当前位置:文档之家› 证明线段相等角相等平行垂直的方法 Microsoft Word 文档

证明线段相等角相等平行垂直的方法 Microsoft Word 文档

证明线段相等角相等平行垂直的方法 Microsoft Word 文档
证明线段相等角相等平行垂直的方法 Microsoft Word 文档

平面几何定理总结

1、证明两条线段相等的方法

(1)全等三角形的对应边、对应角相等

(2)在角的平分线上的点到这个角的两边的距离相等

(3)如果一个三角形有两个角相等,那么这两个角所对的边也相等

(4)有一个角等于60°的等腰三角形是等边三角形

(5)在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

(6)直角三角形斜边上的中线等于斜边上的一半

(7)线段垂直平分线上的点和这条线段两个端点的距离相等

(8)直角三角形两直角边a、b的平方和、等于斜边c的平方

(9)平行四边形的对边相等

(10)夹在两条平行线间的平行线段相等

(11)矩形的对角线相等

(12)菱形的四条边都相等

(13)正方形的四条边相等、两条对角线相等

(14)等腰梯形的两条对角线相等

(15)如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

(16)经过梯形一腰的中点与底平行的直线,必平分另一腰

(17)经过三角形一边的中点与另一边平行的直线,必平分第三边

(18)三角形的中位线平行于第三边,并且等于它的一半

(19)梯形的中位线平行于两底,并且等于两底和的一半

(20)垂直于弦的直径平分这条弦并且平分弦所对的两条弧

(21)在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

(22)从圆外一点引圆的两条切线,它们的切线长相等

(23)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

(24)相交两圆的连心线垂直平分两圆的公共弦

2、证明角相等的方法

(1)同角或等角的补角相等

(2)同角或等角的余角相等

(3)两直线平行,同位角相等

(4)两直线平行,内错角相等

(5)两直线平行,同旁内角互补

(6)等腰三角形的两个底角相等

(7)平行四边形的对角相等

(8)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(9)等腰梯形两底角相等

(10)一条弧所对的圆周角等于它所对的圆心角的一半

(11)同弧或等弧所对的圆周角相等

(12)弦切角等于它所夹的弧对的圆周角

(13)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

(14)圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

(15)从圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角

(16)等边三角形的各角都相等,并且每一个角都等于60

3、证明平行的方法

(1)如果两条直线都和第三条直线平行,这两条直线也互相平行

(2)同位角相等,两直线平行

(3)内错角相等,两直线平行

(4)同旁内角互补,两直线平行

(5)三角形的中位线平行于第三边,并且等于它的一半

(6)梯形的中位线平行于两底,并且等于两底和的一半

(7)如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

(8)到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

4、证明垂直的方法

(1)等腰三角形顶角的平分线平分底边并且垂直于底边

(2)等腰三角形的顶角平分线、底边上的中线和高互相重合

(3)和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

(4)三角形两边a、b的平方和、等于第三边c的平方,则此三角形直角三角形(5)矩形的四个角都是直角

(6)菱形的对角线互相垂直

(7)正方形的四个角都是直角

(8)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

(9)半圆(或直径)所对的圆周角是直角

(10)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(11)圆的切线垂直于经过切点的半径

5、证明全等或相似的方法

(1)有两边和它们的夹角对应相等的两个三角形全等

(2)有两角和它们的夹边对应相等的两个三角形全等

(3)有两角和其中一角的对边对应相等的两个三角形全等

(4)有三边对应相等的两个三角形全等

(5)有斜边和一条直角边对应相等的两个直角三角形全等

(6)关于某条直线对称的两个图形是全等形

(7)关于中心对称的两个图形是全等的

(8)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

(9)两角对应相等,两三角形相似

(10)两边对应成比例且夹角相等,两三角形相似

(11)三边对应成比例,两三角形相似

(12)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

(13)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

6、有关比例的定理

(1)比例的基本性质如果a:b=c:d,那么ad=bc

(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

(4)三条平行线截两条直线,所得的对应线段成比例

(5)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

(6)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

(7)相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

(8)相似三角形周长的比等于相似比

(9)相似三角形面积的比等于相似比的平方

(10)相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

(11)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

