当前位置:文档之家› 2013届高考文科数学一轮复习课时作业(15)导数与函数的极值、最值A

2013届高考文科数学一轮复习课时作业(15)导数与函数的极值、最值A

2013届高考文科数学一轮复习课时作业(15)导数与函数的极值、最值A
2013届高考文科数学一轮复习课时作业(15)导数与函数的极值、最值A

课时作业(十五)A

15讲 导数与函数的极值、最值

[时间:45分钟 分值:100分]

基础热身

1.下列命题中正确的是( )

A .导数为0的点一定是极值点

B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0且f ′(x 0)=0,那么f (x 0)是极大值

C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0且f ′(x 0)=0,那么f (x 0)是极小值

D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0且f ′(x 0)=0,那么f (x 0)是最小值

2.函数y =x +1x

的极值情况是( ) A .既无极小值,也无极大值

B .当x =1时,极小值为2,但无极大值

C .当x =-1时,极大值为-2,但无极小值

D .当x =1时,极小值为2,当x =-1时,极大值为-2

3.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( )

A .2

B .3

C .4

D .5

4.已知函数y =f (x )的导函数y =f ′(x )的图象如图K15-1,则( )

图K15-1

A .函数f (x )有1个极大值点,1个极小值点

B .函数f (x )有2个极大值点,2个极小值点

C .函数f (x )有3个极大值点,1个极小值点

D .函数f (x )有1个极大值点,3个极小值点

能力提升 5.[2011·张家界二模] 函数f (x )=ax 3+bx 在x =1a

处有极值,则ab 的值为( ) A .2 B .-2

C .3

D .-3

6.设函数f (x )=2x +1x

-1(x <0),则f (x )( ) A .有最大值 B .有最小值

C .是增函数

D .是减函数

7.[2011·福建卷] 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )

A .2

B .3

C .6

D .9

8.已知函数f (x )=12

x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )

A .m ≥32

B .m >32

C .m ≤32

D .m <32

9.[2011·浙江卷] 设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能...

为y =f (x )的图象是( )

图K15-2 10.函数f (x )=12

x 2-ln x 的最小值为________. 11.[2012·长春模拟] 已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n =________.

12.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.

13.已知函数f (x )=13

x 3-bx 2+c (b ,c 为常数).当x =2时,函数f (x )取得极值,若函数f (x )只有三个零点,则实数c 的取值范围为________.

14.(10分)已知函数f (x )=x 5+ax 3+bx +1,仅当x =-1,x =1时取得极值,且极大值比极小值大4.

(1)求a 、b 的值;

(2)求f (x )的极大值和极小值.

15.(13分)已知f (x )=x 3+bx 2+cx +2.

(1)若f (x )在x =1时有极值-1,求b 、c 的值;

(2)在(1)的条件下,若函数y =f (x )的图象与函数y =k 的图象恰有三个不同的交点,求实数k 的取值范围.

难点突破

16.(12分)已知函数f (x )=x ln x .

(1)求f (x )的最小值;

(2)若对所有x ≥1都有f (x )≥ax -1成立,求实数a 的取值范围.

课时作业(十五)A

【基础热身】

1.B [解析] 根据可导函数极值的判别方法,如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值,反之是极小值,而导数为0的点不一定是极值点.

2.D [解析] 函数的定义域为(-∞,0)∪(0,+∞),y ′=1-1x 2=x 2-1x 2,令y ′=0,

3.D [解析] f ′(x )=3x 2+2ax +3,由题意得f ′(-3)=0,解得a =5.

4.A [解析] x 1、x 4是导函数的不变号零点,因此它们不是极值点,而x 2与x 3是变号零点,因此它们是极值点,且x 2是极大值点,x 3是极小值点.

【能力提升】

5.D [解析] 由f ′????1a =3a ???

?1a 2+b =0,可得ab =-3.故选D. 6.A [解析] 由题意可得f ′(x )=2-1x 2(x <0),令f ′(x )=0得x =-22

(舍正), 列表如下:

f (x )在-∞,-22单调递增,在-22

,0单调递减,故选A. 7.D [解析] f ′(x )=12x 2-2ax -2b ,

∵f (x )在x =1处有极值,

∴f ′(1)=0,即12-2a -2b =0,化简得 a +b =6,

∵a >0,b >0,

∴ab ≤????a +b 22=9,当且仅当a =b =3时,ab 有最大值,最大值为9,故选D.

