当前位置:文档之家› 求不定积分的几种方法_袁春燕

求不定积分的几种方法_袁春燕

求不定积分的几种方法_袁春燕

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一?不定积分的概念与性质 定义1如果F (x)是区间I上的可导函数,并且对任意的x I,有F'(x)=f(x)dx则称F (x)是f(x)在区间I上的一个原函数。 定理1 (原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数 F (x),使得F (x) =f(x) (x I) 简单的说就是,连续函数一定有原函数 定理2设F (x)是f(x)在区间I上的一个原函数,贝U (1) F (x) +C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2 设F (x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数 F (x) +C称 为f(x)在区间I上的不定积分,记为f(x)d(x),即f(x)d(x)=F(x)+C 其中记号称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则[f(x) g(x)]dx= f(x)dx g(x)dx. 性质2 设函数f(x)存在原函数,k为非零常数,贝U kf(x)dx=k f(x)dx. 二.换元积分法的定理 如果不定积分g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[ (x)] ( (x).做变量代换u= (x),并注意到’(x) dx=d (x),则可将变量x的积分转化成变量u的积分,于是有 g(x)dx= f[ (x)] ( (x)dx= f(u)du. 如果f(u)du 可以积出,则不定积分g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。

欧拉方程的求解教材

欧拉方程的求解 1.引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783). 几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数” 欧拉还是许多数学符号的发明者,例如用π表示 圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”. 在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解. 但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明. 2.几类欧拉方程的求解 定义1 形状为 ()1(1)110n n n n n n y a x y a xy a y x ---'++++= (1) 的方程称为欧拉方程. (其中1a ,2a , ,1n a -,n a 为常数)

2.1二阶齐次欧拉方程的求解(求形如K y x =的解) 二阶齐次欧拉方程: 2120x y a xy a y '''++=. (2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ) ,且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2). 对K y x =求一、二阶导数,并带入方程(2),得 212()0K K K K K x a Kx a x -++= 或 212[(1)]0K K a K a x +-+=, 消去K x ,有 212(1)0K a K a +-+=. (3) 定义2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程. 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解. 于是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为 (i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根) (其中1c 、2c 为任意常数)

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

详解Matlab求积分的各种方法

详解Matlab求积分的各种方法 一、符号积分由函数int来实现。 该函数的一般调用格式为: int(s): 没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v): 以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b): 求定积分运算。 a,b分别表示定积分的下限和上限。 该函数求被积函数在区间[a,b]上的定积分。 a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。 当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。 当a,b中有一个是inf时,函数返回一个广义积分。 当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。 内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变 量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =57/-

/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4) %给出有理数 解>>VF2=vpa(F2) %给出默认精度的数值解VF2 = 224.9 232805二、数值积分 1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。 它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1], i=1,2,…,n,其中x1=a,xn+1=b。 这样求定积分问题就分解为求和问题。 2.数值积分的实现方法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。 该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace)基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。 该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace)其中fname是被积函数名。 a和b分别是定积分的下限和上限。 tol用来控制积分精度,缺省时取tol= 0.0 01。 trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace= 0。

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求2 30x dx ?的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n . (2)近似代替:△3 2()i i i S f x x n ξ??=?=? ??? (3)求和:33111222n n n i i i i i i S x n n n ===???????≈?=? ? ? ???????∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞????????+++?? ? ? ????????? ?? =4 43332244221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+? ? =224(21)lim n n n n →∞++==4. ∴2 30x dx ?=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法 例2 求定积分2 21(21)x x dx ++?的值. 分析:可先求出原函数,再利用微积分基本定理求解.

解:函数y =2 21x x ++的一个原函数是y =3 23x x x ++. 所以.2 2 1(21)x x dx ++?=3221()|3x x x ++=81421133????++-++ ? ?????=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原 函数. 三、几何意义法 例3 求定积分1 1dx -?的值. 分析:利用定积分的意义是指曲边梯 形的 面积,只要作出图形就可求出. 解:1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2S π= 半圆,又在x 轴上方. 所以1 1)d x -?=2 π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴44tan xdx π π-?;⑵22sin 1 x x dx x ππ-+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解. 解:由被积函数tan x 及22sin 1 x x x +是奇函 数,所以在对称区间的积分值均为零.

求不定积分的方法及技巧小汇总

求不定积分的方法及技巧小汇总~ 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会 用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

浅谈无理函数不定积分的求解方法

浅谈无理函数不定积分的求解方法 摘要:我们将自变量包含在根式之下的函数称为无理函数。这样的特点使得无理函数不定积分,在通常情况下求解较为复杂。对于一个无理函数来说,大多数情况下,较常见的情况是同一个无理函数有多个求不定积分的方法,如何从多种不定积分求解方法中选出最优的解法,就是一个我们需要考虑的问题了。 本文旨在将以往的无理函数不定积分求解方法进行综述,探讨各个方法在求解上的应用与具体使用过程。同时,总结了对一些常见的无理函数不定积分类型的常用解法。为无理函数不定积分的求解提供一种思路。 关键字:无理函数不定积分计算方法 Abstract:We usually call the function which have one or more arguments under the radical as irrational function. The feature of irrational function makes the irrational function integral become tough problem for we to solve. For an irrational function, in most cases, the more common situation is the same irrational function with multiple indefinite integral method. So, how to select an optimal solution from a variety of indefinite integral method, is a problem that we need to consider. This article aims to past the irrational function of indefinite integral solution method to carry on the summary, discusses the application of various methods on solving the use with specific process. At the same time, summarizes the irrational function of some common indefinite integral types of commonly used method. In order to provide a way to solve the irrational function indefinite integral problems. key words:irrational function indefinite integral method

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

74简单无理函数的不定积分与三角函数的不定积分

§7.4简单无理函数的不定积分与三角函数的不定积分 一、简单无理函数的不定积分 对被积函数带有根号的不定积分,它的计算是比较麻烦的。但对某些特殊情况,我们可通过作变量替换,将其转化为有理函数的不定积分,这样就可以用上述的方法计算。 下面总假设),(y x R 表示关于变量y x ,的有理函数。 1.??? ? ??++n d cx b ax x R ,型函数的不定积分。其中0≠-bc ad 解法:作变量替换n d cx b ax t ++=,即dt t dx t ct a b dt x n n )(,)(φφ'==--=,于是 []??'=??? ? ??++dt t t t R dx d cx b ax x R n )(),(,φφ, 转化为有理函数的不定积分。 例1.求 ?++dx x x x x 14 158217 1 分析:要把被积函数中的几个根式化为同次根式。 ()2 14 7 7 1x x x = = ,()7 14 2 1x x x = =,() 16 14 7 8 7 8x x x = = ,() 15 14 14 15x x = 作变量替换14x t =,即dt t dx t x 1314 14,==,就可以把原不定积分化为有理函数的不定积分。 解:作变量替换14x t =,即dt t dx t x 1314 14,==,则 =++=?++=++???dt t t dt t t t t t dx x x x x 111414513 15167214 1582 1 71 例2.求 ? -?+-dx x x x 2 3 ) 2(1 22 解:设,223t x x =+- 则33122t t x +-=,dt t t dx 2 32 ) 1(12+-=,所以 ??? =-=+-???? ? ??+--?=-?+- dt t dt t t t t t dx x x x 323223323 1 43) 1(1212221)2(122 2.() c bx ax x R ++2,型函数的不定积分,其中042≠-ac b (即方程02 =++c bx ax 无重根) 分两种情况讨论: (1)042 >-ac b 时,方程02 =++c bx ax 有两个不等的实数根α、β

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

相关主题
文本预览
相关文档 最新文档