(12)切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

(13)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

7、几何不等式

(1)三角形两边的和大于第三边

(2)三角形两边的差小于第三边

(3)三角形的一个外角等于和它不相邻的两个内角的和

(4)三角形的一个外角大于任何一个和它不相邻的内角

利用相似三角形证明线段相等

G F E C D B A G N M F E D C B A 利用相似三角形证明线段相等 【例7】已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF 于G 。求证:EG GF =。 证明:证明两线段相等的一种方法是构造比例关系:x y a b =,①若x y =,则a b =;②若a b =,则x y =;③若y b =,则x a = 过C 点作MN ∥EF ,我们先来证明MC=CN ,利用△BEF 和△DEF 形成的A 字型平行线比例关系得: MC BM DN CN EF BE DF EF === ,由此得MC=CN , 再利用△A EG 和△A GFF 形成的A 字型平行线比例关系得: MC AM AN CN EG AE AF GF === ,故EG GF =得证 关键词:A 字型平行线比例关系 构造比例 关系证线段相等 预备知识:在做下一题之前,先证明一条角平分线定理: 在ABC ?中,AD 是BAC ∠的角平分线,则DB AB DC AC = 【例8】在ABC ?中,90C ∠=?,A ∠的平分线AE 交BA 边上的高线CH 于D ,过D ,引AB 的平行线交BC 于F 。求证:BF EC =。 分析:本题的基本思路与上题相同。由角平分线定理得: EC AC EB AB = 和 DH AH DC AC =,而根据射影定理有2AC AH AB =,即AH AC AC AB = 故EC DH EB DC =利用合比定理得:EC DH CB CH = 另一方面,根据平行线比例关系得: BF DH CB CH =;故BF EC = 关键词:角平分线定理 平行线比例关系 射影定理 构造比例关系证线段相等 习题 如图,在ABC ?中,90A ∠=?,分别以AB AC 、为边向形外作正方形ABDE ACFG 、, 设CD 交AB 于N ,BF 交AC 于M ,求证:AM AN =。 17. (本题10分) 如图,已知AB 是⊙O 的直径,BC 是⊙O 的切线,B 为切点,OC 平行于弦AD ,连接CD 。过点D 作DE ⊥AB 于E ,交AC 于点P,求证: (1)CD 是⊙O 的切线;(2)点P 平分线段DE H F E D C B A

线段与角度有关的计算

专题一线段的有关计算 1、若点B在直线AC上,AB=12,BC=7,则A,C两点的距离是. 2、已知点B在直线AC上,线段AB=8cm,AC=18cm,P、Q分别是线段AB、AC的中点,则线段PQ=. 3、如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长. 4、已知线段AB上顺次有三个点C、D、E,把线段AB分成2:3:4:5四部分,且AB=56cm.(1)求线段AE的长;(2)若M、N分别是DE、EB的中点,求线段MN的长度. 5、如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,M是AB的中点,N是AC的中点. (1)求线段CM的长;(2)求线段MN的长.

6、如图,己知线段AB上,顺次有三个点C、D、E,把线段AB分成2:3:4:5四部分,CE=56,求BD的长. 7、如图,A、B、C、D是直线l上顺次四点,M、N分别是AB、CD的中点,且MN=6cm,BC=1cm,求AD的长. 8、如图,动手操作如图,平面内有A、B、C、D 四点,按下列语句画图: (1)画射线AB,直线BC,线段AC;(2)延长CA;(3)连接AD与BC相交于点E.

专题二角度的有关计算 1、25°20′24″=°,34.37°=°′″. 2、下午1点24分,时针与分针所组成的度. 3、计算:①33°52′+21°54′=;②36°27′×3=,175°26′÷3=. 4、如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数. 5、如图,点O是直线AB上一点.∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,求∠MON的度数. 6、如图,点A,O,E在同一条直线上,∠AOB=40°,∠COD=28°,OD平分∠COE.(1)求∠COE的度数.(2)求∠BOD的度数.

中考专题-比例和比例线段

教学内容:比例和比例线段 【重点、难点、考点】 重点:应用平行线分线段成比例定理及其推论和比例的性质进行有关的计算和证明。 难点:熟练应用比例的性质进行各种比例变形。 考点:平行线分线段成比例定理及其推论和比例的性质是学习相似形的重要基础,但各地中考试题中单独考核该项内容较少。 【经典范例引路】 例1 如图已知BE AB =ME AM =CE AC 。 求证:BC CA BC AB ++=ME AE 【解题技巧点拨】 本题要通过观察找出已知条件和待证结论之间的内在联系,然后灵活运用等比性质和合比性质达到证题的目的 例2 如图,延长正方形ABCD 的一边CB 至E ,ED 与AB 相交于点F ,过F 作FG ∥BE 交AE 于G ,求证GF =FB .

【解题技巧点拨】 本题要善于从较复杂的几何图形中,分离出“平行线分线段成比例定理的推论”的基本图形,“A 型”或“ 型”,得到相应的比例式,并注意由公共线段“ED ” 产生“中间比”,最后使问题得证。 【综合能力训练】 一、填空题 1.)已知a ∶b =3∶1且a +b =8,则a -b = 。 2.)已知n m =q p =32 (n+q ≠0),则q n p m ++= 。 3.一个三角形三边的比为2∶3∶4则这个三角边上的高的比为 。 4.线段a =3,b =4,c =5则b ,a ,c 的第四比例项是 ,b 、c 的比例中项是 . 5.直角三角形的三边为a ,a+ b ,a+2b 且a >0,b >0则a ∶b = 。 6.已知点P 是线段AB 的黄金分割点,若AP >BP ,AP=5-1,则AB = 。 7.△ABC 的周长为100cm ,如图若AB AE =AC AF =BC EF =53 ,△AEF 的周长 为 。

