用PSA净化提纯工艺提纯氢气。 2.2原料条件 制氢装置所用原料为加氢裂化干气、重整氢及加氢裂化低分气PSA提浓尾气、油田气、焦化干气,加氢精制干气、汽油脱硫塔顶不凝气、柴油脱硫干气,主要产品为纯度99%以上的工业氢气。 2.3设备条件 制氢装置需装转化催化剂的设备是转化炉,共计184根炉管,每根炉管直径103mm ,每根炉管有效装填高度12.4m。 2.4工艺条件 3、对卖方产品的要求 3.1规格要求: 转化催化剂技术指标要符合卖方企业标准。 3.2性能要求 3.2.1 卖方需保证提供的转化催化剂产品质量达到3.1条要求的质量指标。

3.2.2在2.4条操作条件下卖方需保证转化催化剂出口CH4≯7.0%(V)。 3.2.3 在2.4条操作条件下卖方需保证转化催化剂床层阻力降≯0.35MPa。 3.2.4在2.4条操作条件下卖方需保证提供的转化催化剂使用寿命在四年以上。 3.2.5在2.4条操作条件下卖方保证转化催化剂与装置内使用碳钢等材质不发生化学反应,不会对相邻设备管线造成腐蚀,不会产生结晶析出堵塞泵体、管线的现象。 4、对卖方产品方案的要求 4.1产品制造厂的简介 4.2产品的特点,专利技术等介绍 4.3产品的主要原材料及生产工艺简介 4.4产品的规格及执行标准 4.5产品的物化性质 4.6产品的保质期 4.7产品的安全环保性能 4.8产品使用方法及注意事项 4.9产品质量保证措施(包括原材料入厂质量、生产过程及出厂质量控制等)4.10对本技术要求的响应及偏离情况 4.11其它补充说明。 5、双方的责任义务 5.1买方 5.1.1卖方货物运抵买方后,买方负责入厂检验,检验内容包括本技术要求第二章第3.1条约定和卖方执行标准中未包含在第3.1条中的项目,买方入厂检验后,产品质量达不到以上要求时(同一质量指标以高标准为依据),买方有权拒收。 5.1.2买方对卖方资料的完整性、符合性有权进行检查验收,有权要求卖方对检查不合格的资料进行整改。 5.1.3买方负责按照卖方提供的4.7、4.8条约定文件编制的投用考核方案,并交卖方审查。 5.1.4首次装填和使用卖方产品前一周,买方负责通知卖方代表到买方现场,进行技术指导和现场见证。

以催化干气的制氢工艺特点

1、以催化干气为原料的制氢工艺流程特点: 催化干气的烯烃含量一般在10?20%之间,以催化干气为原料的制氢装置工艺流程简图为: 气体原料压缩-原料预热|丄等(变)温加氢丄绝热加氢卜脱氯、 脱硫卜配蒸汽]-蒸汽转化| -高(中)温变换斗热回收T PSA-H2 图1、高烯烃含量烃类为原料的制氢工艺流程 该工艺特点为:(1)与传统烃类制氢原料不同,催化干气烯烃含量太高,不能直接用作制氢原料,须将其中的烯烃全部转化为饱和烃。该工艺增加等(变)温加氢反应器,以满足高烯烃含量原料烯烃加氢饱和的放热要求。部分烯烃在等(变)温加氢反应器完成加氢饱和。 (2)部分新鲜原料通过跨线与等(变)温加氢反应器出口原料气混合,调配其中的烯烃含量,以满足绝热加氢反应器床层温度达到 350?380C的要求。 (3)经过加氢后的原料中的有机氯、有机硫转化为氯化氢和硫化氢,在脱硫反应器被脱氯剂、脱硫剂脱除。脱硫反应器为两反应器串联使用,可在线切换和更换脱硫剂。 (4)转化部分采用原料适用性强的转化催化剂,适应不同烃类原料 的转化要求。将各种烃类转化为富氢气体,转化出口CH含量一般小 于6%(v/v )。 (5)转化工艺气经高(中)温变换,将在部分CC转化为CO2同时产生更多的氢。

(6)中变气经过多级热回收及冷却,降温至40C以下,满足PSA进料要求。(7)通过PSA制得纯度99.5 %以上的工业氢,解吸气作为低热值燃料返回转化炉作燃料。 2 装置开工过程提要烃类蒸汽转化制氢装置的开工过程,就是将各种催化剂活化的过程,其中原料加氢催化剂需要预硫化处理,转化及中变催化剂需要还原处理。脱硫、脱氯剂要进行适当的干燥脱水处理。以下分别论述。 2. 1 加氢催化剂预硫化 制氢原料加氢催化剂投入正常使用前,一般需要将氧化态的活性组分先变成具有催化活性的金属硫化态形态,称为预硫化,本文不对加氢催化剂的详细预硫化过程进行论述,各用户可参考催化剂供应商提供的催化剂硫化方案,本文主要介绍硫化介质及硫化过程的流程控制。硫化介质 硫化介质是指催化剂硫化所需的气体氛围,一般由N2、H2、H2S 组成。工业上一般不直接采用H2S 作硫化介质,而是采用液态的CS2、DMDS (二甲基二硫)等作为硫化剂。这类硫化剂在氢存在条件下,在150?250C很容易生成HS。硫化剂可米用外购方式获得,贮存在专门的硫化剂贮罐内。 使用液态硫化剂,离不开H2。氢气的来源有以下几个,各厂可根据各自情况决定

