当前位置:文档之家› 张力控制系统

张力控制系统

张力控制系统
张力控制系统

张力控制系统MAGPOWR

(美塞斯MC01/400/830/1898)往往是张力传感器和张力控制器的一种系统集成,目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。

工作原理

这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。

一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等,下图为一个典型的闭环张力控制系统。

人工控制

MAGPOWR <1ll人工张力控制系统是适合于收卷,点到点和一些特定的放卷应用场合使用的低成本解决方案.

我们的手动电源供应器可以让f~ 淌除剩磁,15可以通过莫独特的皮向电流性能而用到制动器或离合器的完整的功率范围。该系统最适合应用于:

( 1 )需要自然锥角的收卷场合

( 2 )卷装成形保持不变的点到点应用场合

( 3 )从满卷到卷芯的放卷过程中允许有少量张力变化的场合

人工电源供给采用电流调节方式,当离合器或制动器从环境温度变化到工作温度时,莫输出仍保持不变。

可选用带有跳结器的90VDC 和24VDC 电压供给,额定电流可以调节,还可匹配磁粉制动器满足榕的应用需求。

可选安装方式DIN 标准导轨(C E) .撞墙式安装,印刷电路板。

张力控制系统(3张)

控制方式

1、手动控制,在收料、放料或过程中不断调整离合器或制动器的扭矩,从而获得所需的张力,这就要求用户必须随时检查被控材料的张力,随时调节输出力矩,若用气动制动器或离合器时,手动控制器可直接选用精密调压阀,可使用户节约一定的设备成本,但仅适用于一些低速的复合机、挤出机、纺织机械等张力控制要求不高的场合。

2、半自动方式:利用超声波原理等自动检出卷径,从而调整卷料张力,例如:美国Montalvo(蒙特福)公司U3500型超声波张力控制器,从本质上来讲是一种张力的半闭环控制,不仅可以自动测出卷经、控制扭矩输出,同时还具有缓冲启动、防松卷和惯性补偿等功能。该方案的实施成本较低,因此在中档机械中应用广泛。

3、全自动方式:一般也有两种检测方式。一种是通过张力传感器测定卷材的张力,然后由控制器自动调整离合器或制动器来控制卷料张力。这种方式是张力的全闭环控制,原理上来讲,此种方案能够实时反映出张力的变化因此控制精度最高,因此一些高档的精轧机、高速分切机等冶金上采用全自动的张力控制系统。[1]

举例

开环跟踪臂:

这些安装简单的系统可以基于卷筒直径的变化实现

张力控制。

可选的控制输出范围:O - lOVDC. 4-20 mADC. 90VDC

可选安装方式: DIN 标准导轨(C E) .印刷电路板

开环超声波:

该系统设计简单、精确,易于安装。张力控制可墓

于变化的锦简直径,不会和卷材有任何物理接触.

同样支持在收卷时调整梯度张力

当装卷快满时,可输出直径的倒数来使电机减速以减少离

合器的;青移发热量

可控输出: 0 - 10VDC f 4 阳20mAD f - 10 - 10VDC f

90VDC , 24VDC

可选安装万式:挂墙式安装(CE) ,DIN 标准稽体安装(CE)

自由环超声波张力控制:

该系统使用简单,是控制速度的低成本解决万案,

适用于靠卷材的自重就可以提供足够张力应用场台。

适用于靠材料的自重就可以提供足够张力的应用场合

最适用于开机/停机或者放卷卷筒不圆的场合使用

通过缰)申环位置反馈来提供控制

可选安装方式:箱体安装(CE) ,符合DIN 标准的嵌入面板

式安装(C E)

可选输出: O~10 VDC I 4~20 mADC I -10~10 VDC

闭环张力控制:

该系统是适用于启动/停车或者放卷的卷装不圆时保

持张力恒走的最理想选择。

当卷装满卷时,可输出亘径的倒数来使电机减速以控制收

卷速度,减少离合器;需移损耗热量(当VERSATEC ? 张力

控制器和US - 2 超声波感应器共同选用时)

可控输出:0 - 10VDC , 4 - 20mAD , -10 - 10VDC I

90VDC , 24VDC

可选安装方式:撞墙式安装( CE ), DIN 标准箱体安装

(CE) ,DIN 标准导轨安装(CE) ,印刷电路板

张力控制(5张)

张力控制系统扩展

张力控制系统MAGPOWR(美塞斯MC026/400/830/1898)是指能够持久地控制原料在设备上输送时的张力的能力。这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。