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

2021年中考数学热点专题复习:证明线段相等的一些常见方法

2021年中考数学热点专题复习:证明线段相等的一些常见方法 证明线段相等,是初中阶段学生学习几何后经常遇到的一类问题,是学生学习几何的常见入门题,也是学生后继学习的基础. 问题 如图1,在四边形ABCD 中,105ACB BAD ∠=∠=?,45ABC ABD ∠=∠=?,求证:CD AB = 方法1 如图2,过点C 作CE AB ⊥于点E ,再过点A 作AF CD ⊥于点F . 则可证ACE ACF ??? 于是有CE CF AF AE ==,. 45ABC ABD ∠=∠=? CE CF AF AE ∴==, 得AB CD = 方法2 如图3,过C 点作AB 的平行线交AD 于M 点,则由条件,易得 30ACM BAC DCM ∠=∠=∠=?, 75AMC CAM ∠=∠=? AC CM ∴= ABC CDM ∴???,于是有AB CD = 方法3 如图4,过点A 作CD 的垂线交BC 的延长线于E 点. 10545ACB ABC ∠=?∠=?, 30BAC ∴∠=? 10545BAD ADC ∠=?∠=?, 7560DAC ACD ∴∠=?∠=?, 30CAE ∴∠=? 75AEC ACE AE AC ∴∠=∠=?=, 故由ABE CDA ???,得AB CD =

方法4 如图5,过A 作AE DC ⊥于点E ,并延长到点N ,使AN AB =,连CN , 则有ABC ANC ??? 45N D ∴∠=∠=? DE AE EN EC ∴==, DC AN AB ∴== 方法5 如图6,过点C 作CH AB ⊥于点H ,并延长到点G ,使CG CD =,连AG , 则有ADC AGC ??? 45G D ∴∠=∠=? AH HG GH BH ∴==, DC CG AB ∴== 实际上,方法4和方法5都是利用了对称的思想,分别以AC 所在直线为对称轴. 方法6 如图7,过C 点作DC 的垂线交DA 的延长线于P 点.则有 PAC BCA ??? 得AB CP CD ==

证明线段相等的方法

证明线段相等的方法 (一)常用轨迹中: ①两平行线间的距离处处相等。 ②线段中垂线上任一点到线段两端点的距离相等。 ③角平分线上任一点到角两边的距离相等。 ④若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等(图1)。 (二)三角形中: ①同一三角形中,等角对等边。(等腰三角形两腰相等、等边三角形三边相等) ②任意三角形的外心到三顶点的距离相等。 ③任意三角形的内心到三边的距离相等。 ④等腰三角形顶角的平分线(或底边上的高、中线)平分底边。 ⑤直角三角形中,斜边的中点到直角顶点的距离相等。 ⑥有一角为60°的等腰三角形是等边三角形。 ⑦过三角形一边的中点与另一边平行的直线,必平分第三边(图2)。 ⑧同底或等底的三角形,若面积相等,则高也相等。同高或等高的三角形,若面积相等,则底也相等(图3)。 (三)四边形中: ①平行四边形对边相等,对角线相互平分。 ②矩形对角线相等,且其的交点到四顶点的距离相等。 ③菱形中四边相等。 ④等腰梯形两腰相等、两对角线相等。 ⑤过梯形一腰的中点与底平行的直线,必平分另一腰(图4)。 (四)正多边形中: ①正多边形的各边相等。且边长a n= 2Rsin (180°/ n) ②正多边形的中心到各顶点的距离(外接圆半径R )相等、各边的距离(边心距r n) 相等。 且r n= Rcos (180°/ n) (五)圆中: ①同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等。 ②同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等。 ③任意圆中,任一弦总被与它垂直的半径或直径平分。 ④自圆外一点所作圆的两切线长相等。 ⑤两相交或外切或外离圆的二公切线的长相等;两外离圆的二内公切线的长也相等。 ⑥两相交圆的公共弦总被连心线垂直平分(图5)。 ⑦两外切圆的一条外公切线与内公切线的交点到三切点的距离相等(图6)。 ⑧两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都被切点平分(图7)。 (六)全等形中:

线段与角的计算

线段与角的计算 一、选择题 1.如图,下列不正确的几何语句是( ) A.直线AB 与直线BA 是同一条直线 B.射线OA 与射线OB 是同一条射线 C.射线OA 与射线AB 是同一条射线 第1题图 D.线段AB 与线段BA 是同一条线段 2 . 已知α、β都是钝角,甲、乙、丙、丁四人计算 6 1 (α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( ) A. 甲 B. 乙 C. 丙 D. 丁 3. 已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点 间的距离是( ) A.3 cm B.4 cm C.5 cm D.不能计算 4、下列各直线的表示法中,正确的是( ). A 、直线A B 、直线AB C 、直线ab D 、直线Ab 5、一个钝角与一个锐角的差是( ). A 、锐角 B 、钝角 C 、直角 D 、不能确定 6、下列说确的是( ). A 、角的边越长,角越大 B 、在∠AB C 一边的延长线上取一点 D C 、∠B=∠ABC+∠DBC D 、以上都不对 7、下列说法中正确的是( ). A 、角是由两条射线组成的图形 B 、一条射线就是一个周角 C 、两条直线相交,只有一个交点 D 、如果线段AB=BC ,那么B 叫做线段AB 的中点 8、同一平面互不重合的三条直线的交点的个数是( ). A 、可能是0个,1个,2个 B 、可能是0个,2个,3个 C 、可能是0个,1个,2个或3个 D 、可能是1个可3个

