当前位置:文档之家› MIDAS Civil 斜拉桥正装分析(下)

MIDAS Civil 斜拉桥正装分析(下)

MIDAS Civil 斜拉桥正装分析(下)
MIDAS Civil 斜拉桥正装分析(下)

迈达斯斜桥与弯桥分析

斜桥与弯桥分析 北京迈达斯技术有限公司 2007年8月

目录 1. 斜桥 (1) 1.1 概述 (1) 1.2 斜交桥梁的受力特点 (1) 1.3 建模方法 (2) 2. 弯桥 (3) 2.1 概述 (3) 2.2 弯桥的受力特点 (3) 2.3 建模方法 (4) 2.4 弯桥建模例题 (5)

1. 斜桥 1.1 概述 桥梁设计中,会因为桥位、线型的因素,而需要将桥梁做成斜交桥。斜交桥受力性能较复杂,与正交桥有很大差别。平面结构计算软件无法对其进行精确的分析,限制了此类结构桥型的应用。 1.2 斜交桥梁的受力特点 a) 钝角角隅处出现较大的反力和剪力,锐角角隅处出现较小的反力,还可能出现翘 起;(图1.2.1) b) 出现很大的扭矩;(图1.2.2) c) 板边缘或边梁最大弯矩向钝角方向靠拢。(图1.2.3 ~ 图1.2.4) 图1.2.1 斜交空心板桥支点反力 图1.2.2 斜交空心板桥扭矩图

图1.2.3 正、斜交板桥自重弯矩图(板单元) 图1.2.4 正、斜交空心板桥自重弯矩图(梁格单元) 这些效应的大小与斜交角度大小也有很大的关系,斜交角度越大,上述效应就越大。一般来说斜交角度小于20度时,对于简支斜交桥的上述影响可以忽略。如果斜交角度超过20度就必须考虑上述效应的影响。设计人员还应根据实际情况,找出适当的处理方案。 1.3 建模方法 对斜交桥梁多用梁格法建立模型。可用斜交梁格或正交梁格来建模。对于斜交角度小于20度时,使用斜交梁格是非常方便的。但是对于大角度的斜交桥,根据它的荷载传递特性,建议选用正交梁格,而且配筋时也尽量沿正交方向配筋。 图1.3.1 斜交梁格与正交梁格

斜拉桥设计计算参数分析

斜拉桥设计计算参数分析 1 概述 斜拉桥属高次超静定结构,所采用的施工方法和安装程序与成桥后的主梁线形、结构内力有着密切的联系。并且在施工阶段随着斜拉桥结构体系和荷载状态的断变化,主梁线形和结构内力亦随之不断发生变化。因此,需对斜拉桥的每一施工阶段进行详尽的分析、验算,从而求得斜拉索张拉吨位和主梁挠度、主塔位移等施工控制参数,并依此对施工的顺序做出明确的规定,并在施工中加以有效的管理和控制。 2 设计参数分析 2.1 主梁的中、边跨跨径比 主梁的中、边跨跨径比反映了结构体系的变形特性和锚索的抗疲劳性能: 从图1、图2可见,三跨钢斜拉桥的中边跨跨径比较多地位于2.0~3.5之间,集中在2.5处;三跨混凝土斜拉桥的相应数值则为1.5~3.0,较集中于2.2处。 就一般而言,中、边跨跨径的比值大于2.0,将能控制锚索的应力幅度在一定的范围内,并提高结构体系的总体刚度。在许多斜拉桥中,虽然中、边跨跨径的比值较小,但边跨中往往采用设置辅助墩或将主梁与引桥连接形成组合体系以提高结构刚度,适应结构的变形要求。 2.2 主梁自重分析 选取某斜拉桥桥5号、9号梁段(见图3),各自增重5 %(其它参数取理论值) ,分别计算得到在浇筑完5号、9号梁段后各控制点挠度及主梁控制截面弯矩变化情况,见图3 、图4 。 图3:主梁自重增大5 %的梁段挠度影响图4:主梁自重增大5 %的梁段弯矩影响 从图3 、图4可见,梁段自重对控制点挠度的影响较大,且悬臂越大,影响越明显。梁段自重对控制点弯矩的影响更加不容忽视, 9 号梁段自重增大5 %,导致6 号梁段的弯矩值增加至1 200 kN •m ,达到合理成桥状态下该截面弯矩值的7 %。 2.3 主梁弹性模量分析