资料来源:https://www.doczj.com/doc/1e4040205.html,/view/2257075.htm

恒张力控制系统

第一章设计说明 课题简介 设计一个恒张力收盘控制系统,就是要控制卷取物体时保持物体相互拉长或者绷紧的力。张力应用于最广泛的造纸、纤维、塑料薄膜、电线、印刷品、磁带等轻工业中,带材或线材的收放卷张力对产品的质量起着至关重要的作用。在收卷和放卷的过程中,为保证生产的质量及效率,保持恒定的张力是很重要的。本系统采用人及交互式的控制方法,由使用者输入设定张力值,通过磁粉制动器、传感器、转换芯片与单片机组成一个闭环系统,使张力恒定在设定值,达到恒张力控制的效果。 设计目的 通过本次课题设计,应用《单片机原理及应用》等所学相关知识及查阅资料,完成恒张力收盘控制系统的设计,以达到理论与实践更好的结合、进一步提高综合运用所学知识和设计的能力的目的。通过本次设计的训练,可以使我在基本思路和基本方法上对基于MCS-51单片机的嵌入式系统设计有一个比较感性的认识,并具备一定程度的设计能力。 设计任务 在本次课程设计中,主要完成如下方面的设计任务: 1、设计单片机系统原理图(A0,PROTEL/CAD或手画); 2、编写系统程序(主程序+子程序); 3、写设计说明书;(设计说明,程序流程图,程序); 4、答辩(十九周周四下午两点); 设计方法 由按键驱动单片机中断,进入按键及显示程序,通过使用者输入数据并通知在LED上显示,输入数据储存在相关区域内备之后使用,返回到主程序后单片机接受由力传感器产生的经AD转换芯片转换后的数字力信号,通过与之前设定值的比较计算,得出控制信号,经DA 转换芯片变为模拟电压信号输入磁粉制动器控制端。若没有键盘中断,则如此往复运行信号检测、运算、输出程序达到动态平衡。

张力控制变频收卷的控制原理及在纺织机中的应用

张力控制变频收卷的控制原理及在纺织行业的应用 -------作者:中达电通上海分公司 FAE李强 一.前言: 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷 经 是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不 同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动 时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷 时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基 本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客 户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径启动时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且 在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 * 因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、 减速、停车、再启动时很容易造成爆纱和松纱的现象,将直接导致纱的质量。 而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒 定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施, 使得收卷的性能更好。 * 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本

全数字张力控制系统的研究

全数字张力控制系统的研究-机械制造论文 全数字张力控制系统的研究 陈杰金霍览宇 (湖南机电职业技术学院电气工程系,湖南长沙410151) 【摘要】本文研究了国内外张力控制系统的数字化发展趋势,并分析对比目前市面上各种张力控制系统的特点和不足,提出了基于通用PLC控制器和变频器为核心的全数字张力控制系统设计方案。 关键词数字化;张力控制系统;PLC;变频器 ※基金项目:湖南省2013年度教育厅科学研究项目(13C254)。 作者简介:陈杰金(1979.02—),女,吉林松原人,湖南机电职业技术学院电气系,讲师。 1 问题的提出 很多行业涉及到张力的控制,张力控制系统是以卷材为材料的生产机械上最重要的控制系统,在冶金、纺织、造纸、印染等许多行业应用广泛,各种产品如钢板、铝箔、布料、塑料薄膜、纸张等卷材,这些材料在加工过程中需要卷曲或者开卷等工序,如铝箔张力控制系统,铝带经过粗轧、精轧等多个工序,变为铝箔之后卷曲成一卷成品。这个过程中张力的控制非常重要,张力过大、过小都会造成卷材质量问题,导致成品率低,比如在放卷、收卷以及过程中,都要保持一定的张力(或者称之为拉伸力),过大的张力会导致材料变形、甚至断裂,而过小的张力又会松弛,导致褶皱,张力控制不稳也会造成不匀、切断长度不稳定等现象,所以必须对张力进行控制,保持张力恒定。由于张力会随着卷径而变化,而张力的变化对卷取效果会有很大影响。因此说恒张力控制是高精度卷取控制的关