9、下列说法中,正确的有(). ①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短; ④若AB=BC,则点B是线段AC的中点. A、1个 B、2个 C、3个 D、4个 10、钟表上12时15分钟时,时针与分针的夹角为(). A、90° B、82.5° C、67.5° D、60° 11、按下列线段长度,可以确定点A、B、C不在同一条直线上的是(). A、AB=8cm,BC=19cm,AC=27cm B、AB=10cm,BC=9cm,AC=18cm C、AB=11cm,BC=21cm,AC=10cm D、AB=30cm,BC=12cm,AC=18cm 12.汽车车灯发出的光线可以看成是( ) A.线段 B.射线 C.直线 D.弧线 13.下列图形中表示直线AB的是( ) A B C D 14.下列说确的是( ) A.平角是一条直线 B.角的边越长,角越大 C.大于直角的角叫做钝角 D.把线段AB向两端无限延伸可得到直线AB 15.木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( ) A.两点确定一条直线 B.两点确定一条线段 C.过一点有一条直线 D.过一点有无数条直线 16.如图,若∠AOC=∠BOD,则∠AOD与∠BOC的关系是( ) A.∠AOD>∠BOC B.∠AOD<∠BOC C.∠AOD=∠BOC D.无法确定

如何证明比例线段

如何证比例线段 在我们这个科技高速发展的时代中,初等几何已经是必不可少了。而如何证明比例线段是几何中的重要成分。 1.利用相似或位似来证明比例线段∶证明两个图形相似或位似,那它们的对应边的比例相等。例如 如图所示,AB∥CD,证明∶。 证:∵AB∥CD ∴∠1∠6,∠2∠5 又∵∠3∠4 ∴△ABE∽△CDE ∴ 2.利用中位线定理证明比例线段∶三角形的中位线与底边之比是1比2,梯形的中位线与两底之和的比也是1比2,……

例如:点D、E、F、G和H是AB、AC、EH、EC和BC的中点,如图所示,求证:。 证:∵点D、E、F、G是AB、AC、EH、EC的中点 ∴DE、FG分别是△ABC、△EHC的中位线 ∴,即 又∵H是BC的中点 ∴DE=HC ∴ 3. 利用重心来证明比例线段∶三角形的三条中线交与一点,这点到顶点的距离与它到对边中点距离之比为2∶1, 如图所示, 。

4.利用面积比来证明比例线段∶ 如图,在△ABC中,DE∥BC,且S△ADE∶S△DEB=1∶3,求DE∶BC? 解:∵S△ADE∶S△DEB=1∶3 ∴AF∶FG=1∶3 又∵DE∥BC ∴△ADE∽△ABC ∴DE∶BC=1∶4 5. 利用平行截线段来证明比例线段∶如图,如果直线a∥b∥c,那么

,,。 6. 利用黄金分割来证明比例线段∶如图所示,△ABC∽△ BCD,=0.618……这就是黄金分割定理。 7.利用角平分线定理来证明比例线段∶如图所示,AD是∠BAC

的平分线,那么。 8. 利用切割线定理来证明比例线段∶如图所示,PT是圆O的切线,直径AB和弦CD的延长线交于点P,则PT 2=PA·PB=PD·PC,即,,。这就是切割线定理。 9. 利用相交弦定理来证明比例线段∶如图所示,AB、CD都是圆O的弦,它们相交于点P,则PA·PB=PC·PD,即。

中考数学:证明线段相等的一些常见方法

证明线段相等的一些常见方法 证明线段相等,是初中阶段学生学习几何后经常遇到的一类问题,是学生学习几何的常见入门题,也是学生后继学习的基础.本文以一道题为例,介绍证明线段相等的常见方法. 问题如图1,在四边形ABCD 中,105ACB BAD ∠=∠=?,45ABC ABD ∠=∠=?,求证:CD AB = 方法1如图2,过点C 作CE AB ⊥于点E ,再过点A 作AF CD ⊥于点F . 则可证ACE ACF ???于是有CE CF AF AE ==,. 45ABC ABD ∠=∠=? CE CF AF AE ∴==,得AB CD =方法2如图3,过C 点作AB 的平行线交AD 于M 点,则由条件,易得 30ACM BAC DCM ∠=∠=∠=?, 75AMC CAM ∠=∠=? AC CM ∴=ABC CDM ∴???,于是有AB CD =方法3如图4,过点A 作CD 的垂线交BC 的延长线于E 点. 10545ACB ABC ∠=?∠=? ,30BAC ∴∠=? 10545BAD ADC ∠=?∠=? ,7560DAC ACD ∴∠=?∠=? ,30CAE ∴∠=?75AEC ACE AE AC ∴∠=∠=?=,故由ABE CDA ???,得AB CD =

方法4如图5,过A 作AE DC ⊥于点E ,并延长到点N ,使AN AB =,连CN ,则有ABC ANC ???45N D ∴∠=∠=? DE AE EN EC ∴==,DC AN AB ∴== 方法5如图6,过点C 作CH AB ⊥于点H ,并延长到点G ,使CG CD =,连AG ,则有ADC AGC ???45G D ∴∠=∠=? AH HG GH BH ∴==,DC CG AB ∴==实际上,方法4和方法5都是利用了对称的思想,分别以AC 所在直线为对称轴.方法6如图7,过C 点作DC 的垂线交DA 的延长线于P 点.则有 PAC BCA ???得AB CP CD ==