甲醇水蒸汽重整制氢催化剂甲醇还原方案

甲醇水蒸汽重整制氢催化剂甲醇还原方案 甲醇水蒸汽重整制氢催化剂的还原活化原则上应用H2还原剂,可以得到高的催化活性,在对转化率要求不太严格的情况下可以采用甲醇作为还原剂,但可能造成约10%活性损失。 催化剂的装填采用阶梯式装填方式可得到较好的温度分布。可以用相应颗粒大小的石英砂作为补充以形成催化剂的梯度分布,由入口到出口阶梯式增加催化剂的用量。 催化剂的还原温度和使用温度对催化剂的活性及寿命影响很大,严禁出现超温现象。当温度>320℃易形成积碳,铜烧结,催化剂的活性显著降低甚至失活。 现根据适当的资料就甲醇作为还原剂,提供如下方案以供参考。 1,催化剂的升温 1.1升温介质 通常情况下应用氮气作为升温介质,当氮气不便时也可应用空气作为升温介质。但还原阶 段的升温应用还原剂的气态组分作为升温用介质。 1.2升温的空速 考虑到小反应器,由于放热量有限,拟采用相对较小的空速,一般为2.0~4.0h-1。还原初期,当反应放热较大时,宜采用较低的空速,以方便温度的控制。 1.3升温中注意事项 MW-612型催化剂在升温过程中,于50~130℃之间可能发生温升较慢的现象,这是因为催 化剂在脱除制备过程中加入的物理水有关。 1.4催化剂的还原 MW-612型催化剂的H2还原的特点是速度快,当利用甲醇还原时,受甲醇分子结构的影响,需采用较高的甲醇分压以利于甲醇的渗透和与催化剂表面的接触,所以适当的提高系统压力对催化剂还原时有益和必须的。还原实践证明,进口温度为180℃,催化剂可在较低甲醇浓度下完成还原反应。 1.4.1还原剂 甲醇水,甲醇:水=1:0.2~1,甲醇中不含氯、硫和油,水用去离子水。 1.4.2甲醇与水的比,刚开始时,利用较小的液空速,较高的甲醇含量,以利于氧化铜的还原和水分的排除,随着还原反应的进行,逐渐提高水的比例。甲醇、水的比例可根据流量泵的流量来调整,计量应准确,应根据反应床层的温度变化随时调整,防止催化剂床层飞温,造成催化剂活性的降低。 1.4.3还原温度

制氢转化催化剂的使用与维护

制氢转化催化剂的使用与维护 本文对于制氢催化剂的日常使用以及维护进行了介绍,包括制氢催化剂的性质、制氢催化剂的装填、制氢催化剂的投用等。还详述了制氢催化剂在使用的过程中所存在的问题,催化剂的破碎、积碳、中毒以及催化剂有毒物质的产生等问题,并针对这些问题提出了相应的预防手段,为制氢催化剂的使用和维护提供了现实的技术基础。 标签:制氢催化剂装填投用问题措施 一、转化催化剂 制氢转化炉内的催化剂一般为Z111-4YA、Z111-6YQ、Z111、Z111B。催化剂的物理特性以及化学组成如表1和表2所示,转化催化剂一般优化为圆柱状,并在原来的的基础上在内部进行开孔处理,催化剂在使用的过程具有较大的接触的面积,其活性能够成倍的增加。制氢催化剂在使用的过程中要添加一种抗结碳的物质,使得催化剂在低温状态下还能够保持较好的活性,并且使得催化剂抗积碳的性能增加。下端的催化剂虽然具有很高的活性但是其抗积碳的能力较弱,所以一般来讲转化的反应大部分都是在上端完成的,上端对于活性催化剂的量要求较大。由于转化催化剂的作用主要是位于催化剂的外表面,所以催化剂的外表面越大那么越有利于转化。较小的颗粒由于气动扰动较大所以较利于反应。 表1常用催化剂及其物理性质 表2常用催化剂的化学组成 二、转化催化剂的使用 在制氢催化剂的使用过程中,制氢催化剂的装填需要考虑到转化炉的结构,在工艺流程气密检查合格之后,就将氮气冲入炉内进行循环和升温,在对制氢催化剂使用的过程中要控制加热速度,尽量将加热速度控制在50摄氏度每小时以内。在升温的出口的温度达到350摄氏度,转化管的温度大于350摄氏度,高变床的温度大于200摄氏度的时候,在配气点引入一定压力的蒸汽来对制氢转化过程进行加热,加热的速度要控制在30摄氏度每小时以内,然后采取相应的措施进行脱硫的操作。对天然气的进气以及配氢的流程进行改善,防止温度出现较大程度的扰动,在各参数调节正常之后连入PSA,对氢气进行提纯的操作,如果显示提纯的纯度达到100%的时候,设备正常运转,在这个时候催化剂的作用开始发挥。 三、转化催化剂使用过程中存在的问题 1.催化剂的破碎

