当前位置:文档之家› 飞行器设计重量估算

飞行器设计重量估算

飞行器总体设计试题

一、填空题(25分,每空1分) 1. 飞机设计可分为3个阶段,分别是 (1) 、 (2) 、 (3) 。 2. 最重要的三个飞机总体设计参数是 (4) 、 (5) 、 (6) 。 3. 飞机空机重量可分为3部分,分别是 (7) 、 (8) 、 (9) ,飞机空机重量系数随起飞重量的增加而 (10) 。 4. 在飞机重心的第一次近似计算中,如果飞机重心不在规定的范围内,则须对飞机重心进行调整。调整飞机重心最常用的2种方法是 (11) 、 (12) 。 5. 超音速进气道的压缩方式有3种,分别是: (13) 、 (14) 和 (15) 。 6. 喷气式飞机在 (16) 状态下达到最远航程,此时其翼载荷为 (17) ;螺旋桨飞机在 (18) 状态下达到最远航程,此时其翼载荷为 (19) (假设飞机的极曲线为)。 7. 要缩短飞机起飞/着陆滑跑距离,可以采用 (20) 翼载荷 的方法。 8. 亚音速飞机的最大升阻比取决于 (21) 。 9. 进气道总压恢复系数是 (22) 与 (23) 之比。 10. 从飞机设计的角度来看,对发动机的主要设计要求可归结为2个方面,即要求发动机的 (24) 大和 (25) 大。 二、选择题(20分,每题1分,正确的选择“+”,错误的选择“-”) 1. 减小翼载荷对飞机的巡航性能有利。 2 0y x x C A C C ?+=

(+) (-) 2. 将喷气式发动机安装到飞机上,需要考虑装机修正和推进装置阻力。(+) (-) 3. 进气道的功用是将流入进气道的空气减速增压。(+) (-) 4. 机身结构重量大致与机身浸湿面积成正比。(+) (-) 5. 现代战斗机上常使用高涵道比的涡扇发动机。(+) (-) 6. 飞机起飞重量一定时,增加飞机的航程和航时会降低飞机的机动性。(+) (-) 7. 飞机的寿命周期成本包括研制成本和使用维护成本两部分。(+) (-) 8. 如技术水平一定,则飞机设计要求都要以一定的重量代价来实现。(+) (-) 9. 飞机的载油量是根据飞机所执行任务的任务剖面要求确定的。(+) (-) 10. 超音速飞行时,涡轮风扇发动机的耗油率小于涡轮喷气发动机。(+) (-) 11. 前三点式起落架几何参数选择时,应考虑的主要因素之一是防止飞机翻倒和防止飞机倒立。(+) (-) 12. 飞机起落架的重量一般占该机起飞重量的15%左右。(+) (-) 13. 雷达隐身飞机要求减小镜面反射和角反射器反射。(+) (-) 14. 按面积律设计的飞机能减小跨音速波阻。(+) (-) 15. 满足设计要求的起飞重量最小的飞机是设计先进的。(+) (-) 16. 设计要求不变时,结构重量增加1千克使飞机起飞重量也增加1千克。(+) (-)

飞行器控制系统设计

课程设计任务书 学生姓名: 李攀 专业班级: 自动化0804 指导教师: 谭思云 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件: 飞行器控制系统的开环传递函数为: ) 2.361(4000)(+= s s K s G 控制系统性能指标为调节时间s 008.0≤,单位斜坡输入的稳态误差000443.0≤,相角裕度大于85度。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: (1) 课程设计任务书的布置,讲解 (一天) (2) 根据任务书的要求进行设计构思。(一天) (3) 熟悉MATLAB 中的相关工具(一天) (4) 系统设计与仿真分析。(四天) (5) 撰写说明书。 (两天) (6) 课程设计答辩(一天) 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