1使用MIDAS Civil做斜拉桥分析时的一些注意事项

使用MIDAS/Civil做斜拉桥分析时的一些注意事项 斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。 确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。 MIDAS/Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。 1.未闭合力功能 通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。 第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。 第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。 但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。 MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。 重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。 其次利用MIDAS/Civil的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的

迈达斯斜桥与弯桥分析

北京迈达斯技术有限公司 2007年8月

目录 1. 斜桥 (1) 1.1 概述 (1) 1.2 斜交桥梁的受力特点 (1) 1.3 建模方法 (2) 2. 弯桥 (3) 2.1 概述 (3) 2.2 弯桥的受力特点 (3) 2.3 建模方法 (4) 2.4 弯桥建模例题 (5)

1. 斜桥 1.1 概述 桥梁设计中,会因为桥位、线型的因素,而需要将桥梁做成斜交桥。斜交桥受力性能较复杂,与正交桥有很大差别。平面结构计算软件无法对其进行精确的分析,限制了此类结构桥型的应用。 1.2 斜交桥梁的受力特点 a) 钝角角隅处出现较大的反力和剪力,锐角角隅处出现较小的反力,还可能出现翘 起;(图1.2.1) b) 出现很大的扭矩;(图1.2.2) c) 板边缘或边梁最大弯矩向钝角方向靠拢。(图1.2.3 ~ 图1.2.4) 图1.2.1 斜交空心板桥支点反力 图1.2.2 斜交空心板桥扭矩图

图1.2.3 正、斜交板桥自重弯矩图(板单元) 图1.2.4 正、斜交空心板桥自重弯矩图(梁格单元) 这些效应的大小与斜交角度大小也有很大的关系,斜交角度越大,上述效应就越大。一般来说斜交角度小于20度时,对于简支斜交桥的上述影响可以忽略。如果斜交角度超过20度就必须考虑上述效应的影响。设计人员还应根据实际情况,找出适当的处理方案。 1.3 建模方法 对斜交桥梁多用梁格法建立模型。可用斜交梁格或正交梁格来建模。对于斜交角度小于20度时,使用斜交梁格是非常方便的。但是对于大角度的斜交桥,根据它的荷载传递特性,建议选用正交梁格,而且配筋时也尽量沿正交方向配筋。 图1.3.1 斜交梁格与正交梁格

迈达斯midas梁桥专题—梁格.pdf

Integrated Solution System for Bridge and Civil Strucutres

目录 一、剪力-柔性梁格理论 1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5) 三、采用梁格建模助手生成梁格模型 二、单梁、梁格模型多支座反力与实体模型结果比较 1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24) 四、结合规范进行PSC 设计