制氢方法

工业制氢方法概述 世界上大多数氢气通过天然气、丙烷、或者石脑油重整制得。经过高温重整或部分氧化重整,天然气中的主要成分甲烷被分解成 H2、 CO2、CO 。这种路线占目前工业方法的 80 %, 其制氢产率为 70 %—90 %。烃类重整制氢技术已经相当成熟,从提高重整效率,增强对负载变换的适应能力,降低生产成本等方面考虑,催化重整技术不断得到发展,产生了不少改进的重整工艺 , 其中包括可再生重整、平板式重整、螺旋式重整、强化燃烧重整等。煤直接液化工艺中一个重要单元就是的单元就是加氢液化,下面着重介绍几种工业上制氢工艺: 一、烃类蒸汽转化法 蒸汽转化法可以采用从天然气到石油脑的所有轻烃为原料。主要利用高温下水蒸气和烃类发生反应。转化生成物主要为氢、一氧化碳和二氧化碳。该过程需要消耗大量的能量,只不过要脱除或分离二氧化碳是件很麻烦的事,虽然目前分离二氧化碳的方法在不断推出,如变压吸附法( PSA)、吸收法( 包括物理吸收和化学吸收法),低温蒸馏法,膜分离法等等,然而,二氧化碳的处理仍是很费脑筋,若是直接排入大气,势必造成环境污染。 二、烃类分解生成氢气和炭黑的制氢方法 该方法是将烃类分子进行热分解,产物为氢气和炭黑,炭黑可用于橡胶工业及其它行业中,同时避免了二氧化碳的排放。目前,主要有如下两种方法用于烃类分解制取氢气和炭黑。 ( 1 ) 热裂解法:将烃类原料在无氧( 隔绝空气),无火焰的条件下,热分解为氢气和炭黑。生产装置中可设置两台裂解炉,炉内衬耐火材料并用耐火砖砌成花格成方型通道,生产时,先通入空气和燃料气在炉内燃烧并加热格子砖,然后停止通空气和燃料气,用格子砖蓄存的热量裂解通入的原料气,生成氢气和炭黑,两台炉子轮流进行蓄热和裂解,循环操作,将炭黑与气相分离后气体经提纯后可得纯氢,其中氢含量依原料不同而异,例如原料为天然气,其氢含量可达 85 % 以上。 天然气高温热裂解制氢技术,其主要优点在于制取高纯度氢气的同时,不向大气排放二氧化碳,而是制得更有经济价值、易于储存且可用于未来碳资源的固体碳,减轻了环境的温室效应。除了间歇反应有人曾做过天然气连续裂解的尝试。天然气催化裂解可以提高裂解速度,生成的纳米碳也能催化甲烷裂解过程。甲烷分解反应吸热 kJ/mol,因此最少需要甲烷燃烧( 887kJ/mol ) 的9 % 来提供反应所需热量。该方法技术较简单 , 经济上也还合适。 ( 2 ) 等离子体法:在反应器中装有等离子体炬,提供能量使原料发生热分解。等离子气是氢气,可以在过程中循环使用,因此,除了原料和等离子体炬所需的电源外不需要额外能量源。用高温产品加热原料使其达到规定的要求,多余的热量可以用来生成蒸汽。在规模较大的装置中,用多余的热量发电也是可行的。由于回收了过程的热量,从而降低了整个过程的能量消耗。等离子体法原料的适应性强,几乎所有的烃类,从天然气到重质油都可作为制氢原料,原料的改变,仅仅会影响产品中的氢气和炭黑的比例,此外,装置的生产规模可大可小。 三、烃类部分氧化法