8.A [解析] 因为函数f (x )=12

x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2,令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272

,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32

. 9.D [解析] 设F (x )=f (x )e x ,

∴F ′(x )=e x f ′(x )+e x f (x )=e x (2ax +b +ax 2+bx +c ),

又∵x =-1为f (x )e x 的一个极值点,

∴F ′(-1)=e -1(-a +c )=0,即a =c ,

∴Δ=b 2-4ac =b 2-4a 2,

当Δ=0时,b =±2a ,即对称轴所在直线方程为x =±1;

当Δ>0时,????b 2a >1,即对称轴在直线x =-1的左边或在直线x =1的右边.

又f (-1)=a -b +c =2a -b <0,故D 错,选D.

10.12 [解析] 由?????

f ′(x )=x -1x >0,x >0,得x >1. 由????? f ′(x )=x -1x <0,x >0,得0

?????

m 2+3m -n -1=0,-6m +n +3=0, 解得????? m =2,n =9或????? m =1,n =3,检验知当????? m =1,n =3

时,函数没有极值.所以m +n =11. 12.4 [解析] ∵y ′=3x 2+6ax +3b ,

∴????? 3×22+6a ×2+3b =0,3×12+6a ×1+3b =-3??????

a =-1,

b =0.

∴y ′=3x 2-6x ,令3x 2-6x =0,

则x =0或x =2,∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.

13.????0,43 [解析] ∵f (x )=13

x 3-bx 2+c ,∴f ′(x )=x 2-2bx .∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0)或x ∈(2,+∞)时,f (x )单调递增.

若f (x )=0有3个实根,则????? f (0)=c >0,f (2)=13×23-22+c <0,解得0<c <43. 14.[解答] (1)∵f (x )=x 5+ax 3+bx +1,

∴f ′(x )=5x 4+3ax 2+b .

∵x =±1时有极值,∴5+3a +b =0,∴b =-3a -5①,

代入f ′(x )得f ′(x )=5x 4+3ax 2-3a -5=5(x 4-1)+3a (x 2-1)=(x 2-1)[5(x 2+1)+3a ] =(x +1)(x -1)[5x 2+(3a +5)].

∵f (x )仅当x =±1时有极值,∴5x 2+(3a +5)≠0对任意x 成立.

∴3a +5>0,a >-53

. 考察f (x )、f ′(x )随x 的变化情况:

∴f (-1)-f (1)=4,即[(-1)5+a (-1)3+b (-1)+1]-(15+a ·13+b ·1+1)=4,

整理得a +b =-3②,

由①②解得?

????

a =-1,

b =-2. (2)∵a =-1,b =-2,

∴f (x )=x 5-x 3-2x +1.

∴f (x )的极大值为f (-1)=3.

f (x )的极小值为f (1)=-1.

15.[解答] (1)∵f (x )=x 3+bx 2+cx +2,

∴f ′(x )=3x 2+2bx +c .

由已知得f ′(1)=0,f (1)=-1,

∴?

????

3+2b +c =0,1+b +c +2=-1,解得b =1,c =-5. 经验证,b =1,c =-5符合题意.

(2)由(1)知f (x )=x 3+x 2-5x +2,

f ′(x )=3x 2+2x -5.

由f ′(x )=0得x 1=-53

,x 2=1. 当x 变化时,f ′(x ),f (x )的变化情况如下表: 根据上表,当x =-53

时函数取得极大值且极大值为f ???-53=22927,当x =1时函数取得极小值且极小值为f (1)=-1.

根据题意结合上图可知k 的取值范围为?

???-1,22927. 【难点突破】

16.[解答] (1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x .

令f ′(x )>0,解得x >1e ;令f ′(x )<0,解得0

. 从而f (x )在????0,1e 单调递减,在???

?1e ,+∞单调递增. 所以,当x =1e 时,f (x )取得最小值-1e

. (2)法一:令g (x )=f (x )-(ax -1),则g ′(x )=f ′(x )-a =1-a +ln x ,

①若a ≤1,当x >1时,g ′(x )=1-a +ln x >1-a ≥0,

故g (x )在(1,+∞)上为增函数,所以,x ≥1时,g (x )≥g (1)=1-a ≥0,即f (x )≥ax -1.

②若a >1,方程g ′(x )=0的根为x 0=e a -1,

此时,若x ∈(1,x 0),则g ′(x )<0,故g (x )在该区间为减函数.