证明线段相等的方法

平面几何中线段相等的证明几种方法 平面几何中线段相等的证明看似简单,但方法不当也会带来麻烦,特别是在有限的两个小时考试中。恰当选用正确的方法,可取得事半功倍的效果。 一、利用全等三角形的性质证明线段相等 这种方法很普遍,如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理,它们所在三角形看似全等,可考虑这种方法。 [例1]如图,C是线段AB上一点,△ACD和△BCE是等边三角形。求证:AE=BD。 证明∵△ACB和△BCE都是等边三角形 ∴∠ACD=60°,∠BCE=60°,∠DCE=60° ∴∠ACE=∠ACD+∠DCE=120° ∠BCD=∠BCE+∠DCE=120° ∴AC=CD,CE=CB ∴△ACE≌△DCB(SAS) ∴AE=DB [例2]如图,已知△ABC中,AB=AC,点E在AB上,点F在AC的延长线上,且BE=CF,EF与BC交于D,求证:ED=DF。 证明:过点E作EG//AF交BC于点G ∴∠EGB=∠ACB,∠EGD=∠FCD

∵AB=AC ∴∠B=∠ACB,∠B=∠FGB,BE=GE ∵BE=CF,∴GE=CF 在△EGD和△FCD中, ∠EGD=∠FCD,∠EDG=∠FDC,GE=CF ∴△EGD≌△FCD(AAS)∴ED=FD 二、利用等腰三角形的判定(等角对等边)证明线段相等 如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法。 [例1]如图,已知在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F。 求证:AF=EF。 证明:延长AD到G,使DG=AD,连结BG。 ∵AD=GD,∠ADC=∠GDB,CD=BD ∴△ADC≌△GDB ∴AC=GB,∠FAE=∠BGE ∵BE=AC ∴BE=BG,∠BGE=∠BEG ∴∠FAE=∠BGE=∠BEG=∠AEF ∴AE=EF [例2]如图,已知△ABC中,AB=AC,DF⊥BC于F,DF与AC交于E,与BA的延长线交于D,求证:AD=AE。

证明线段比例式或等积式的方法

证明线段比例式或等积式的方法 (一)比例的性质定理: (二)平行线中的比例线段: ①平行线分线段成比例定理:三条平行线截两条直线所得对应线段成比例(图1、2)。 ②平行于三角形的一边的直线截其他两边(或两边的延长线)所得的对应线段成比例(图 3、4)。 ③平行于三角形的一边,且与其他两边(或两边的延长线)相交的直线所截得的三角 形的三边与原三角形的三边对应成比例(图3、4)。 (三)三角形中比例线段: ①相似三角形中一切对应线段(对应边、对应高、对应中线、对应角平分线、对应周长…)的比都相等,等于相似比。 ②相似三角形中一切对应面积的比都相等,等于相似比的平方。 ③勾股定理:直角三角形斜边的平方等于两直角边的平方和(图5)。 ④射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项(图5)。 直角三角形上任一直角边是它在斜边上的射影与斜边的比例中项(图5)。 ⑤正弦定理:三角形中,每一边与对角的正弦的比相等(图6)。即/sinA=b/sinB=c/sinC ⑥余弦定理:三角形中,任一边的平方等于另两边的平方和减去这两边及其夹角余弦乘积

的二倍(图6)。 如a2 = b2+c2 - 2 b·c·cosA (四)圆中的比例线段: 圆幂定理: ①相交弦定理圆内的两条相交弦,被交点分成的两条线段的积相等(图7)。 (推论:若弦与直径垂直相交,则弦的一半为它分直径所成两线段的比例中项。图8) ②切割线定理从圆外一点引圆的切线和割线,切线长为这点到割线与圆交点的两线段长的比例中项(图9)。 ③割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两线段长的积相等(图10)。 (五)比例线段的运算: ①借助等比或等线段代换。 ②运用比例的性质定理推导。 ③用代数或三角方法进行计算。

证明线段相等的技巧

证明线段相等的技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

证明线段相等的技巧 要证明两条线段相等,一般的思路是从结论入手,结合已知分析,主要看要证明的两条线段分布的位置怎样,无外乎有三种情况: (1)要证明的两条线段分别在两个三角形中;(2)要证明的两条线段在同一个三角形中;(3)要证明的两条线段在同一条直线上或其它情况。 一、如果要证明的两条线段分别在两个三角形中 一般的思路是利用两条线段所在的两个三角形全等。 例1 已知:如图1,B、C、E三点在一条直线上,△ABC和△DCE均为等边三角形,连结AE、DB,求证:AE=DB。 二、如果要证明的两条线段在同一三角形中 一般的思路是利用等角对等边。 例2 已知:如图2,△ABC中AB=AC,D为BC上一点,过D作DF⊥BC交AC于E,交BA的延长线于F,求证:AE=AF。 三、如果要证明的线段在同一直线上或其它情况 一般的思路是作辅助线构成全等三角形或利用面积法来证明。

例3 已知:如图3,△ABC中AB=AC,D是AB上一点,E是AC延长线上一点,且BD=EC,连结DE交BC于F,求证:DF=EF。 例4 已知:如图5,在平行四边形ABCD中,E、F分别为边AD、CD上一点,且BE=BF,AG⊥BF于F,CH⊥BE于H,求证:AG=CH。 分析:从结论入手,要证线段AG=CH就看线段AG、CH是否在同一 三角形中的两条边或两个三角形中的两条边,这里的AG、CH虽然 在两个三角形中,但显然不全等,作辅助线构成全等三角形也无法 作,由于BE=BF要证明的线段AG、CH恰是这两边上的高,这时就 应该想到面积法,作辅助线构成两个等底等高的三角形或平行四边 形,很显然结合已知条件可知构成平行四边形,延长AD到S使 DS=AE,连结CS。延长ACD到R使DR=CF,连结AR证明略。