制氢三剂性能及种类

制氢三剂性能及种类 制氢过程使用的催化剂有:钴-钼加氢脱硫催化剂、脱氯催化剂、氧化锌脱硫剂、烃类-水蒸汽转化催化剂、中温变换催化剂、低温变换催化剂。还有PSA吸附剂及磷酸三钠化学助剂。 1.1 钴-钼加氢转化催化剂 1.1.1 作用 制氢原料中含有不同数量的有机硫和无机硫,这些硫化物的存在,会增加原料气体对设备的腐蚀,尤其重要的是制氢过程所使用的含镍、含铜的催化剂极容易被硫中毒,失去活性,严重影响生产的顺利进行。但是,有机硫化物性能稳定,不容易被脱除,只有在钴-钼催化剂的作用下,与氢气快速反应生成硫化氢,才能被脱除。 1.1.2 特点 钴-钼加氢转化催化剂必须在有氢气存在的条件下,才能将有机硫转化无机硫,否则,将无法起作用。 1.1.3 物理化学特性(T205) 外观:灰蓝色条状物 几何尺寸:Φ3~3.5×3~10mm 堆密度:0.65~0.8kg/L 比表面:180~220m2/g 1.1.4 化学组成

C O O:2~4% M O O3:10~13% 载体:TiO2、AL2O3 1.2 氧化锌脱硫剂(T306) 1.2.1 作用 氧化锌与硫化氢作用生成难于解离的硫化锌,以此脱除制氢原料气中的硫化氢,一般用于精脱硫过程。 1.2.2 特点 氧化锌脱硫剂能脱除无机硫和一些简单的有机硫,硫容较高,能使原料中的硫含量降至0.2~0.02×10-6。反应温度范围较宽(180~400℃),是一种比较理想的脱硫剂,在较高温度(350~400℃)条件下使用效果更好。 1.2.3 物理化学特性 外观:白色条状 几何尺寸:Φ5mm×5~10 堆密度: 1.16kg/L 比表面:45.88m2/g 总孔容积:0.28ml/g 穿透硫容:>10% 1.2.4 化学组成 ZnO:≥ 85% 1.3 烃类-水蒸汽转化催化剂(Z402、Z405)

5制氢催化剂的使用

第五章制氢催化剂的性质和使用 制氢过程使用的催化剂有如下几种: (1)钴——钼加氢转化脱硫催化剂; (2)脱氯催化剂; (3)氧化锌脱硫剂; (4)烃类——水蒸汽转化催化剂; (5)中温变换催化剂; (6)低温变换催化剂; (7)甲烷化催化剂; (8)吸附剂。 这些催化剂的使用条件非常苛刻,为了使装置实现安稳长满优生产,确保经济、合理、高效的生产目的,必须严格控制原料杂质的浓度,以避免杂质对催化剂的损害。 制氢所使用的原料一般都是轻油,近年一些装置掺用部份炼厂干气制氢,这些制氢原料中通常含有的对制氢催化剂有影响的杂质是硫、氯、有机金属化合物。 硫对含镍的转化催化剂和甲烷化催化剂,对含铜的低温变换催化剂都会造成毒害,一般转化炉入口原料中硫含量要求小于0.5ppm。硫中毒会使转化炉管产生“热带”,也会促使出口气体甲烷含量增高。 氯离子具有很高的迁移性,可随工艺气流迁移,对下游催化剂及设备造成威胁。许多合金钢受氯侵蚀后产生应力腐蚀,氯的侵蚀导致许多换热器破裂。氯会导致转化催化剂失活,对铜系低温变换催化剂的影响更大,氯与铜形成的新物质的熔点很低,易升华又易熔于水,在低变工艺条件下,这些氯化合物可以穿透整个床层。一般要求原料中含氯应低于5 ppb。 有机金属化合物会沉积在加氢脱硫及转化催化剂表面,导致催化剂活性的永久性衰退,一般要求原料中重金属含量应低于5ppb。 5.1加氢转化催化剂 制氢原料中含有不同数量的有机硫和无机硫,这些硫化物的存在,会增加原料气体对设备的腐蚀,尤其重要的是制氢过程所使用的含镍、含铜的催化剂极容易被硫中毒,失去活性,严重影响生产的顺利进行。但是,有机硫化物性能稳定,不容易被脱除,只有在加氢催化剂的作用下,与氢气反应将有机硫转化生成硫化氢,才能被脱除。传统加氢转化催剂的主要成份是υ-Al2O3担载的C O O和M O O3,即钴——钼加氢转化催化剂,近年来北京海顺德催化剂有限公司生产的加氢催化剂的载体改用钛的氧化物,这种催化剂也取得一定的实用业绩。5.1.1加氢剂的种类及物化性质 5.1.1.1国内常用加氢转化催化剂的型号及性能υ 国内加氢转化催化剂现有十几种型号,经常用于制氢装置上的仅有几种,如表5-1所示。大型氨厂加氢转化催化剂(如T201型)寿命最长超过十年,此类催化剂质量已不亚于国外催化剂的水平,因此,国产化率已达100%。