摘要 根据被控对象及给定的技术指标要求,设计自动控制系统,既要保证所设计的系统有良好的性能,满足给定技术指标的要求,还有考虑方案的可靠性和经济性。本说明书介绍了在给定的技术指标下,对飞行器控制系统的设计。为了达到给定要求,主要采用了串联之后—超前校正。 在对系统进行校正的时候,采用了基于波特图的串联之后—超前校正,对系统校正前后的性能作了分析和比较,并用MATLAB进行了绘图和仿真。对已校正系统的高频特性有要求时,采用频域法校正较其他方法更为方便。 关键词:飞行器控制系统校正 MATLAB

飞行器总体设计报告1要点

大型固定翼客机分析报告 2014-4-28 学院:计算机科学与工程学院 201322060608 学号:马丽姓名:201322060629 号:学姓潘宗奎名: 目录

总结----马丽、潘宗奎............................................................ I 1 大型固定翼客机总体设计.................................................... - 1 - 1.1 客机参 数 ............................................................ - 1 - 1.2 飞机的总体布 局 ...................................................... - 1 - 1.2.1 飞机构型....................................................... - 1 - 1.2.2 三面图......................................................... - 2 - 1.2.3 客舱布置....................................................... - 2 - 2 客机的重量设计............................................................ - 4 - 3 大型固定翼客机的外形设计.................................................. - 6 - 3.1 翼 型 ................................................................ - 6 - 3.2 机翼平面形状的设 计 .................................................. - 7 - 3.3尾翼................................................................. - 8 - 4 重量分析................................................................. - 11 - 5 气动特性分析............................................................. - 13 - 6 性能分析................................................................. - 22 - 6.1 商载—航程 图 ....................................................... - 22 - 6.2 起飞距 离 ........................................................... - 23 - 6.3 进场速 度 ........................................................... - 24 - 6.4 着落距 离 ........................................................... - 24 -

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

飞机总体设计大作业

飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速:0.7Ma 最大飞行高度:10000m 航程:2300km 待机时间:45分钟 爬升率:0~10000m<25分钟 起飞距离:1600m 接地速度<220km/h 一、相近飞机资料收集: 二、飞机构型设计 正常式布局:技术成熟,所积累资料丰富 T型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波

阻 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a=576.4kts=296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =14 3.根据Breguet 航程方程: ? ?? ? ? ??? ??= D L M C a R a n g e W W f i n a l i n i t i a l )l n ( 代入数据: Range = 1242nm ; a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/l b (涵道比为5) L/D = 14 M = 0.7 计算得: 115 .1=f i n a l i n i t i a l W W

飞行器控制系统课程设计

课程设计任务书 学生姓名:________ 专业班级: _______________ 指导教师:_______ 工作单位: ____________ 题目:飞行器控制系统设计 初始条件: 飞行器控制系统的开环传递函数为: G(s) -^500^ s(s 361.2) 控制系统性能指标为调节时间0.01s,单位斜坡输入的稳态误差 0.000521,相角裕度大于84度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)设计一个控制器,使系统满足上述性能指标; (2)画出系统在校正前后的奈奎斯特曲线和波特图; (3)用Matlab画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标; (4)对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab源程序或Simulink仿 真模型,说明书的格式按照教务处标准书写 时间安排:

指导教师签名: 系主任(或责任教师)签名: 目录 1串联滞后—超前校正的原理............ 错误! 未定义书签。 2 飞行器控制系统的设计过程. ................. 错误! 未定义书签。 2.1 飞行器控制系统的性能指标............... 错误! 未定义书签。 2.2 系统校正前的稳定情况................. 错误! 未定义书签。 2.2.1 校正前系统的波特图............. 错误! 未定义书签。 2.2.2 校正前系统的奈奎斯特曲线 (2) 2.2.3 校正前系统的单位阶跃响应曲线......... 错误! 未定义书签。 2.3 飞行器控制系统的串联滞后—超前校正 (4) 2.3.1 确定校正网络的相关参数 (4) 2.3.2 验证已校正系统的性能指标 (6) 2.4 系统校正前后的性能比较 (8) 2.4.1 校正前后的波特图 (8) 2.4.2 校正前后的奈奎斯特曲线 (9) 2.4.3 校正前后的单位阶跃响应曲线 (11) 3 设计总结与心得体会 (12) 参考文献 (13)