键环节。 在某些某冶金企业中仍有为数不少的卷取张力控制设备,其张力控制系统仍采用传统的模拟电子插板式控制系统,以分立的电子器件控制,设备老化,故障频发,急需进行控制系统的升级改造。本文主要是针对这个问题,提出了基于PLC 和变频器为核心的恒张力的控制方案,以较低的成本和较好的控制效果,实现设备的价值再现。 2 国内外研究现状综述 目前高精度的张力控制均能采取闭环控制,通常根据控制方式可分为直接张力控制、间接张力控制和复合张力控制三种方式。直接张力控制,是构建张力闭环控制系统,利用张力检测元件的检测信号与给定张力值比较,通过张力调节器,驱动执行机构,调节张力辊的位移,进而达到控制张力的目的;间接张力控制则是对卷取张力建模,通过对卷取机构的转矩方程进行静态、动态分析,确定影响张力的相关因素(如电流、卷径等),进而对这些因素进行反馈控制(如电流反馈、反电势反馈、卷径反馈控制等),从而达到恒张力控制的目的。复合恒张力控制则是两者的结合。在间接张力控制方式的基础上,增加一个张力闭环,形成三环控制系统。近年来,国内外卷取张力控制现状主要有以下两个方面:(1)利用制动器(磁粉离合器)的励磁电流与输出力矩的线性关系,通过控制和调节磁粉离合器的励磁电流进而控制输出力矩,实现张力控制。这种方式主要应用在轻工业如纺织、印刷行业等,代表产品有三菱张力控制器、华纳张力控制器等等,市场上产品丰富。 (2)通过标准工艺张力控制板及附带的控制软件,通过交直流传动装置,完成张力控制中的动态力矩补偿、卷径计算、恒张力控制等功能,进而实现恒张力

造纸机械的张力控制系统研究

造纸机械的张力控制系统研究 摘要:造纸机械多电机变频传动控制系统中,张力控制是一大研究热点。本文采用张力检测装置,采集张力值,经plc接收和判定,组成直接张力控制系统,保持张力恒定。在matlab软件环境下,采用simulink工具箱,对张力控制进行了模拟,分析仿真运行结果,验证了控制方案的可行性。 abstract: in the paper machine of multi-motor frequency conversion control system, tension control is a hot research topic. this paper uses the tension detection device,acquisition tension values, receives and judgement by the plc,constitute direct tension control system, maintain a constant tension. by the environment of matlab software,using simulink toolbox, simulation of tension control system, analysis of simulation results, verify the feasibility of control schem. 关键词:造纸机械;变频;张力控制;matlab key words: paper machine;frequency;tension control;matlab 中图分类号:th6 文献标识码:a 文章编号:1006-4311(2013)11-0014-02 0 引言 造纸业是国民经济中的重要产业。我国传统的造纸设备大多采用

气动张力控制系统的建模与仿真

气动张力控制系统的建模与仿真 摘要:本文简单介绍了张力控制的相关知识及气动张力控制系统的组成及工作原理,并对张力控制系统的收卷控制部分进行了数学建模与仿真。建立了比例压力阀控缸开环系统的简化模型,采用PID控制方法,在Matlab仿真平台进行系统模型仿真,得到了系统仿真曲线。 关键词:张力控制气动比例控制系统建模与仿真 近年来,气动技术以其自身独特的传动方式和优点,如清洁、结构简单、气体来源充足和成本相对较低,已在工业自动化领域广泛应用。将气动技术应用于恒张力控制系统已成为一个重要研究领域,PID控制,现代控制理论,智能控制等都被应用到气动系统的控制中。但是气动控制系统,由于气体的可压缩性,阀口非线性及气缸摩擦力等因素的影响,导致了气动伺服系统的强非线性、固有频率低、刚度小、阻尼小等特点,要得到满意的控制伺服系统比较困难。要对气动伺服控制系统进行分析和研究,一般需要首先建立该控制系统的数学模型。 本文通过介绍张力控制的相关知识及气动比例控制系统原理与组成,针对张力控制系统的收卷控制部分建立简单的比例压力阀控缸开环控制系统的数学模型,并在Matlab环境下进行了仿真。 一、张力控制的基础知识 张力控制,简单地说就是要控制物体在设备上输送时物体上相互拉长或绷紧的力。张力控制系统往往是张力传感器和张力控制器的一种系统集成,是一种实现恒张力或者锥度张力控制的自动控制系统,主要应用于造纸、纺织、薄膜、电线等轻工业中,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。在带材或线材的收卷和放卷过程中,为保证生生产的质量和效率,保持恒定张力是很重要的。 这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。 一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。 1.典型收卷张力控制示意图