MIdas分析弯桥总结

midas分析弯桥的一点经验总结(2007-05-24 21:23:31) 今天看了桥头堡的一个帖子感觉不错可以作为设计弯桥的借鉴。 https://www.doczj.com/doc/144104961.html,/viewthread.php?tid=5196&extra=page%3D4 关于MIDAS曲线桥双支座的模拟 用MIDAS建立了一个曲线桥的试验模型,模型所采用的材料是有机玻璃。模型分析的目的是根据各种工况下不同支承布置方式的不同来验证曲线梁桥支承布置方式的不同对桥梁内力分布的影响。。。实验基本资料见附图一。 首先我采取的是相关书籍都比较推崇的两端采用抗扭支座,而中间采用点铰支承。 我分别用MIDAS的梁单元以及板单元对该模型进行了模拟。。。 加载工况是在外腹板处加一个F=400N的力 其中,梁单元采取两种方式布置支座 1.截面下偏心,然后用弹性连接的刚性连接截面形心和沿桥横向即Y轴正负方向的两个节点,分别建立两个支左。 2.截面上偏心,先用刚性连接形心节点和其Y轴正负两侧的两个节点,然后用弹性连接中的刚性连接这两个节点和它们沿Z轴负向所对应的支左节点。 板单元则直接在支座相应的节点进行约束即可。 得出的分析结果梁单元的两种支座布置方式所得的支反力结果是相同的,均是曲桥内侧产生支座悬空现象出现拉力。而它们跟板单元的支反力却有很大的差别(最明显的地方是表现在梁两端的抗扭支座的数值上,方向还是大致一样的) 我自己分析结果的差别主要是因为对梁单元进行分析的时候,我所加的集中力进行了力的平移动,也就是把位于腹板处的集中力平移到了箱梁质心处,变为了一个集中力加一个力矩,力矩的值为F*E(腹板中心到截面中心的距离)。但是我们知道曲线桥的实际的扭转中心并不是位于各截面形心的连线处的,所以我认为我的这个作用力的简化有问题。。。 因此板单元所得出的分析结果肯定是相对准确的,可是按理说这个小小的错误也不能导致支座反力会有如此大的差别啊。。。 请大家讨论下MIDAS梁单元双支座的模拟,应该还有更多的错误需要发现,请大家指教一二。。。。 我发现了自己模拟支座时的错误。。。 原来我在用梁单元进行双支座模拟的时候,端部两侧的支座的间距跟用板单元分析的时候不一致,所以这就直接导致了结果的不同。发上我重新修改支座后的反力结果。。。 结果基本吻合,板单元的反力结果还是准确些的。我想梁单元反力的结果还是值得相信的,只是因为曲线桥的扭转中心跟各截面形心的连线是不重合的,而我的梁单元分析的时候却是始终以截面形心进行分析计算的。因此会产生误差。。。不过误差应该在允许范围之内。。。 下图是梁单元修正支座间距后的反力结果。可以跟板单元的反力结果做比较

midas桥梁抗震分析与设计例题-new0810

桥梁抗震分析与设计 北京迈达斯技术有限公司 2007年8月

前言 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。 从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。 随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。

目录 一桥梁抗震分析与设计注意事项 (1) 1. 动力分析模型刚度的模拟 (1) 2. 动力分析模型质量的模拟 (1) 3. 动力分析模型阻尼的模拟 (1) 4. 动力分析模型边界的模拟 (2) 5.特征值分析方法 (2) 6.反应谱的概念 (3) 7.反应谱荷载工况的定义 (4) 8.反应谱分析振型组合的方法 (4) 9.选取地震加速度时程曲线 (5) 10.时程分析的计算方法 (5) 二桥梁抗震分析与设计例题 (7) 1. 概要 (7) 2. 输入质量 (8) 3. 输入反应谱数据 (10) 4. 特征值分析 (12) 5. 查看振型分析与反应谱分析结果 (13) 6. 输入时程分析数据 (18) 7. 查看时程分析结果 (20) 8. 抗震设计 (22)

大角度斜交框构桥结构计算分析

大角度斜交框构桥结构计算分析 大角度斜交框构桥结构计算分析 摘要:本文主要对大角度斜交框构桥基于平面杆系分析方法和空间有限元分析方法,以一个工程实例为案例,分别建立平面模型、空间模型进行计算,分析计算结果,得出在空间有限元分析和平面有限元分析下,斜交框构桥内力结果的差异以及斜交框构桥配筋注意事项。 Abstract: in this paper, the main method and spatial finite element analysis method for the analysis of plane frame based on frame bridge of big angle skew, with an engineering example as a case, establish plane model, space model for calculation, analysis and calculation results, obtained in the space finite element analysis and finite element analysis, skew frame the results of internal forces between bridge and skew frame bridge reinforced the matters needing attention. 关键词:大角度斜交平面有限元空间有限元受力分析 Keywords: large angle oblique plane finite element space finite element stress analysis 中图分类号:[TU997]文献标识码:A 文章编号: 一、前言 随着我国交通事业的发展,城市桥梁、城市道路日益增多,公路、城乡道路以及市政道路相互之间的立体交叉、道路与河道、明渠,暗渠等水利交叉不可避免,且密度也随之加大,情况也多种多样。而框构桥是实现这种立体交叉的最主要的结构形式之一。框构桥也称为箱涵或地道桥。 框构桥的计算一般来说比较复杂,关于斜交桥的计算,无论国外还是国内都尚未形成完整的理论体系。无论是理论解析方法,还是数