飞行器结构优化设计课程总结

《飞行器结构优化设计》 ——课程总结 专业航天工程 学号GS0915207 姓名

《飞行器结构优化设计》课程总结报告 通过这门课程的学习,大致了解无论是飞行器、船舶还是桥梁等工程项目的传统结构设计流程:首先是根据技术参数、经验和一些简单的分析方法进行初始的结构设计,然后用较为精确的分析方法对初始设计进行核验,根据核验结果,逐步调整设计参数,直到得到满意的设计方案。但是这种传统设计方法的产品性能优劣主要就取决于设计人员的水平,而且设计周期长,并要耗费大量的人力和物力。随着高速、大容量电子计算机的广泛使用和一些精度高的力学分析数值方法的建立和应用,使得复杂的结构分析过程变得更加高效、精确。 本课程重点就在于介绍结构优化的各种分析方法。这些分析方法都是以计算机为工具,将非线性数学规划的理论和力学分析方法相结合,使用于受各种条件限制的承载结构设计情况。 优化问题的数学意义是在不等式约束条件下,求使目标函数为最小或最大值的一组设计变量值,在实际工程应用中,优化问题所包含的函数通常是非线性的和隐式的。建立在数学规划基础上的优化算法,是依据当前设计方案所对应的函数值与导数值等信息,按照某种规则在多维设计变量空间中进行搜索,一步一步逼近优化解。随着计算机的发展和数学计算方法不断进步,结构分析。优化的方法也是随之水涨船高。 一、有限元素法 这是基于在结构力学、材料力学和弹性力学基础上的一种分析方法。研究杆、梁,经简化薄板组成的结构的应力、变形等问题。其方法是首先通过力学分析将结构离散化成单一元素,然后对单一元素进行分析,算出各单元刚度矩阵后,进行整体分析,根据方程组K·u=P求解。这种方法求解的问题受限于结构的规模、形式和效率。 二、敏度分析 结构敏度是指结构性状函数,如位移、应力、振动频率等对设计变量的导数。近似函数的构成,以及许多有效的结构优化算法,皆要利用这些参数的一阶导数,以至二阶导数信息。 结构敏度分析的基础是结构分析,对于复杂的结构,精确的结构分析工作是

飞行器总体设计教学大纲

《飞行器总体设计》教学大纲 学时数:64学时讲授 授课对象:飞行器设计工程专业大学本科 前期课程:理论力学、材料力学、结构力学、自动控制原理、空气动力学与 飞行性能计算 一、课程地位:本课程是飞行器设计工程专业必修的专业主干课,是一门综 合性、实践性很强的课程。它要求学生在学习本课程中总体设计知识的同时,紧 密结合前期课程中的基础理论,学习和掌握飞机总体设计的一般思路、原理和方法。促进学生把理论和知识、技能转化为飞机总体设计能力的结合点,是培养学 生分析工程实际问题和工程设计能力的重要环节。 二、课程任务:教授现代飞机总体的现代设计原理、综合设计思想理念和设 计技术;培养学生在综合运用广泛理论的基础上对工程实际问题的分析能力、分 析评价方法和设计能力,以及接受和适应深层次设计技术发展的能力;锻炼、培 养学生辩证逻辑思维、创造性思维和系统工程思维。 课程要求:在设计原理、概念、方法等基础方面强调系统全面、深刻精炼、 科学逻辑的有机结合,要使学生能真正掌握和运用;强调理论与实际的有机结合; 强调理论知识综合运用能力的培养,加强主动式教学,启发学生主观能动性,利 用现代技术的高信息含量使学生更多了解国内外飞机总体设计技术和前沿学科 的发展;最终使学生基本掌握现代飞机总体设计的先进设计思想、设计理论和设 计技术,着力于工程设计能力的培养。 三、课程内容: 第一章绪言(2) 1、理解“飞机总体设计”的基本含义,本课程的特点,以及学习本课程的 目的与任务。 2、初步建立如飞机设计阶段、特点等基本概念。 第二章设计的依据与参数选择(8) 1、了解飞机的设计要求 2、了解飞机的设计规范 3、熟悉飞机的总体技术指标 4、掌握飞机总体设计的参数选择