九年级上专题复习一:线段比例关系的证明和应用(含答案)

专题复习一 线段比例关系的证明和应用 证明线段成比例,一般先根据比例式确定相似三角形,然后用相似三角形的性质得出线段成比例.若根据比例式不能确定相似三角形,则利用等量代换进行条件转化. 1.如图所示,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论中,一定正确的是(A ). (第1题)(第2题)(第3题) (第4题) 2.如图所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为中线,若AD=5,CD=3,DE=4,则BF 的长为(B ). 3.如图所示,弦AB 和CD 相交于⊙O 内一点P ,则下列结论中不一定成立的是(B ). A. PD PA =PB PC B.PA ·PD=PB ·PC C. PD PB =PA PC D.PA ·PB=PC ·PD 4.如图所示,在△ABC 中,BF 平分∠ABC ,AF ⊥BF 于点F ,D 为AB 的中点,连结DF 并延长交AC 于点E.若AB=10,BC=16,则线

段EF 的长为(B ). A.2 B.3 C.4 D.5 5.如图所示,在梯形ABCD 中,AD ∥BC ,AB=DC ,P 是AD 边上一点,连结PB ,PC ,且AB 2=AP ·PD ,则图中有 3 对相似三角形. (第5题) (第6题) (第7题) 6.如图所示,在△ABC 中,AD 是角平分线,∠ADE=∠B ,若AE=4,AB=5,则AD= 25 . 7.如图所示,在Rt △ABC 中,∠C=90°,D 是AB 上一点,作DE ⊥BC 于点E ,连结AE ,若BE=AC ,BD=25,DE+BC=10,则线段AE 的长为 42 . 8.如图所示,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AC AD =CG DF . (第8题) (1)求证:△ADF ∽△ACG. (2)若AC AD =21,求FG AF 的值. 【答案】(1)∵∠AED=∠B ,∠DAE=∠DAE ,∴∠ADF=∠C.又∵ AC AD =CG DF ,∴△ADF ∽△ACG. (2)∵△ADF ∽△ACG ,∴

有关线段角的计算问题专门练习题

有关线段,角的计算问题专门练习 1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度. 2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长 3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长. 4. 如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. 5. 已知P 为线段AB 上的一点,且2 5 AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长. 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,1 3 AD AB =,12AB cm =,求CD 、BD 的长.

7. 在一条直线上顺次取A 、B 、C 三点,已知5AB cm =,点O 是线段AC 的中点,且 1.5OB cm =,求线段BC 的长.(两种情况) 8. 已知A 、B 、C 三点共线,且10AB cm =,4BC cm =,M 是A C 的中点,求AM 的长. 9.如图所示,B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 中点,CD =8,求MC 的长. 10.如图所示,回答问题:’ (1)在线段AB 上取一点C 时,共有几条线段? (2)在线段AB 上取两点C 、D 时,共有几条线段? (3)在线段AB 上取两点C 、D 、E 时,共有几条线段? (4)你能否说出,在线段AB 上取n 个点时(不与A 、B 重合),直线A 上共有多少条 线段?你发现它们有什么规律,你能试着总结出来吗?和同学们交流一下.

初中阶段证明线段相等的方法

初中阶段证明线段相等的方法 (一)常用轨迹中: ①两平行线间的距离处处相等. ②线段中垂线上任一点到线段两端点的距离相等. ③角平分线上任一点到角两边的距离相等. ④若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等(图1). (二)三角形中: ①同一三角形中,等角对等边.(等腰三角形两腰相等、等边三角形三边相等) ②任意三角形的外心到三顶点的距离相等. ③任意三角形的内心到三边的距离相等. ④等腰三角形顶角的平分线(或底边上的高、中线)平分底边. ⑤直角三角形中,斜边的中线等于斜边一半. ⑥有一角为60°的等腰三角形是等腰三角形是等边三角形. ⑦过三角形一边的中点与另一边平行的直线,必平分第三边(图2). ⑧同底或等底的三角形,若面积相等,则高也相等.同高或等高的三角形,若面积相等,则底也相等(图3). (三)四边形中: ①平行四边形对边相等,对角线相互平分.

②矩形对角线相等,且其的交点到四顶点的距离相等. ③菱形中四边相等. ④等腰梯形两腰相等、两对角线相等. ⑤过梯形一腰的中点与底平行的直线,必平分另一腰(图4). (四)正多边形中: ①正多边形的各边相等.且边长an = 2Rsin (180°/ n) ②正多边形的中心到各顶点的距离(外接圆半径R )相等、各边的距离(边心距rn ) 相等. 且rn = Rcos (180°/ n) (五)圆中: ①同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等. ②同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等. ③任意圆中,任一弦总被与它垂直的半径或直径平分. ④自圆外一点所作圆的两切线长相等. ⑤两相交或外切或外离圆的二公切线的长相等;两外离圆的二内公切线的长也相等. ⑥两相交圆的公共弦总被连心线垂直平分(图5). ⑦两外切圆的一条外公切线与内公切线的交点到三切点的距离相等(图6). ⑧两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都