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

制氢装置转化中变催化剂还原方案

制氢装置转化中变催化剂还原方案 注: 此过程还需催化剂厂家确认。 6.2.1转化催化剂还原的步骤 (M)-确认转化催化剂达到还原条件: 转化入口温度480-520℃,出口温度为820±10℃ 水蒸汽量为正常负荷的50%,约控制在8t/h左右 氢气纯度>90% 中变床层温度稳定在250℃ [P]-由管GH-2101引外来开工用氢入原料气压缩机入口分液罐D-2101,开始配氢量100-200Nm3/h,然后根据情况慢慢增加。 [I]-配氢后要密切注意系统压力,若由于配氢量增加造成系统压力升高时,要及时放空到火炬线。 [I]-分析转化入口气中氢气浓度,由2%开始,每次依次增加2%,若转化和中变温升都不明显则将氢气浓度继续提高2%,直到循环气中的氢气含量达到20%后,每次增加10%,继续配氢,直到循环气中的氢气含量达到60%以上。注意循环气中氢浓度达到20%以后,每次提高氢气浓度时都相应要把配蒸汽量提高,维持H2O/H2比值在5-7之间。

相应浓度下的配入蒸汽量可参考如下计算: 氮氢气循环量按5000Nm3/h计,H2O/H2比按 5-7计算 最小配汽量kg/h=5000×H2%×5×18/22.4 最大配汽量kg/h=5000×H2%×7×18/22.4 [I]-转化催化剂还原升温控制表: 温度范围(℃)升温速度 (℃/h) 时间(h) 累计时间 (h) 常温~130 10 10 10 130 恒温10 20 130~220 10-15 8 28 220 恒温10 38 220~350 10 12 50 350 恒温10 60 350~800 30 15 75 [I]-转化催化剂还原升温曲线:

甲醇水蒸汽重整制氢催化剂的研究

收稿日期:!""#$"%$&’;作者简介:张晓阳(’()#$ ),男,工程师,电话"!*$*%(#!("),电邮+,-. !/’/0-1023/45。甲醇水蒸汽重整制氢催化剂的研究 张晓阳 (西南化工研究设计院,成都#’"!!% )摘要:对67$8-$9’催化剂上甲醇水蒸汽重整制氢进行了研究,结合燃料电池对氢气中一氧化碳含量的特殊要求,并模拟工业装置测试,讨论了催化剂主成分含量、反应温度、反应压力、液空速等对一氧化碳含量和催化剂时空收率的影响,提出了适合燃料电池使用的甲醇水蒸汽重整制氢催化剂。 关键词:甲醇;蒸汽重整;制氢;燃料电池;催化剂中图分类号::;!’ 文献标识码:9 文章编号:’""’$(!’((!""))"’$’"$"< 近年来,燃料电池的迅猛发展和商业化的进程影响了整个世界,其高效节能,以及零排放或接近零排放的良好环境性能,使之成为当今世界能源和交通领域开发的热点。燃料电池可提供可移动电能这一点在野外作业和燃料电池汽车方面的应用尤为突出。目前要实现燃料电池的商业化,主要问题是解决氢源问题和降低成本,而氢源技术已成为燃料电池商业化的技术瓶颈。氢燃料来源主要有两种,一是直接用氢,二是甲醇制氢技术,这两种方法又存在诸多不同的技术路线,因此什么样的氢源最适合用于燃料电池汽车的问题一直以来都是争论的焦点。 直接用氢技术存在储氢量和储氢方法的限制,因此开发大功率的燃料电池仍存在很大的难度,甲醇制氢技术在原料的供应方面有很大的优势。目前采用的甲醇制氢技术主要有甲醇部分氧化制氢和甲醇水蒸汽重整制氢,前者的优点在于基本不需要提供外来热源,但催化剂的时空收率相对与后者比较相对较低,且存在反应温度较高和催化剂寿命较短的缺点,因此在燃料电池的应用上存在一定的问题。甲醇水蒸汽重整制氢在催化剂上可分为铂系贵金属和铜系催化剂两种,国外对铂系贵金属催化剂的研究比较多,但由于其成本较高在燃料电池汽车方面使用有很大的困难,仅适合于手机、手提电脑等小规模用电。铜系催化剂时空收率比较高,成本较低,更适合大功率的燃料电池,因此国内外对铜系催化剂 的研究也十分活跃 [’]。’实验部分 ’=’催化剂的制备 取配制好的67(>?&)!?&@!?、9’(>?&)& ?(@!?和8-(>?&)!?#@! ?混合溶液预热后置于原料罐中,取>,!6?&溶液置于另一原料罐中,控制反应温度在)"A 左右,并在不断搅拌下,将两者并流到三口烧瓶中,调节B @C )="左右,搅拌老化!D ,洗涤过滤至滤液为中性,’’"A 烘干并在<""A 煅烧