所以x ∈(1,x 0)时,g (x )

即f (x )

综上,满足条件的a 的取值范围是(-∞,1].

法二:依题意,得f (x )≥ax -1在[1,+∞)上恒成立,

即不等式a ≤ln x +1x

对于x ∈[1,+∞)恒成立. 令g (x )=ln x +1x ,则g ′(x )=1x -1x 2=1x ?

???1-1x .

当x >1时,因为g ′(x )=1x ?

???1-1x >0, 故g (x )是(1,+∞)上的增函数,所以g (x )的最小值是g (1)=1, 所以a 的取值范围是(-∞,1].

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高考文科数学专题复习导数训练题(文)

考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22y x = +,则(1)(1)f f '+= 。 解析:因为 21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251= f , 所以()()31'1=+f f 答案:3 例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 考点三:导数的几何意义的应用。 例4.已知曲线C : x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 0300 23x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴ 2632302 002 0+-=+-x x x x , 整理得:03200=-x x ,解得: 2 30= x 或00=x (舍),此时, 830-=y ,41-=k 。所以,直线l 的方程为x y 41 -=,切点坐标是??? ??-83,23。 考点四:函数的单调性。 例5.已知 ()132 3+-+=x x ax x f 在R 上是减函数,求a 的取值围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。 答案:3-≤a 考点五:函数的极值。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;(2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 解析:(1) 2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=?? ++=?, .,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++, 2 ()618126(1)(2)f x x x x x '=-+=--。

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高考文科数学专题复习导数训练题

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 在0x 处有增量x ?,称为函数)(x f y =在则称函数)(x f y =在)0或0|'x x y =,即 f . )(v u v u ±=±)(...)()()(...)()(2121x f x f x f y x f x f x f y n n +++=?+++=?''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-= ?? ? ??v v u v vu v u *复合函数的求导法则:)()())(('''x u f x f x ??= 或x u x u y y '''?= 4.几种常见的函数导数: I.0'=C (C 为常数) x x cos )(sin ' = 1')(-=n n nx x (R n ∈) x x sin )(cos '-= II. x x 1)(ln '= e x x a a log 1 )(log '= x x e e =')(a a a x x ln )('= 二、经典例题剖析 考点一:求导公式

导数与函数的单调性、极值、最值

教学过程 一、课堂导入 问题:判断函数的单调性有哪些方法?比如判断2x y=的单调性,如何进行? 因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 如果遇到函数x y3 x 3- =,如何判断单调性呢?你能画出该函数的图像吗? 定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?

二、复习预习 函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?

三、知识讲解 考点1 利用导数研究函数的单调性 如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的. 利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.

求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小. 注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. ①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点; ②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点; ③若f′(x)在x0两侧的符号相同,则x0不是极值点.

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.

高考数学函数与导数复习指导

2019高考数学函数与导数复习指导 函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分。一般为2个选择题或2个填空题,1个解答题,而且常考常新。 在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。 在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在: 1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。 5.涌现了一些函数新题型。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素 养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练

工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 8.求极值,函数单调性,应用题,与三角函数或向量结合。

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

第三十九讲:函数的极值最值与导数

第三十九讲 函数的极值、最值与导数 一、引言 1.用导数求函数的极大(小)值,求函数在连续区间上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为高考试题的又一热点. 2.考纲要求:了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值和极小值,能求出最大值和最小值;会利用导数解决某些实际问题. 3.考情分析:2010年高考预测对本专题内容的考查将继续以解答题形式与解析几何、不等式、平面向量等知识结合,考查最优化问题,加强了能力考查力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法. 二、考点梳理 1.函数的极值: 一般地,设函数()y f x =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说()0f x 是函数()y f x =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说()y f x =是函数()y f x =的一个极小值.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 理解极值概念要注意以下几点: (1)极值是一个局部概念.由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.如下图所示,1x 是极大值点,4x 是极小值点,而4()f x >)(1x f . 2.函数极值的判断方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数学 利用导数研究函数的极值和最值

专题4 利用导数研究函数的极值和最值 专题知识梳理 1.函数的极值 (1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。如果对附近的所有的点,都 有.就说是函数的一个极小值,记作y 极小值=,是极小值点。极大值与极 小值统称为极值. (2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根; ①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。 ①根据表格下结论并求出需要的极值。 2. 函数的最值 (1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作; (2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值; ①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。 考点探究 )(x f x 0x 0f (x )f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ?I f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ?I f (x )3f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

相关主题
文本预览
相关文档 最新文档