飞行器控制系统设计

学号: 课程设计 题目飞行器控制系统设计 学院自动化学院 专业自动化 班级自动化1002班 姓名 指导教师肖纯 2012 年12 月19 日

课程设计任务书 学生姓名: 专业班级:自动化1003班 指导教师: 肖 纯 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件:飞行器控制系统的开环传递函数为: ) 2.361(4500)(+= s s K s G 要求设计控制系统性能指标为调节时间ts 008.0≤秒,单位斜坡输入的稳态误差000443.0≤,相角裕度大于75度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统 的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

随着经济的发展,自动控制技术在国民经济中发挥着越来越重要的作用。自动控制就是在没有人的参与下,系统的控制器自动的按照人预订的要求控制设备或过程,使之具有一定的状态和性能。在实际中常常要求在达到制定性能指标的同时能更加节约成本、能具有更加优良的效果。本次飞行器设计中,采用频域校正的方法使系统达到指定的性能指标,同时采用matlab仿真软件更加直观的进行仿真分析和验证。 在此设计中主要采用超前校正的方法来对系统进行性能的改进,通过分析、设计、仿真、写实验报告书的过程,进一步加深了对自动控制原理基本知识的理解和认识,同时通过仿真系统的奈奎斯特图、bode图、单位阶跃响应曲线,进一步理解了系统的性能指标的含义,同时也加深了对matlab仿真的掌握,培养了认识问题、分析问题、解决问题的能力。

飞行器设计与工程专业毕业实习报告范文

飞行器设计与工程专业 毕 业 实 习 报 姓名:杜宗飞 学号:2011090118 专业:飞行器设计与工程 班级:飞行器设计与工程01班指导教师:赵建明 实习时间:XXXX-X-X—XXXX-X-X 20XX年1月9日

目录 目录 (2) 前言 (3) 一、实习目的及任务 (3) 1.1实习目的 (3) 1.2实习任务要求 (4) 二、实习单位及岗位简介 (4) 2.1实习单位简介 (4) 2.2实习岗位简介(概况) (5) 三、实习内容(过程) (5) 3.1举行计算科学与技术专业岗位上岗培训。 (5) 3.2适应飞行器设计与工程专业岗位工作。 (5) 3.3学习岗位所需的知识。 (6) 四、实习心得体会 (6) 4.1人生角色的转变 (6) 4.2虚心请教,不断学习。 (7) 4.3摆着心态,快乐工作 (7) 五、实习总结 (8) 5.1打好基础是关键 (8) 5.2实习中积累经验 (8) 5.3专业知识掌握的不够全面。 (8) 5.4专业实践阅历远不够丰富。 (8) 本文共计5000字,是一篇各专业通用的毕业实习报告范文,属于作者原创,绝非简单复制粘贴。欢迎同学们下载,助你毕业一臂之力。