midas关于斜弯桥

midas关于斜弯桥 -柔性梁格法如果解决实际问题的方面,介绍的都不是很详细,在此希望能通过此论题的开始,起到抛砖引玉的作用,一方面为困惑的设计人员深入了解,另一方面彼此交流互相提高弯桥的设计水平。 目前解决曲线桥梁计算方法有以下几种: 1、空间梁元模型法 2、空间薄壁箱梁元模型法 3、空间梁格模型法 4、实体、板壳元模型法 第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。 第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。 弯桥的受力特性如下: 弯桥由于弯扭耦合现象的存在,其应力和变形不再仅仅是弯矩单独的影响,这样使得外梁弯曲应力大于内梁的弯曲应力,外梁的挠度大于内梁的挠度。一般不主张采用加大外腹板高度的箱梁截面形式来改善受力特性。

剪力-柔性梁格法的原理 是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性有了以上的理论知识后便可以开始弯桥的设计,步骤如下: 1、截面尺寸的拟订 2、模型的划分 3、模型特性的计算 4、结果整理,并根据内力输出结果配筋 5、检算各项设计指标:设置预偏心,支承反力的调整应力、挠度、裂缝宽度、斜截面承载力检算、抗扭检算等。 现以一三跨曲线梁桥为例说明以上的设计过程。跨径20m+25m+20m;梁高1.6m,端横梁宽1.0m,中横梁宽度均为2.0m 桥面宽为:净8+2x0.5m(防撞栏);双支座径向距离5.0m,单支座设在横梁中心,曲线半径50.0m,其截面形式如下: 目前弯梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。尤其在互通式立交的匝道桥设计中应用更为广泛。由于受地形、地物和占地面积的影响,匝道的设计往往受到多种因素的限制,这就决定了匝道桥设计具有以下特点: ⑴匝道桥的桥面宽度比较窄,一般匝道宽度在6~11m左右。 ⑵由于匝道是用来实现道路的转向功能的,在城市中立交往往受到占地面积的限制,所以匝道桥多为小半径的曲线梁桥,而且设置较大超高

midas桥梁分析结果输出

输出 输出文本 文本输出功能是将MIDAS/Civil通过结构分析功能算出的结构分析结果按用户指 定的方式进行整理并以文本文件的形式输出的功能。 MIDAS/Civil的文本输出的主要功能如下。 按荷载组合目录(Load Set)来输出的功能 (各输出内容可各自指定不同的荷载组合目录) 按材料、截面特性、单元编号等选择构件并输出其内力及变形的功能 按截面特性输出最大/最小值的功能 输出节点位移和支点反力的功能 按不同单元分别输出包络值及概要的功能 输出各单元的单元坐标系及全局坐标系的功能 文本输出功能,是为获得最终结果,按步骤将所需资料输入的方式来进行的。利 用文本输出功能得出结果的过程如下。 181

G ETTING S TARTED 182 1.设定荷载组合 点击主菜单的结果>文本输出,画面上就会出现选择荷载集合的对话窗口。 选择荷载集合的对话窗口 荷载集合是指对于构件内力、节点位移、节点反力等为了能够按不同的目的输出而采用的各种荷载工况的集合。在选择荷载集合的对话窗口可按需要建立各种荷载集合。 步骤选项(Step Option)是在进行各施工阶段分析或者几何非线性分析时指定步骤输出方法的功能。点 击就会出现如下的荷载集合(Load Set)输入窗口。 荷载集合的输入窗口