线段与角的计算及解题方法归纳

线段与角的计算及解题方法 求线段长度的几种常用方法: 1.利用几何的直观性,寻找所求量与已知量的关系 例1.如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。 图1 分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。 解:因为点C分线段AB为5:7,点D分线段AB为5:11 所以 又因为CD=10cm,所以AB=96cm 2.利用线段中点性质,进行线段长度变换 例2.如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA的长。 图2 分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。 解:因为N是PB的中点,NB=14 所以PB=2NB=2×14=28 又因为AP=AB-PB,AB=80 所以AP=80-28=52(cm) 说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。 3. 根据图形及已知条件,利用解方程的方法求解

例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍? 图3 分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。 解:因为C为AD的中点,所以 因为,即 又 由<1>、<2>可得: 即BC=3AB 例4. 如图4,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。 图4 分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。观察图形,已知量MN=MC+CD+DE+EN,可转化成x的方程,先求出x,再求出PQ。 解:若设AC=2x,则 于是有 那么 即 解得:

证明线段相等或成倍数关系的巧妙方法

如何证明线段相等或成倍数关系 一 【典型例题】 (一)线段相等:证明线段相等的方法很多,主要有三角形全等、等腰三角形的判定、线段垂直平分线定理、角平分线定理、平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。另外证明线段相等还有一类题型,就是证明两条线段的和或差等于某一条线段,此种类型往往采用截长补短的方法进行证明。在例题讲解中,会出现此种类型的题目,请同学们注意。下面,我们就分析几个例题,希望能通过讲解,使同学逐步掌握证明线段相同的方法。 例1. 已知:四边形ABCD 中,AD =BC ,AC =BD 。 求证:OA =OB 2. △ABC 中,AB =AC ,D 是AB 上一点,E 是AC 延长线上一点,且BD =CE ,DE 交 BC 于F 。 求证:DF = EF 例 3. 已知:如图,ABCD 中,E 、F 分别是AB 、CD 上 的点,且AE =CF 。 求证:DE =BF 例5. 已知:在△ABC 中,AB 的垂直平分线交AC 于E ,若AB =8,DE =3,求BE 两点间的距离。

6. 在△ABC 中,AD 平分∠BAC ,∠ACB =2∠B ,求证:AB =AC +CD 。 (二)线段倍、倍或、倍的关系:24121 4 这部分证明中常用到的定理有: (1)直角三角形中,30°的角对的直角边等于斜边的一半。 (2)直角三角形斜边的中线等于斜边的一半。 (3)中位线定理。 下面就以几个例子来说明如何使用这三个定理解决线段倍数关系的证明。 例1. 已知:在△ABC 中,M 是BC 的中点,CE ⊥AB ,BF ⊥AC 。 求证:EM =FM 例2. 在△ABC 中,∠ACB =90°,∠A =30°,CD 是AB 边上的高。 求证:BD AB 14 例3. 已知:在△ABC 中,AB =AC ,EF 是△ABC 的中位线,延长AB 到D ,使BD =AB ,连接CD 。

线段的和差倍分问题的证明2017

线段的和差倍分问题的证明 一、运用定理法 即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。 例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM = 2 1AB 对应练习 1、已知:如图所示,点D 、E 分别是等边ABC ?的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 2 1 = . 2、如图所示,在ABC ?中,AB=AC ,?=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 2 1 =. 3、如图所示,在ABC ?中,BC AB 2 1 = ,D 是BC 的中点,M 是BD 的中点.求证:AC=2AM . 4、已知:如图所示,D 是ABC ?的边BC 上一点,且CD=AB ,BAD BDA ∠=∠,AE 是ABD ?的中线.求证:AC=2AE . Q A D P C B E M A D B A B E D C A

5、已知:如图所示,锐角ABC ?中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD . 二、割补线段法 这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。下面请看一个例子。 例2、P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD . 求证:AP =BP +DQ . 例3、 如图,△ABC 中,∠BAC =90°,AE 是经过点A 的一条直线,交BC 于F ,且B 、C 在AE 在的异侧,BD ⊥AE 于D ,求证:DB =DE +CE 。 对应练习 1、如图所示,已知ABC ?中,?=∠60A ,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O .求证:BE+CD=BC . A D E B C A O E B C D

21.圆中证明线段相等和相似

O E D C B A 圆中证明线段相等和相似 1.如图,AB 是⊙O 的直径,C 、P 是弧AB 上两点,AB =25,AC =7. (1) 如图(1),若点P 是弧AB 的中点,求PA 的长 (2) 如图(2),若点P 是弧BC 的中点,求PA 得长 2.如图,△ABC 内接于⊙O ,∠BAC=600,D 、E 分别为AB 和AC 的中点,连结DE . (1)求证:BC =DE ; ^ (2)若tan ∠ADE =1 2 ,求sin ∠AED 的值. 3.已知:如图,△ABC 内接于⊙O ,AB=AC ,D 在AC 上,∠ABD=45°. (1)如图1,BD 交AC 于E ,连CD ,若AB=BD ,求证2CD DE ; 、 (2)如图2,连AD 、CD ,已知tan ∠CAD=1 5 ,求sin ∠BDC 的值. { 4.如图,已知⊙O 的半径为5,⊙P 与⊙O 外切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,tan ∠OAB= . 【 ~ A B C D O 图2 A B C D E O 图1