浅析分切机张力控制系统

浅析分切机张力控制系 An Analysis on Tension Control System of Cutter Zhang Y uncai ,Qi xingguang,Zhanghaili 摘要: 分切机的张力控制是分切机控制的核心。本文介绍了分切机张力的形成、影响张力稳定的主 要因素、张力控制的实现形式以及张力控制系统应用性能分析。 关键词: 分切机 张力 张力控制 1.引言 分切机主要是用来完成中低定量纸张(如卷烟纸、铝箔纸、玻璃纸、电容器纸等)和薄膜(如BOPP 、PVC 等)及类似薄型材料的纵向分切和复卷。一般情况下,车速比较快,控制精度要求比较高,其中张力控制是其控制的核心。张力控制是指能够持久地控制原料在设备上输送时的张力的能力。这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多[1]。 2.张力的形成 张力的形成有多种实现形式,但其基本原理都是一致的。如简图1所示, 设张力为F ,收料卷运行线速度为V 1 , 放料卷运行线速度为V 2 ,根据胡克定律可得张力F: dt V V L F t o ? -=)(21εσ, 式中:ε为原料的弹性模量;σ为原来的横截面积;L 为原料牵引长度;t 为原料传送时间,t=L/ V 1 。由此可见,张力的形成是一个积分环节。在启动过程中,V 1>V 2,以使收卷辊内产生一 定的张力,当收卷达到我们所要求的合适张力后,及时调节动力机构使V 1、V 2稳定,这样,原料就在此张力 下稳定运行。张力控制系统就是要满足整机的张力稳定[2]。 2. 影响张力稳定的因素 张力产生波动和变化的因素往往比较复杂,其主要影响因素大致有以下几个方面: (1) 机器的升降速变化必然会引起整机张力的变化。 (2) 分切机在收、放卷过程中,收卷和放卷直径是不断变化的,直径的变化必然会引起原料张力的变化。放卷在制动力矩不变的情况下,直径减少,张力将随之增大。而收卷则相反,如果收卷力矩不变时,随着收卷直径增大,张力将减少。这是在运行中引起原料张力变化的主要因素。 (3) 原材料卷的松紧度变化同时会引起整机张力的变化。

张力控制系统

张力控制系统MAGPOWR (美塞斯MC01/400/830/1898)往往是张力传感器和张力控制器的一种系统集成,目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。 工作原理 这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。 一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等,下图为一个典型的闭环张力控制系统。 人工控制 MAGPOWR <1ll人工张力控制系统是适合于收卷,点到点和一些特定的放卷应用场合使用的低成本解决方案. 我们的手动电源供应器可以让f~ 淌除剩磁,15可以通过莫独特的皮向电流性能而用到制动器或离合器的完整的功率范围。该系统最适合应用于: ( 1 )需要自然锥角的收卷场合 ( 2 )卷装成形保持不变的点到点应用场合 ( 3 )从满卷到卷芯的放卷过程中允许有少量张力变化的场合 人工电源供给采用电流调节方式,当离合器或制动器从环境温度变化到工作温度时,莫输出仍保持不变。 可选用带有跳结器的90VDC 和24VDC 电压供给,额定电流可以调节,还可匹配磁粉制动器满足榕的应用需求。 可选安装方式DIN 标准导轨(C E) .撞墙式安装,印刷电路板。 张力控制系统(3张) 控制方式

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图 2

2.2 张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 1、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 2、与开环转矩模式有关的功能模块: 1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩 3

张力控制系统中的张力控制与变频

张力控制系统中的张力控制与变频

————————————————————————————————作者:————————————————————————————————日期:

张力控制系统中的张力控制与变频 1.力控制原理。以造纸机的张力控制为例,在图1a)所示的张力控制示意图中,传动电动机M的张力实际值是位于它前面的张力传感器的实际值。通过检测该处的张力情况,来控制传动电动机M的速度,从而形成一个张力闭环。电动机M的速度加快,则纸幅拉紧,张力的实际值就会上升;相反,速度降低,则纸幅松垂,张力的实际值就下降。 在这里,纸幅张力的设定值为T设定,实际值为T实际,经过张力控制器(T-控制)的PID调节器后,再乘以3%的偏移量,作为该传动点速度设定值的一个组成部分。原来传动的速度设定值(V设定)加上该组成部分,就是速度环(V-控制)的输入值,然后即可进行速度控制。在这里设置3%偏移量的目的就是通过传动速度的改变而使张力得到有效的控制。

图1 张力控制示意图 在图1b)所示的张力控制原理中,T-控制就是张力控制模块的实现,包括自动和手动两种方式。张力控制模块投运前需先检测判定现在的张力实际值是否在可投运的范围之内,否则就不能投运,此时按手动投运按钮或当自动投运信号为“1”时,即进入张力控制模块的循环中。张力PID模块的退出,它的条件为相关部位检测到断纸信号或按手动退出按钮。 2.力控制软件流程。这里以某一点的张力控制为例,采用plc语言编程进行张力软件的设计,其示意如图2示。由此可以推广到多点张力控制中去。 ①读取张力设定值。张力设定值的输入可从工艺控制台上进行,并可通过脉冲开关的动作对设定值微调,以符合实际纸幅稳定运行的需要。 ②读取张力实际值。张力实际值的产生是从PLC的模拟量板中获取的,调用相应的功能块程序。本过程读取张力的模拟量值后,在输出端得到标准化的量值,并可通过“高限”和“低限”参数来设置量程。从模拟量输入板读出的模拟量值首先变换为右边对齐的定点数(以标称范围为基础)。 ③张力控制投入判断。张力控制是否投入取决于工艺的需要和纸幅是否已经上卷,纸幅是否断裂,在其他逻辑块中进行手动按钮投入或自动信号投入的设定,以及自动退出。因此这里需要判断张力控制是否投入,如已投入,则进入张力PID控制模块,否则就只显示数值和