输出 183 输入荷载集合的名称,对所需的荷载工况/荷载组合条件表示?后点 击 键就可将该荷载集合予以登录。 根据需要可通过点击对已登录的荷载集合的内容进行修改 或点击将已登录的荷载集合删除。 将所需的荷载集合全部登录后,点击进入下一个输入窗口。 2. 选择输出单元 在输出单元对话窗口指定欲输出的单元并选择输出形式。 首先在输出单元时使用的荷载集合栏对已登录的荷载集合指定其中一个后,在所要输出的单元前表示?以进行选择。此时在对话窗口上只有输出可能的单元会被激活而显示出来。 若点击单元种类右侧的键,可对单元的输出进行详细的设定。 选择输出单元的对话窗口

第2章 斜拉桥计算

第二章 斜拉桥的计算 第一节 结构分析计算图式 斜拉桥是高次超静定结构,常规分析可采用平面杆系有限元法,即基于小位移的直接刚度矩阵法。 有限元分析首先是建立计算模型,对整体结构划分单元和结点,形成结构离散图,研究各单元的性质,并用合适的单元模型进行模拟。 对于柔性拉索,可用拉压杆单元进行模拟,同时按后面介绍的等效弹性模量方法考虑斜索的垂度影响,对于梁和塔单元,则用梁单元进行模拟。 斜拉桥与其它超静定桥梁一样,它的最终恒载受力状态与施工过程密切相关,因此结构分析必须准确模拟和修正施工过程。 图2-1是一座斜拉桥的结构分析离散图。 图2-1斜拉桥结构分析离散图 第二节 斜拉索的垂度效应计算 一、等效弹性模量 斜拉桥的拉索一般采用柔性索,斜索在自重的作用下会产生一定的垂度,这一垂度的大小与索力有关,垂度与索力呈非线性关系。斜索张拉时,索的伸长量包括弹性伸长以及克服垂度所带来的伸长,为方便计算,可以用等效弹性模量的方法,在弹性伸长公式中计入垂度的影响。 等效弹性模量常用Ernst 公式,推导如下: 如图2-2所示,q 为斜索自重集度,m f 为斜索跨中m 的径向挠度。因索不承担弯矩,根据m 处索弯矩为零的条件,得到: 22111cos 88 m T f q l ql α?==? 2 cos 8m ql f T α= (2-1)

图2-2 斜拉索的受力图式 索形应该是悬链线,对于m f 很小的情形,可近似地按抛物线计算,索的长度为: l f l S m 238?+= (2-2) 223 228cos 324m f q l l S l l T α?=-=?= 23 23cos 12d l q l dT T α?=- (2-3) 用弹性模量的概念表示上述垂度的影响,则有: () 33 22321212cos f dT l lT E d l A Aq l L σαγ=?==? (2-4) 式中:/T A σ=,q A γ=,cos L l α=?为斜索的水平投影长度, f E :计算垂度效应的当量弹性模量。 在T 的作用下,斜索的弹性应变为: e e E σε= 因此,等效弹性模量eq E 为: 1e eq e e f e f f E E E E E E σ σσσεε===+++ 即: ()23 112e eq e e E E E L E μγσ= =+ (μ<1) (2-5)

斜拉桥分析注意事项

斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。 确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。 MIDAS/Civil 程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种 解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。 1.未闭合力功能 通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构 自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。 第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。 第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。 但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。 MIDAS/Civil 能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。 其次利用MIDAS/Civil 的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的模型,只需直接建立正装分析的模型,考虑未闭合力进行分析,就可以得到与倒拆分析相同的分析结果。这样可以避免建立倒拆施工阶段模型的繁琐操作,同时也避免了建立倒拆分析模型时设计人员很容易犯错的问题。 将考虑未闭合力进行正装分析得到的各阶段的索内力,按初拉力重新输入后,不考虑未闭合力进行正装分析,即反映的是实际的施工过程的模拟。根据该分析的结果,设计人员需要进

相关主题
文本预览
相关文档 最新文档