前言 随着社会的快速发展,用人单位对大学生的要求越来越高,对于即将毕业的飞行器设计与工程专业在校生而言,为了能更好的适应严峻的就业形势,毕业后能够尽快的融入到社会,同时能够为自己步入社会打下坚实的基础,毕业实习是必不可少的阶段。毕业实习能够使我们在实践中了解社会,让我们学到了很多在飞行器设计与工程专业课堂上根本就学不到的知识,受益匪浅,也打开了视野,增长了见识,使我认识到将所学的知识具体应用到工作中去,为以后进一步走向社会打下坚实的基础,只有在实习期间尽快调整好自己的学习方式,适应社会,才能被这个社会所接纳,进而生存发展。 刚进入实习单位的时候我有些担心,在大学学习飞行器设计与工程专业知识与实习岗位所需的知识有些脱节,但在经历了几天的适应过程之后,我慢慢调整观念,正确认识了实习单位和个人的岗位以及发展方向。我相信只要我们立足于现实,改变和调整看问题的角度,锐意进取,在成才的道路上不断攀登,有朝一日,那些成才的机遇就会纷至沓来,促使我们成为飞行器设计与工程专业公认的人才。我坚信“实践是检验真理的唯一标准”,只有把从书本上学到的飞行器设计与工程专业理论知识应用于实践中,才能真正掌握这门知识。因此,我作为一名飞行器设计与工程专业的学生,有幸参加了为期近三个月的毕业实习。 一、实习目的及任务 经过了大学四年飞行器设计与工程专业的理论进修,使我们飞行器设计与工程专业的基础知识有了根本掌握。我们即将离开大学校园,作为大学毕业生,心中想得更多的是如何去做好自己专业发展、如何更好的去完成以后工作中每一个任务。本次实习的目的及任务要求: 1.1实习目的 ①为了将自己所学飞行器设计与工程专业知识运用在社会实践中,在实践中巩固自己的理论知识,将学习的理论知识运用于实践当中,反过来检验书本上理论的正确性,锻炼自己的动手能力,培养实际工作能力和分析能力,以达到学以致用的目的。通过飞行器设计与工程的专业实习,深化已经学过的理论知识,提高综合运用所学过的知识,并且培养自己发现问题、解决问题的能力 ②通过飞行器设计与工程专业岗位实习,更广泛的直接接触社会,了解社会需要,加深

航天器总体设计作业【哈工大】

2017年《航天器总体设计》课程作业 1.嫦娥三号探测器航天工程系统的组成及各自的任务 嫦娥三号探测器由月球软着陆探测器(简称着陆器)和月面巡视探测器(简称巡视器)组成。 (1)探测器系统:主要任务是研制嫦娥三号月球探测器。嫦娥三号探测器由着陆器和巡视器组成。着陆月面后,在测控系统和地面应用系统的支持下,探测器携带的有效载荷开展科学探测。 (2)运载火箭系统:主要任务是研制长征三号乙改进型运载火箭,在西昌卫星发射中心,将嫦娥三号探测器直接发射至近地点高度200公里、远地点高度约38万公里的地月转移轨道。 (3)发射场系统:主要任务是由西昌卫星发射中心承担嫦娥三号发射任务。发射场系统通过适应性改造,具备长征三号乙改进型火箭的测试发射能力。 (4)测控系统:主要任务是对运载火箭、探测器在各个飞行阶段以及探测器在月面工作阶段的测控、轨道测量、月面目标定位以及落月后着陆器和巡视器的控制。 (5)地面应用系统:主要任务是根据科学探测任务,提出有效载荷配置需求;制定科学探测计划和有效载荷的运行计划,监视着陆器和巡视器有效载荷的运行状态,编制有效载荷控制指令和注入数据,完成有效载荷运行管理。 2.我国载人航天工程系统的组成及各自的任务 (1)航天员系统:主要任务是选拔、训练航天员,并在载人飞行任务实施过程中,对航天员实施医学监督和医学保障。研制航天服、船载医监医保设备、个人救生等船载设备。 (2)空间应用系统:主要任务是研制用于空间对地观测和空间科学实验的有效载荷,开展相关研究及应用实验。 (3)载人飞船系统:主要任务是研制“神舟”载人飞船。“神舟”载人飞船采用轨道舱、返回舱和推进舱组成的三舱方案,额定乘员3人,可自主飞行7天,具有出舱活动和交会对接功能,可与空间实验室和空间站进行对接并停靠飞行半年。 (4)运载火箭系统:主要任务是研制满足载人航天要求的大推力长征二号F型运载火箭,对长征系列

飞机总体设计大作业

— 飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速: 最大飞行高度:10000m " 航程: 2300km 待机时间:45分钟 爬升率: 0~10000m<25分钟 起飞距离: 1600m \ 接地速度 <220km/h 一、相近飞机资料收集: 二、飞机构型设计 ^