制氢装置催化剂的特殊处理

制氢装置催化剂的特殊处理 6.3.1钻钼加氢催化剂再生 钻钼加氢催化剂由于长期使用,表面的积炭量也会产生并 逐步增加,从而使催化剂转化活性下降,影响装置的正常操作,此时,应将钻钼加氢催化剂再生,以提高其活性。催化剂再生一般放在装置停工末期进行,具体步骤如下: 在装置停工末期加氢及脱硫系统通入蒸汽,当温度降至250C时,打开加氢反应器后放空,脱硫反应器通入氮气置换,保压。 加氢反应器的蒸汽流中通入工业风,初期控制混合汽流中氧含量(Q)为0.5 %左右,视床层温度变化调整空气配入量,当床温升至350-400 C时,烧焦速度很快,床层温升明显,因此,必须严格控制蒸汽中配空气量,保证床层不超温,以防破坏催化剂。 在催化剂再生过程中,测试放空气流中CQ及02含量, 监测催化剂再生程度,当放空气中氧含量与配入气流中氧含量相等时,再生完毕,可加大空气量继续吹扫同时切除蒸汽流,当床层温度以30?50 C /h降温速度降至200C左右量,引入N2置换保压。 6.3.2转化催化剂的处理 6.3.2.1转化催化剂钝化

转化催化剂钝化一般是在装置停车且需将催化剂卸出才进行的,所用氧化剂一般用蒸汽即可。 1)当原料气切除之后,转化炉继续通蒸汽对催化剂进 行钝化,温度维持在650 C左右(以不高于700 C为宜),大 约经过6-8小时,至出口气体中不含非冷凝气体为止(诸如氢气、烃类)等,这时可逐步降温,降温速度控制在50 -70 C /h,必要时可关闭部分火嘴。 2)当炉温降至450C左右时,停炉、熄火,通过氮气置换并自然通风冷却至环境温度。 632.2 转化催化剂的烧炭 转化催化剂在实际生产过程中,由于操作不当,例如水碳比过小、原料气净化不好,或者重质烃串入,造成催化剂积炭而失去活性,在催化剂轻微积炭时,可采用蒸汽烧炭的办法,即降低负荷至正常量的30%左右,增大水碳比至10左右,控制正常操作时的温度,以达到消除积炭的目的,同时可以保持催化剂还原态。积炭严重时。必须切除原料,用水蒸汽烧炭,蒸汽量为正常操作的30-40%,压力为0.98MPa左右,严格控制温度,一般温度低于运行时的温度,每半小时分析一次尾气CQ浓度,当其下降并稳定在一个低数值,烧炭结束。空气烧炭法热效应大,反应激烈,对催化剂危害大,一般不宜采用。 6.323 转化催化剂的中毒处理 1)当炉管内反应温度较高时,镍催化剂硫中毒是可逆

CNZ—甲醇制氢催化剂使用说明书

CNZ—甲醇制氢催化剂使用说明书 CNZ---1型催化剂是一种以铜为活性组分。由铜、锌、铝等的氧化物组成的新型催化剂。其对甲醇蒸汽转化制氢和二氧化碳具有高活性和良好的选择性。 一、催化剂的主要特性 1.型号:CNZ—1型 2.外观颜色、外观尺寸和形状: 催化剂为黑色圆柱体。表面光滑,有光泽。 公称尺寸:φ5×5毫米 4.堆密度:0.85~1.15公斤/升 5.机械破碎强度:≥60牛[顿]/厘米 6.催化活性 采用模拟反应器测定 反应器:φ25×1.5mm 催化剂尺寸:φ5×5mm 催化剂装量:60毫升 还原条件: 还原压力:常压 还原温度:最高230℃ 还原空速:1000时-1 还原时间:50小时 还原气:含H2 0.5~2%的N2气(或脱硫天然气) 测定条件: 反应压力:常压 反应温度:250℃左右 水甲醇流量:60毫升/小时 催化剂活性: 时空产率≥600Nm3/m3催化剂.时 二.催化剂的包装、贮存和装卸 1.催化剂用塑料袋包装后装入铁桶内。贮存在室内,严防受潮、受震和毒物污染。 搬运过程中不要在地上滚动。不能从高于0.5米的地方落下,或撞击。 2.在正常情况下,催化剂可以贮存一年以上,对催化剂的活性和物理性能不会影 响。 3.催化剂装入反应其前,应用3mm筛子过筛,除渠少量粉末。并检查反应器有 无堵塞物或遗留工具等。 4.催化剂装入反应器时,采用专用布袋或胶管。将催化剂装入布袋再导入反应管 中填装,直至管板表面为止。装填时应防止催化剂架桥。要求每根反应管所装催 化剂数量相同,高度相同。 5.操作人员在装填催化剂时,严禁直接在催化剂上行走、踩踏。应在催化剂上垫