6 卷纸张力控制系统

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 自动控制原理课程设计报告 设计题目:卷纸张力控制系统 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间: 重庆邮电大学自动化学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 (一)、卷纸张力控制系统原理 (二)、控制过程分析 (三)、系统的时域分析与频域分析 (四)、系统校正 三、设计总结 四、参考文献

一、 设计题目 在造纸厂的卷纸过程中,卷开轴和卷进轴之间的纸张张力采用下图所示的卷纸张力控制系统进行控制,以保持张力F 基本恒定。 要求: (1) 查阅相关资料,分析系统的工作原理,指出被控对象、被控量和给定量,画出系统 方框图。 (2) 分析系统每个环节的输入输出关系,代入相关参数求取系统传递函数。 (3) 分析系统时域性能和频域性能。 (4) 运用根轨迹法或频率法校正系统,使之满足给定性能指标要求。 (已知:m T =0.35 n T =3 12k = 22k = 1m k = 3n k = 反馈系数:1α= 要求:4,40c c ω≥γ≥) 二、 设计报告正文 摘要: 关键词:

(一)、卷纸张力控制系统原理 图1-1卷纸张力控制系统 系统工作原理: 在造纸厂的卷纸过程中,当纸张不断地从卷开轴向卷进轴运动时,线速度就会下降,从而纸张承受的张力会相应的减小。为保证张力的基本恒定,必须调整电机的转速。 图1-1所示的控制系统中,采用三个滑轮和一个弹簧组成的张力测量器来 测量纸上的张力。 将测量的实际张力与预设张力进行比较,经放大器放大后得到电机的输入电压。通过电压的变化来调节电机的转速,进而调节卷开轴向卷进轴运行的线速度。最终,使纸张的张力保持基本恒定。 电机---被控对象 预设张力---系统给定量 实际张力---系统控制量 通过对系统的分析,可得卷纸张力控制系统的方框图如图1-2所示 图1-2卷纸张力闭环控制系统方框图

工程应用1 基于PLC的恒张力控制系统

工程应用1 基于PLC的恒张力控制系统 一、项目目的 1.了解电线自动化生产线张力控制系统; 2.掌握电线自动化生产线恒张力控制系统工作原理; 3.掌握S7-300PLC编程软件平台、STEP7的程序结构和编程方法; 4.培养学生逻辑思维能力、创新能力、分析问题与解决问题能力 二、硬件系统设计 1. 硬件系统组成 硬件系统由编程计算机(上位机)、S7-300PLC控制器(下位机)和电线生产线(被控对象)等组成,编程计算机(RS232通讯口)和S7-300PLC控制器(DP通讯接口)之间通讯采用PPI通讯方式。 2. 恒张力控制原理 恒线速度恒张力调节系统以牵引机的速度为全线的基准速度,实现前后张力分段。收线机为卷取张力调节系统,放线机为开卷机张力调节系统,前后张力方向相反。 开卷机由欧陆514C致力调速板控制,形成一个张力、电流双闭环调速系统,它按照牵引机速度进行调节,如图1所示。开卷机张力给定,张力反馈信号和开卷机电流、张力双闭环调节系统构成了开卷机的调速系统,随着生产的进行,开卷机上的铜线盘半径不断减小,相应的电机转速必须逐渐增大才能保持电线上的张力恒定,但实现裸铜线的线圈半径检测很困难于是我们采用电缆张力负反馈,这样根据张力反馈信号的大小来调节开卷机的转速,在整个过程中开卷机随着牵引机的速度转动,从而使电缆张力保持恒定。 图1恒张力系统示意图 3.定义I/O口地址分配表 分析与恒张力控制相关的生产线设备(开卷机、牵引机),分配PLC输入、输出信号地址。 4.设计出硬件系统接线图