正常式布局:技术成熟,所积累资料丰富 T 型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波阻 【 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 < 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a==296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) ¥ –升阻比L/D =14 3.根据Breguet 航程方程: ??? ????? ??=D L M C a Range W W final initial )ln( 代入数据: Range = 1242nm ;

课程设计---飞行器控制系统设计

目录 1飞行器控制系统的设计过程 (1) 1.1飞行器控制系统的性能指标 (1) 1.2参数分析 (1) 2系统校正前的稳定情况 (3) 2.1校正前系统的伯特图 (3) 2.2校正前系统的奈奎斯特曲线 (3) 2.3校正前系统的单位阶跃响应曲线 (5) 2.4校正前系统的相关参数 (5) 2.4.1 上升时间 (6) 2.4.2超调时间 (7) 2.4.3超调量 (7) 2.4.4 调节时间 (7) 3校正系统 (8) 3.1校正系统的选择及其分析 (8) 3.2验证已校正系统的性能指标 (10) 4系统校正前后的性能比较 (13) 4.1校正前后的波特图 (13) 4.2校正前后的奈奎斯特曲线 (14) 4.3校正前后的单位阶跃响应曲线 (15) 5设计总结与心得 (17) 参考文献 (18)

飞行器控制系统设计 1飞行器控制系统的设计过程 1.1飞行器控制系统的性能指标 飞行器控制系统的开环传递函数 ) 2.361(4500)(+= s s K s G 控制系统性能指标为调节时间s 01.0≤,单位斜坡输入的稳态误差000521.0≤,相角裕度大于85度。 1.2参数分析 由系统开环传递函数可以求得: 令 2n ω= 4500k 所以开环传递函数: 2 ()(361.2) n G s s s ω= + 稳态误差为: ss 2 n n 1361.2e 0.000521lim ()s SG s ζ ωω→= =≤2= 可得832/n rad s ω=,0.217ζ=。 所以,取154k =。 开环传递函数 693000 ()(361.2) G s s s = + 稳态误差 0.005e δ=>

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

飞机总体大作业——四代机方案设计1

飞行器总体设计大作业 歼-50(终结者) 小组成员:

目录 前言 (4) 第一章飞机设计要求 (4) 1.1 任务计划书性能指标 (4) 1.2发动机要求 (5) 1.3有效载荷 (5) 1.4任务剖面 (5) 1.4 概念草图 (6) 第二章总体参数估算 (7) 2.1起飞重量的计算 (7) 2.1.1飞机起飞重量的构成 (7) 2.1.2空机重量系数W e/W0的计算 (9) 2.2 发动机的耗油率C (10) 2.3 升阻比L/D (11) 由浸湿面积比估算出L/D约为13 (13) 2.4 燃油重量系数W f/W0 (13) 2.4.1飞机的典型任务剖面 (14) 2.4.2计算燃油重量系数W f/W0 (16) 2.4.3全机重量计算 (16) 2.5飞机升阻特性估算 (19) 2.5.1确定最大升力系数 (19) 2.5.2估算零升阻力系数C D0及阻力系数C D (20)

2.7 翼载荷的确定 (23) 第三章总体方案设计 (25) 3.1总体布局选择 (25) 3.1.1方案一:总体布局为三翼面布局 (25) 3.1.2方案二:总体布局为正常式布局 (25) 3.2机身布局 (25) 3.3发动机的类型、数目和布置: (26) 3.2进气道布置 (26) 3.3机翼布局 (27) 3.4尾翼布局 (27) 3.5起落架型式 (28) 3.6隐身设计 (28) 第四章部件设计 (29) 4.1机翼设计 (29) 4.1.1机翼具体参数的确定: (29) 4.1.2机翼的气动力特性 (33) 4.1.3机翼的增升装置和副翼 (34) 4.2机身设计 (38) 4.3尾翼及其操纵面的设计 (40) 4.4起落架设计 (42) 4.4.1起落架形式的选择: (42)