(1)求AB的长; (2)当∠OCA=∠OPC时,求⊙P的半径. 5.如图1,锐角△ABC内接于⊙O,∠BAC=60°,若⊙O的半径为2. (1)求BC的长度; (2)如图2,过点A作AH⊥BC于点H,若AB+AC=12,求AH的长度. ~ 6.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O 上一点,连接BP并延长,交直线l于点C,使得AB=AC. (1)求证:AB是⊙O的切线; (2)若PC=2,OA=5,求⊙O的半径和线段PB的长. 7.如图,以△ABC的边BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点E.(1)如图1,若∠ABC=90°,求证:OE∥AC; (2)如图2,已知AB=AC,若sin∠ADE=,求tanA的值. ~

证明线段成比例的方法与技巧

证明线段成比例的方法与技巧 安徽李师 证明线段成比例的问题,思路灵活,涉及的定理较多,辅助线的添加方法亦很巧妙,常用的方法有以下几种. 1.三点定形法:利用分析的方法,由欲证的比例式或等积式转化为比例式.寻找相似三角形,这是证明线段成比例问题最基本的方法之一,一般是找到以四条成比例线段为边的两个三角形,再证明这两个三角形相似. [例1]已知:如图1,∠ABC=∠ADE.求证:AB·AE=AC·AD 等式左边的三点A、B、C构成△ABC,等式右边的三点A、D、E构成△ADE.因此,只要证明△ABC∽△ADE,本题即可获证. 由已知∠ABC=∠ADE,∠A是公共角,易证△ABC∽△ADE. 证明:略. 号两边的分母,三个字母A、D、E构成△ADE. 2.等量代换法:当需要证明的成比例的四条线段不能构成相似三角形时,往往需要进行 等量代换,包括“线段的代换”或利用“中间比”进行代换. [例2]已知:如图2,在Rt△ABC中有正方形H EFG, 点H、G分别在AB、AC上,EF在斜边BC上.求证:EF2=BE·FC. 上,无论如何不能构成相似三角形,因此不能直接应用三点定形法. 此时应联想到正方形H EFG的四条边都相等的隐含条件,用H E代换等式左边的

△H BE∽△FCG使本题获证. 证明:略. 这是利用线段进行等量代换的典型例题,不难看出,这种代换方法往往需要含有等腰三角形、平行四边形、正三角形、正方形、线段中点等已知条件或隐含条件. [例3]已知:如图3,AC是ABCD的对角线,G是AD延长线上的一点,BG交AC于 F,交CD于E. 分析:由B、E、F、G四点共线可知,本题既不能 直接应用平行截线定理或三点定形法,又找不到与比例式中线段相等的线段进行等量代换. 代换是解决本题的关键.证明:略. 这是利用中间比进行代换的典型例题,这种代换往往出现于平行截线定理以及相似三角形的综合应用. 3.辅助平行线法:利用辅助平行线来转移比例是证明线段成比例的有效方法,这种方法经常通过平行线分线段成比例定理和它的推论来实现. [例4]已知:如图4,在△ABC中,D是AC上一点,延长CB到E,使BE=AD,ED交AB于F. 分析:观察比例式的右边三点A、B、C可构成△ABC, 而左边的三点D、E、F不能构成三角形,因此不能直接利用相似三角形获证. 证明:略.

证明线段相等的技巧

证明线段相等的技巧 要证明两条线段相等,一般的思路是从结论入手,结合已知分析,主要看要证明的两条线段分布的位置怎样,无外乎有三种情况: (1)要证明的两条线段分别在两个三角形中;(2)要证明的两条线段在同一个三角形中;(3)要证明的两条线段在同一条直线上或其它情况。 一、如果要证明的两条线段分别在两个三角形中 一般的思路是利用两条线段所在的两个三角形全等。 例1 已知:如图1,B、C、E三点在一条直线上,△ABC和△DCE均为等边三角形,连结AE、DB,求证:AE=DB。 二、如果要证明的两条线段在同一三角形中 一般的思路是利用等角对等边。 例2 已知:如图2,△ABC中AB=AC,D为BC上一点,过D作DF⊥BC交AC于E,交BA的延长线于F,求证:AE=AF。 三、如果要证明的线段在同一直线上或其它情况 一般的思路是作辅助线构成全等三角形或利用面积法来证明。

例3 已知:如图3,△ABC中AB=AC,D是AB上一点,E是AC延长线上一点,且BD=EC,连结DE交BC于F,求证:DF=EF。 例4 已知:如图5,在平行四边形ABCD中,E、F分别为边AD、CD上一点,且BE=BF,AG⊥BF于F,CH⊥BE于H,求证:AG=CH。 分析:从结论入手,要证线段AG=CH就看线段AG、CH是否在同一三 角形中的两条边或两个三角形中的两条边,这里的AG、CH虽然在两 个三角形中,但显然不全等,作辅助线构成全等三角形也无法作,由 于BE=BF要证明的线段AG、CH恰是这两边上的高,这时就应该想到 面积法,作辅助线构成两个等底等高的三角形或平行四边形,很显然 结合已知条件可知构成平行四边形,延长AD到S使DS=AE,连结CS。 延长ACD到R使DR=CF,连结AR证明略。

相关主题
文本预览
相关文档 最新文档