三、PLC控制程序设计 1. 模拟量闭环控制系统的组成 典型的PLC模拟量闭环控制系统如图2所示, 图2模拟量闭环控制原理图 在过程控制中,按照偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器是应用最广泛的一种自动控制器。 2. S7-300PLC实现闭环控制的方法 S7-300PLC的FM355是智能化的4路通用闭环控制模块,可以用于化工和过程控制,模块带有A/D转换器和D/A转换器。 除了专用的闭环控制模块,S7-300PLC也可以用PID控制功能块来实现PID 控制。但是需要配置模拟量输入模块和模拟量输出模块。 系统功能块SFB41可用于CPU314的闭环控制。SFB41“CONT_C”(连续控制器)的输出为连续变量。可以用SFB“CONT_C”作为单独的PID恒指控制器。控制器的功能基于模拟信号采样控制器的PID控制算法。 3.程序要求 (1)按下开卷电机起动按钮,开卷电机起动,经过P参数和I参数设定的PID 控制器控制电线的张力达到要求的恒定值。 (2)按下牵引电机起动按钮,牵引电机起动,通过调节控制牵引电机的变频器的给定值调节牵引电机的转速,要求PID控制器自动控制开卷机的转速保持电线的张力维持恒定值。 (3)按下停止按钮,系统停止运行。 4程序设计提示 (1)生产线启动过程应先起动放线机,再起动牵引电机 (2)PID控制方式中的P参数和I参数的数值多为经验值,可通过多次试验得出合适的设定值。 四、预习报告设计要求 1. 实验前,根据控制内容设计出系统的接线图、程序流程图、时序图; 2.设计出控制程序,并尝试创新出其他的电线生产线恒张力控制功能。 五、系统调试及问题分析

张力控制的目的就是保持线

在这种模式下,无需张力检测反馈装置,就可以获得更为稳定的张力控制效果,结构简洁,效果较好。但变频器需工作在闭环矢量控制方式,必须安装测速电机或编码器,以便对电机的转速做精确测量反馈。转矩的计算公式如下: T= ( F× D ) / ( 2× i ) 其中: T 变频器输出转矩指 令 F 张力设定指令 i 机械传动比 D 卷筒的卷径 电机的转矩被计算出来后, 用 来控制变频器的电流环, 这样就可以控制电机的输出转矩。 控制电机的输出转 矩。 控制电机的输出转矩 所以转矩计算非常重要。 这种控制多用在对张力精度

要求不高的场合, 在我鑫科公司就有广 泛的应用。如精带公司的脱脂机、气垫炉 的收卷控制中都采用了这中控制模式。 二、转矩模式下转矩模式下的张力开环控 制 张力闭环控制是在张力开环控制的基础上增加了张力反馈闭环调节。 通过张力 检测装置 反馈张力信号与张力设定值构成 PID 闭环调节,调整变频器输出转矩 指令,这样可以获得 更高的张力控制精度。其张力计算与开环控制相同。不论采 用张力开环模式还是闭环模式, 在系统加、减速的过程中,需要提供额外的转矩 用于克服整个系统的转动惯量。如果不加补 偿,将出现收卷过程加速时张力偏 小,减速时张力偏大,放卷过程加速时张力偏大,减速时 张力偏小的现象。 这种 控制模式多用在造纸、 纺织等卷取微张力控制的场合下。 在我公司尚无需这种控 制。 卷径计算 在所有的模式中都需要用到卷筒的卷径,

大家知道, 在生产过程 中开卷机的卷径是在不 断变小,卷取机的卷径在不断变大,也就是说转矩必须随着卷径的变化而变化,才能获得稳 定的张力控制。可见卷筒的卷径计算是多么地 重要。卷径的计算有两中途径:一种是通过外 部将计算好的卷径直接传送给变频 器,一般是在 PLC 中运算获得。另一种是变频器自己运 算获得, 矢量控制型变 频器都具有卷径计算功能, 在大多数的应用中都是通过变频器自己运 算获得。这 样可以减少 PLC 程序的复杂性和调试难度、降低成本。 变频器自己计算卷径的 方法有三种: 变频器自己计算卷径的方法有三种: 1 、 速度计算法: 、 速度计 算法:

张力控制原理教程

10本文从应用的角度阐述了当前技术条件下,矢量变频技术在卷取传动中运用和设计的方法和思路。有较强的实用性和理论指导性。 关键词: 张力变频矢量转矩卷径 引言: 在工业生产的很多行业,都要进行精确的张力控制,保持张力的恒定,以提高产品的质量。诸如造纸、印刷印染、包装、电线电缆、光纤电缆、纺织、皮革、金属箔加工、纤维、橡胶、冶金等行业都被广泛应用。在变频技术还没有成熟以前,通常采用直流控制,以获得良好的控制性能。随着变频技术的日趋成熟,出现了矢量控制变频器、张力控制专用变频器等一些高性能的变频器。其控制性能已能和直流控制性能相媲美。由于交流电动机的结构、性价比、使用、维护等很多方面都优于直流电动机,矢量变频控制正在这些行业被越来越广泛的应用,有取代直流控制的趋势。 张力控制的目的就是保持线材或带材上的张力恒定,矢量控制变频器可以通过两种途径达到目的:一、通过控制电机的转速来实现;另一种是通过控制电机输出转矩来实现。 速度模式下的张力闭环控制 速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。 同步匹配频率指令的公式如下: F=(V×p×i)/(π×D) 其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比D 卷筒的卷径 变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。 这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。 转矩模式下的张力控制 一、转矩模式下的张力开环控制

变频器在卷染机恒张力恒线速度控制中应用方法

变频器在卷染机恒张力恒线速度控制中应用方法 一、前言卷染机适合目前市场对多品种小批量织物的染色需求,可间歇式生产,发展前景看好应用越来越广泛。卷染机控制方面要求具备自动记道、自动计数、自动换向、自动掉头、自动停车、防坠液等功能,在整个工艺过程中,要求保证布匹的张力和线速度恒定,因此对系统的自控控制水平要求较高。国内较为传统的卷染机大部分采用双直流电机控制,只能达到近似的恒张力控制效果,也有采用单变频器的卷染机,放卷采用异步电机直流制动的方式,收放卷用接触器在变频器和直流制动之间进行切换,以上这些方案,分析其原理,都是在较大误差情况下的一种近似结果,因此控制效果不尽如人意。进口的高档卷染机,有的采用伺服控制,有的是用价格昂贵的工程型变频器来实现,效果较为理想,但是对于国内的用户来说,成本压力很大。本文以一个工程实例来说明采用科创力源张力控制专用变频器精确并巧妙的完成卷染机的工艺要求。CLM158巨型卷染机技术指标:◆门幅:1800--3600mm;◆最大卷径:1500mm;◆车速:20--150m/min;◆最高温度:98℃;◆张力调整范围:300~1000N;图1是卷染机工作的示意图,这是一个典型的中心卷曲控制系统。未染色的布匹首先通过上布电机卷曲到其中的一个辊筒上,在辊筒的传动轴上安装有计数用的接近开关,此时控制系统计下整卷布的道次,上卷完毕,采用人工的方式把布匹的一头卷到另外一个辊筒上面,待包覆紧密即可正常开始工作。此时两个辊筒朝着同一个方向运转,控制的要求是保持布匹上的张力恒定,保持布匹在染液经过的时间一致,也就是线速度恒定。这是个没有线速度反馈的驱动系统,但线速度又实实在在的随着辊筒的半径的变化在变化。因此,控制系统需要适应这种独特的要求。科创力源CM60-T变频器为卷染机的高性能控制提供了理想的驱动平台。在各个卷染机厂家以及最终用户处的实际使用情况表明,采用CM60-T控制的卷染机,兼顾了控制性能和成本之间的要求,为该行业的产品升级换代提供了优秀的解决方案。下面结合用于平幅丝绸棉布尼龙人造及合成丝等织物的CLM158 巨型恒张力卷染机的工程实例说明CM60-T高性能矢量控制变频器在该行业的应用。二、采用张力控制专用变频器的卷染机电气系统卷染机的控制可以分为温度控制和传动控制两部分,本文重点描述的是关系到张力以及线速度控制的驱动部分控制。该卷染机的控制系统以西门子作为控制器,采用触摸屏作为人机界面,它们主要完成的是张力,线速度的设定,布的厚度的测量以及相关逻辑动作的控制。变频器和PLC之间采用485通讯。采用通讯方式的好处是可以随时知道变频器主要变量的信息,减少接线,使得整个系统看起来很精简。两台完全一样的变频器,它们均工作于闭环矢量控制模式,由于卷染机在接近满卷时候会较长时间工作在很低的频率下(1~3Hz),采用较高线数的编码器有助于提高在低转速工况下的控制性能,同时考虑散热,需要采用变频专用电机。上布时刻,PLC记录下该布卷在辊筒上面的总圈数,然后由操作工测量该布卷的直径,把这个值输入到HMI,PLC根据直径和总圈数,可以精确计算出来单层布的厚度。采用这种方法获得布厚,误差很小。布厚通过485通讯传送到CM60-T张力控制变频器,作为控制的最基本参数。同时针对每种织物,染色所需要的张力以及染色速度,也在HMI上面设定好,然后通过PLC传递给变频器。CM60-T的功能十分强大,除了具有常规的惯量补偿,卷径计算,摩擦力补偿,锥度计算等张力控制功能之外,还有一个为了线缆、印包等行业收卷控制的自动换盘设计的功能:预驱动。该功能的作用是根据线速度和卷径的关系,自动计算出所匹配的角速度。利用这个功能,我们首先可以实现卷染机控制要求中的恒定线速度控制。其原理是:根据设定的线速度以及布匹的初始直径,布匹的厚度,我们可以得到一个匹配的电机旋转速度,当直径变化的时候,辊筒每旋转一圈,变频器会自动减去一层布的厚度,从而得到一个新的直径,通过这个新的直径,变频器又能够计算出所需要匹配的线速度,如此周而复始,可以确保布匹线速度的恒定。恒张力的控制,则是利用矢量控制变频器的转矩控制功能,实时的根据张力的设定值,锥度,补偿量以及卷轴直径计算出所需要的转矩,从而达到间接的