变体飞行器控制系统综述

第30卷 第10期航 空 学 报 Vol 130No 110 2009年 10月ACTA AERONAUTICA ET ASTRONAUT ICA SINICA Oct. 2009 收稿日期:2008208212;修订日期:2008212205 基金项目:国家自然科学基金(90605007);南京航空航天大学博 士生创新基金((B CXJ06208) 通讯作者:何真E 2mail:hezhen@https://www.doczj.com/doc/164368280.html, 文章编号:100026893(2009)1021906 206变体飞行器控制系统综述 陆宇平,何真 (南京航空航天大学自动化学院,江苏南京 210016) A Survey of Morphing Aircraft Control Systems Lu Yuping,H e Zhen (College of Automation Engineering,Nanjing Universit y of Aeronautics and Astronautics,Nanjing 210016,China) 摘 要:介绍了变体飞行器控制系统和涉及的控制理论问题。分析了变体飞行器的控制系统,指出变体飞行器的控制系统由变形控制层和飞行控制层组成。对变体飞行器的硬件结构和变体飞行器控制方法的研究现状进行了阐述。分析了集中式和分布式两种变形机械结构以及控制系统体系结构,提出采用总线网络连接变形结构的分布式元件。总结了变体飞行器需深入研究的变形控制和飞行控制问题,包括大尺度变体飞行器的飞行控制问题,通信受约束的大数目的驱动器的协调控制问题。关键词:变体飞行器;变形控制;飞行控制系统;分布式控制;网络控制中图分类号:V249 文献标识码:A Abstr act:The control system and r elated cont rol theor y of morphing aircraft a re introduced.The cont rol sys 2tem of mor phing air cr aft is analyzed.I t is shown that the system consists of a shape cont rol loop and a f light cont rol loop.Advances in the mechanical structures and contr ol appr oaches of mor phing aircraft ar e discussed.The centra lized mechanica l morphing structur e,the distributed mechanical morphing st ructur e,and the contr ol system structure are analyzed.It is pr oposed that the distr ibuted components in a morphing st ructur e should be connected through a bus net work.F utur e work in the shape contr ol and flight control of morphing aircraft is summar ized,including the flight contr ol of large 2scale shape air craft,cooperat ive contr ol of large numbers of actuators under communication constraints. Key words:morphing aircraft;sha pe control;flight control systems;distr ibuted control;networked contr ol 变体飞行器能根据飞行环境和飞行任务的变化,相应地改变外形,始终保持最优飞行状态,以满足在变化很大的飞行环境(高度、马赫数等)里执行多种任务(如起降、巡航、机动、盘旋、攻击等) 的要求。变体飞行器还能够改善飞行器空气动力学性能,增加续航时间,用能连续、光滑变形的变形结构代替传统操纵面,提高隐身性能。由于具有这些优势,变体飞行器得到了各国的重视。目前,已开展过的或正在开展的变体飞行器项目有 [125] :美国的AFTI/F111自适应机翼项目,主动 柔性翼(AFW)计划,智能机翼(Smart Wing)项目 和近期启动的变形飞机结构(MAS)项目;欧洲的3AS(Active Aeroelastic A ir craft Structures)研究项目等。 与传统飞行器相比,变体飞行器最特殊之处在于它具有变形结构。这给气动、材料、结构、控 制和优化等多个学科提出了一系列有待研究的问题。在控制学科方面,变形结构的分布式驱动特性以及变形引起的飞行器模型的不确定性和非线性等都引出了许多具有挑战性的研究课题。本文总结与思考了变体飞行器的控制体系结构设计和控制理论研究,提出了需深入研究的变形控制和飞行控制方面的问题。 1 工作原理 变体飞行器的控制系统可分为两个层次,如图1所示。第1层可称为变形控制系统,对变形结构进行控制,即实现变形控制;第2层可称为飞行控制系统,控制整个飞行器的飞行状态,即实现飞行控制。 变体飞行器的变形结构是使变体飞行器实现/变体0的部件。为了获得高气动效率,变体飞行器的变形应该是连续的、光滑的,因此,大部分变形结构由大数量的分布式驱动单元组成。变形结构可以是分布式作动器驱动的机械连杆结构(驱

相关主题
文本预览
相关文档 最新文档