二甲醚重整制氢技术

二甲醚重整制氢技术 摘要:本文总结和评述了二甲醚重整制氢技术的研究进展,包括二甲醚重整制氢的方法以及重整催化剂等,并指出催化剂的新型制备方法与等离子体重整技术。重点介绍了二甲醚部分氧化重整制氢的实验方案。 关键词:二甲醚;催化剂;重整;氢气 一、前言 能源是人类生存不可或缺的物质基础,是社会经济向前发展的动力。经济的飞速发展带来了能源短缺和环境污染的双重危机,为此世界各国都在积是极进行可再生能源的研究,特别是以氢为燃料的燃料电池汽车得到迅速发展。H2密度最小的气体,无色无味,难溶于水,具有可燃性;但氢气的使用尚存在运输及储存等问题,解决方法之一是寻找一种液体原料实现小规模现场制氢或车载制氢。二甲醚由于具有含氢量高,无毒、无“三致”作用,环境友好,易于存储和运输,且与液化石油气(LPG)相似等优点,从而成为一种理想的用于现场重整制氢的液体原料,其相关研究也成为近期的热点。 近年来,为应对日益严峻的能源危机和环境污染,氢作为一种绿色能源受到世界各国的广泛关注。氢燃烧只产生水,具有能量密度高、无污染等优点,而且二甲醚重整制氢能有效地解决氢的运输和储存等问题,技术也成熟。与甲醇重整制氢相比,二甲醚重整制氢则具有较多优势:①二甲醚含氢量高,无毒,友好环境,易液化,方便运输和储存;②二甲醚物理性质与液化石油气相近,可利用现有液化石油气的基础设施;③二甲醚的来源多样化且较为经济,大规模应用不会受到限制。近年来,二甲醚(dimethyl ether,DME)已成为石油替代产品和新型二次能源的热点研究方向,引起欧美、日韩等国政府和专家高度关注与重视,并已经取得了很多成果。我国的能源资源的特点是“富煤、少油、有气”,同时二甲醚可从煤、天然气和生物质制得,所以发展二甲醚经济体系对于我国经济发展、环境保护与生态平衡具有重大战略意义[1-2]。 二、综述 本文总结了二甲醚重整制氢技术的研究进展,包括二甲醚重整制氢的方法以及重整催化剂等,并简要分析了各种二甲醚重整方法应用于车载重整器的可能性,指出催化剂的新型制备方法与等离

天然气制氢工艺与技术

天然气制氢工艺与技术 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。 天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。 1 天然气制氢的选择理论分析 氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。 2 天然气制氢工艺原理 天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生. 反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q 主要技术指标。压力: 1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。 3、天然气水蒸汽重整制氢需解决的关键问题

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

天然气制氢装置催化剂装填及使用

天然气制氢装置催化剂装填及使用 1.1加氢和脱硫催化剂装填及使用 铁锰脱硫剂和氧化锌脱硫剂的装填 脱硫剂的装填,请严格按照催化剂厂商的说明书进行,以下装填方法仅供参考。 1、脱硫剂装填所需设备 (1)具有翻板阀的漏斗,用一根长度适当的帆布软管接在阀的底部。 (2)木塔板 (3)安全灯、空气源等 2、检查及准备 (1)先在底部装大直径耐火球,装至高标线100mm处,然后再装较小直径耐火球至标线并在其上放好筛网。 (2)用帆布筒将催化剂装入设备内,注意催化剂落下高度不超过1.5米,人站在放在催化剂上的木塔板上,边装边扒平催化剂,直到标线处为止。 (3)做好整个装填过程的记录

1.2转化催化剂的装填及使用 a、装填所需设备 (1)催化剂计量桶 (2)磅秤>50Kg。三个细帆布装料袋。 (3)桶子,每个10升,三个。 (4)装料漏斗二个,漏斗直径最大处为20mm,漏斗嘴内径50mm,外径<60mm (5)真空卸触媒设备 (6)振荡器、压力表及专用测压装置 (7)带有刻度的测深尺或尺杆,长度最短为12米。 (8)空气源,压力为0.7MPa左右,5.5m3/min (9)空气压差测试装置 (10)有铁丝网保护罩的吊灯或防爆型吊灯及电线 (11)检查催化剂用的筛网 (12)8倍左右的望远镜 为确保无杂物遗留在管内或催化剂托盘上,可采用真空卸触媒装置吸净异物,卸触媒的软管()放入每根炉管底部,