张力控制变频收卷的控制原理(汇编)

张力控制变频收卷的控制原理本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。

张力控制系统分析

20世纪60年代,特别是80年代以来,随着电力电子技术、现代控制理论、计算机技术和微电子技术的发展,逐步形成了集多种高新技术于一身的现代电气传动技术。高精度、高可靠性的变频调速系统,凸显了交流异步电动机结构简单、价格便宜、工作可靠和维护方便等优点,为冶金处理线的张力控制技术的发展提供了强有力的保证。 2 带钢张力的作用 采用张力控制防止带钢堆拉现象发生,同时,张力在生产过程中也发挥着十分重要的作用,主要表现在以下几个方面[1]: 2.1 防止带钢跑偏 在实际生产过程中,由于各种因素的影响,带钢在运行过程中容易发生跑偏,而且会随着运行而越来越严重。为了防止跑偏,可以采用纠偏辊或八字辊,但这两种方法都有一定的时滞,有一定的局限性。而适当调节张力值,维持张力稳定,带钢可以在一定的张力作用下平稳的运行,张力反映迅速,无时滞,所以是防止带钢跑偏的有效方法。 2.2 有利于控制带钢的板形 板形是衡量带钢质量的重要指标,板形良好指的就是带钢的平制度好,如边部起浪,中部浪皱等,这主要是由于变形不均匀,使带钢中的残余应力超出了稳定所允许的拉应力。当采用微张力控制时,使带钢沿宽度方向上的拉力不超过所允许的拉应力,由此来保持带钢板形的平直。 2.3 有利于控制加热面积的控制 炉区的入口段是预热炉,里面没有炉棍,是一段悬空的带钢。两边喷嘴加热带钢。利用张力可以调节带钢的悬垂度,保证在预热炉内的带钢充分加热。此外,张力在煅烧过程中可以适当调节张力辊电机的负荷。可见张力控制对于正常生产是非常重要的的保证。而通过张力产生的原理分析,我们可以找出控制或影响张力的有关原因。 3 带钢张力控制方案 以冶金处理线的控制为例,介绍具体控制方案。 图 1表示了一条简单处理线的主要传动设备,由开卷机、卷取机、活套和若干张力辊组成。开卷机,卷取机,活套分别建立各段张力,张力辊根据工艺需要分断上下游张力。处理段br2参与tm1(张力计)的直接张力控制,其他张力辊作为各速度区域(活套将全线分成入口、中部、尾部三段)的速度基准[2]。图上红色表示主速度辊。针对不同的控制对象,我们采取不同的传动方案。 图1 带钢处理线 3.1 主速度辊控制 主速度辊控制如图2所示。转速设定与编码器负反馈比较后,经过速度环pi调节,作为转矩给定输入电机模型,电机模型再通过矢量控制法对马达进行控制。其中 a为附加转矩,b为转矩限幅。以br1为例,它需要分断开卷张力和活套张力,而且是入口段的速度基准。因为主要任务是保证入口速度按设定运行,它应采取纯速度控制方案。见图1:其中a处附加转矩可以作为预设值放在速度调节器的后面,使得马达启动时按我们计算的转矩运行,速度调节器再此基础上微调,保证速度的精确性。在实际应用中,我们可以将加速度、摩擦力等损失以及上下游张力差经过计算后作为预设值。这样可以大幅度提高生产线启动过程的

张力控制解释

张力控制变频收卷的控制原理 2007年7月23日 中国工业设备网 本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 (6)克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

张力控制器原理

1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转距。 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转 距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿, 这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解, 用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。 尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系 统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且 在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 * 因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、 减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。 而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒 定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施, 使得收卷的性能更好。 * 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本 上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 * 克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

相关主题
文本预览
相关文档 最新文档