同时使用真空装置,就能保证把掉在里面的松散东西吸出。然后把吊灯放到每根转化管中去,建议使用8倍左右的望远镜来帮助检查。 C、检查催化剂 用一个孔眼为3mm的筛网过滤催化剂,除去触媒碎片并检查有无异物。 d、炉管的测量 用测深游标尺进行测量,装填前先测定总装填高度,确定每次装填高度,每装填一次后要测定剩下高度,经振荡后再测量,做好记录,并作为永久性记录保存,对于同一转化管分装两种催化剂时应先测量并记下底层触媒要求的深度。 e、装催化剂 每根转化炉管的催化剂装填量是按装满的计量桶来计算的,每一次装填桶数应做好记录。 用漏斗将催化剂倒入帆布筒内,再将帆布筒伸入到转化管内使其底部接近装填起始位置,布袋操作的关键是将布袋下端折叠200mm,只要把伸入到炉管的布袋轻轻一提,触媒

温度对制氢催化剂的影响

氧化锌脱硫剂在200℃~400℃下,基本上可将气体中H2S脱至接近零。其反应为: H2S +ZnO =H2O +ZnS 因为本反应为放热反应,随着温度的增加,气体中H2S浓度有所增加(受平衡常数影响),但较高的温度可使吸收速度加快。当停留时间短(气速大)时,较高的温度反而对脱硫有利。在350℃~400℃温度下,氧化锌脱硫剂也能脱除有机硫,以硫醇为例,其反应方程式为: ZnO+CnH2n+1SH+H2=ZnS+CnH2n+2+H2O 但噻吩不能用氧化锌直接脱除。因此,当钴钼加氢催化剂活性下降时,适当提高一下脱硫床层温度,不但对加氢脱硫有利,而且有利于在氧化锌床层中将未转化的有机硫吸收掉。但温度过高,氧化锌的脱硫能力将下降。 本装置氧化锌脱硫剂反应器(R1002AB)设计温度,入口温度℃:380℃、出口温度℃:340℃。 氧化锌脱硫剂的硫容(每100kg 脱硫剂吸收硫的重量,常以百分数来表示)随操作温度的升高而增加,因此当硫容饱和而使脱硫不合格时,适当提高一下操作温度,则可增大其硫容,而继续使用一段时间。氧化锌脱硫剂的硫容一般在15%~20%之间。 总结:根据平时操作温度一般都控制在入口340±10℃左右,出口在320±10℃左右。 2.温度对转化催化剂的影响? 因为转化反应是吸热反应,因此提高温度不仅可以加快反应速度,而且有利于平衡,即可以多生成CO和H2,降低转化尾气中残余CH4的含量。但是,提高温度受到转化炉管的材料的限制。对本装置Cr25Ni35NbTi离心浇铸炉管,设计管外壁温度不允许超过960℃,因此只能在设计允许的出口气体温度840℃左右的一定范围内加以调节。相反,为了延长价格昂贵的转化管的寿命,还应在满足工业氢质量的前提下,尽量采用较低的出口温度。 总结:根据平时操作温度一般都控制在入口450±10℃左右,出口在780±10℃左右。

制氢装置催化剂和吸附剂装填还原方案

制氢装置催化剂和吸附剂装填还原方案 6.1催化剂、吸附剂装填方案 6.1.1制氢装置催化剂装填方案 A级操作框图 初始状态S0 装置所有项目完工,并已气密置换合格 6.1.1.1总则 6.1.1.2安全注意事项 6.1.1.3催化剂装填的技术要求 6.1.1.4催化剂装填的准备工作 6.1.1.5加氢催化剂装填 6.1.1.6脱硫剂与脱氯剂的装填步骤 6.1.1.7中变催化剂的装填 6.1.1.8转化催化剂装填方案 6.1.1.9PSA吸附剂装填 取终状态S1 催化剂、吸附剂装填完毕,反应器、吸附塔已气 密 6.2 转化、中变催化剂还原方案 6.2.1转化催化剂的还原步骤 6.2.2中变催化剂的的步骤

6.2.3转化、中变催化剂的配氢还原 6.3催化剂的特殊处理 6.3.1钴钼加氢催化剂的再生 6.3.2转化催化剂的处理 B级操作过程 初始状态S0 装置已热氮循环,烘炉煮炉完毕,问题已得到 整改 6.1催化剂、吸附剂装填方案 6.1.1制氢装置催化剂装填方案 6.1.1.1总则 参见C级6.1.3.1 6.1.1.2安全注意事项 参见C级6.1.3.2 6.1.1.3催化剂装填的技术要求 参见C级6.1.3.3 6.1.1.4催化剂装填的准备工作 [P]-准备好装填催化剂的工具:

提升料斗 1.0m3 2个 装填料斗0.5m3下料口外径170mm 2个 连体工作服中、大 各20套 帆布软管φ200×15m 30条 照明灯及电源24V 2套 磅秤50KG 2台 皮尺30m 4个 钢卷尺5m 5套 绳梯20m 4套 麻绳或(尼龙绳) φ10 50m Φ15 100米 φ14×30m 10条(6条带

制氢技术比较及分析修订稿

制氢技术比较及分析 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。

(2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢

相关主题
文本预览
相关文档 最新文档