当前位置:文档之家› 双向交错并联DCDC变流器设计与仿真

双向交错并联DCDC变流器设计与仿真

双向交错并联DCDC变流器设计与仿真
双向交错并联DCDC变流器设计与仿真

课题10:双向交错并联DC/DC变流器设计与仿真

主要性能指标要求:输入线电压10V-15V,交流输出功率400W,输出电压48V,电压控制稳态精度为3%,输出电压纹波峰峰值为100mv。

具体内容:要求学生在深入学习和分析双向交错并联DC/DC变换器的组成和工作原理基础上,完成主电路和驱动保护电路的硬件设计与元件选型,并在MATLAB SIMULINK平台上,完成控制系统仿真。

摘要

本设计是在双线交错并联DC/DC电路结构图的基础上进行主电路和驱动电路,保护电路的硬件设计,并通过对电路参数的计算进行元件选型,并在simulink上完成控制系统的仿真。

【关键词】DC/DC变换器,驱动电路PWM控制,保护电路

第一章原理分析

1.1双向交错并联DC/DC变换器工作模式分析

Boost工作模式

该模式下电路的等效电路图如下图所示:

该电路的作用把低压端储存的能量通过Boost电路变换成电压较高、稳定的直流电源。

此时S3和S4工作,Csuper(Vin)放电。

由于变换器在启动时功率较大,而超级电容的电压又较低,故其放电电流较大,进而两路电感电流之和在变换器工作于Boost模式时一直处于连续工作状态。而且,当变换器工作在最大功率下时,每一路的电感电流也工作在连续状态。为了简化分析,对变换器工作于最大功率时,作出如下假设:

(1)两路开关导通占空比相等,即D3=D4=D,相位差相差180度;

(2)两路电感相等,即L1=L2=L;

(3)电路已经进入稳态,各个开关周期内电流相等。

根据开关管S3、S4占空比D的情况,Boost模式又可以分为3种状态:D<0.5,D=0.5和D>0.5。

当D<0.5时,由于开关管的导通时间较短,存在两路的续流二极管同时导通的情况,该状态下个阶段电路的主要波形如图2所示。

图2 Boost模式D<0.5时电路主要工作波形

在阶段一中,开关管S3开通,电感L1储存能量;开关管S4关断,D2续流,电感L2释放能量,此阶段有:

在阶段二中,开关管S3关断,D1续流,电感L1释放能量;开关管S4关断,D2续流,电感L2释放能量,此阶段有:

阶段三和阶段四重复阶段一和阶段二的过程,根据图2和伏秒前平衡原理,可以分别求得电感电流的纹波△iL1、△IL2和超级电容的纹波△isc以及电压增益Ay:

当占空比D=0.5时,电路只有两个阶段,开关管S3和S4轮流导通,该状态下的电路阶段过程和各阶段的主要工作波形如图3所示。

图3 Boost模式D=0.5时电路的主要工作波形

当开关管导通占空比继续增加至大于0.5之后,将会出现两个开关管同时导通的情况。该状态下一个开关周期的各阶段电路的主要工作波形如图4所示。

图4 Boost模式D>0.5时电路的主要工作波形

在阶段一中,两个开关管S3和S4都开通,电感L1和L2储存能量,此阶段有:

在阶段二中,开关管S3继续导通,电感L1继续储能;开关管S4关断,D2续流,电感L2释放能量,此阶段有:

阶段三和阶段四重复阶段一和阶段二的过程,根据图4和伏秒平衡原理分别可以求得电感电流的纹波△iL1、△Il2和超级电容的纹波△isc以及电压增益Ay:

Buck工作模式

该模式下电路的等效电路图如下图所示:

在该模式下电路将高压断多余的能量通过Buck电路回馈给Csuper。

此时S1和S2工作,Csuper充电。

与Boost模式一样,Buck模式下根据开关管S1、S2占空比D的情况不同可以分为三种状态:D<0.5,D=0.5和D>0.5。

当D<0.5时,由于开关管的导通时间较短,存在两路的续流二极管同时导通的情况,该状态下一个开关周期的电路各阶段主要工作波形如图5所示。

图5 Buck模式D<0.5时电路主要工作波形

在阶段一中,开关管S1开通,电感L1储存能量;开关管S2关断,D4续流,电感L2释放能量,此阶段有:

在阶段二中,开关管S1关断,D3续流,电感L1释放能量;开关管S2关断,D4续流,电感L2释放能量,此阶段有:

阶段三和阶段四重复阶段一盒阶段二的过程,根据图5和伏秒前平衡原理,可以分别求得电感电流的纹波△iL1、△IL2和超级电容的纹波△isc以及电压增益Ay:

当占空比D=0.5时,电路只有两个阶段,开关管S1和S2轮流导通,该状态下的电路阶段过程和各阶段的主要工作波形如图6所示。

图6 Buck模式D=0.5时电路主要工作波形

当开关管导通占空比继续增加至大于0.5之后,将会出现两个开关管同时导通的情况。该状态下一个开关周期的各阶段电路的主要工作波形如图7所示。

图7 Buck模式D>0.5时电路主要工作波形

在阶段一中,两个开关管S1和S2都开通,电感L1和L2储存能量,此阶段有:

在阶段二中,开关管S1继续导通,电感L1继续储能;开关管S2关断,D4续流,电感L2释放能量,此阶段有:

阶段三和阶段四重复阶段一和阶段二的过程,根据图7和伏秒平衡原理分别可以求得电感电流的纹波△iL1、△Il2和超级电容的纹波△isc以及电压增益Ay:

第二章参数设计

出侧电容滤波Co和功率开关管。在上文原理分析的基础上,下面将给出变换器电路各元件的具体参数设计。

2.1电感参数设计

最大的电感电流纹波(峰峰值)△iL为其平均值的20%,分别计算Boost模式和Buck模式下电感值,Boost电路电感LBoost和Buck电路的电感LBuck分别为:

考虑到采用了交错并联及术后,两相交错并联电路所需的电感值所需的电感值Ldual 与单个Boost或Buck所需电感值Lsingle存在如下的关系:

上式中Dˊ=1-D。

由此计算出Boost模式下Ldual=23.44Uh,Buck模式下Ldual=21.48uH,综合以上考虑,装置中采用电感L1=L2=25uH。

2.2输入输出滤波电容设计

考虑输入输出侧最大的电压纹波△V为3%,则输入侧应满足超级电容电压波动△Vsc需求,因此可的输入侧的滤波电容

输出侧应满足蓄电池电压波动△Vbat需求,因此可的输出侧的滤波电容

上式中R为变换器的等效负载。

由此计算出输入电容Ci=65Uf,输出电容Co=100uF。由于一般电解电容的ESR较大,在功率较大时发热较为严重,影响了整个系统的安全性,故采用多个容值较小的CBB电容并联作为输出电容。实际上取输入电容Ci=100Uf,输出电容Co=120uF。

2.3功率开关器件选择

装置选取MOSFET作为开关器件以减小装置体积。又由变换器的原理分析可知流过功率开关器件的电流最大值和电感电流的最大值是相等的,因此最大的漏极电流:

考虑10%的裕量,取IDmax=24A。

功率开关器件所承受的最大电压应力就是输出电压的最大值即:

但考虑到MOS管关断时由于电路引线电感的影响,通常存在较大的电压过冲。因此实际装置中取VDSmax=60V。

第三章驱动电路设计

由于所采用的MOS管输入结电容,考虑其开通时间在50ns以内,故驱动峰值电流

6A.。选取型号为IXDD609的驱动芯片来驱动MOS管,该驱动芯片的驱动峰值电流为9A.,驱动电压的上升和下降时间均小于25ns。驱动电路如图13所示。双向交错并联DC/DC变换器共有4个MOS管,其中Boost模式的MOS管S1,S2是共地的,而Buck模式的MOS管S3,S4是隔离的,因此驱动电路的供电电源共需3路互相隔离的+5V和+15V。

图13 驱动电路图

第四章电路仿真

在Boost工作模式下,输入电压为10-15V,给定输出电压为48V,是测出输出电压为48V,是测出输出电压在额定功率左右是误差为10mV,效率达到92.4%,图14a为系统在Boost工作模式额定功率稳态运行时相关参数的波形。图14b为系统负载瞬时降低20%时的电压波形。可见,输出电压在5ms内稳定在48V。为了保证系统可靠性,系统在启动时控制程序给定一个线性变化量,通过约30ms达到48V,图14c为系统启动过程中相关参数的实验波形。在Buck工作模式下,高压端输入电压为直流48V。图14d为系统在Buck模式下,给定输出电流13.5A时稳态工作的波形。

图14 实验仿真图形

第五章控制系统建模与仿真

5.1Boost模式下的控制系统建模与仿真

采用受控电流源、受控电压源和理想变压器等效,建立变换器在Boost模式下的信号

交流等效电路,如图8所示:

图8 Boost模式下的小信号交流等效电路

为了简化计算,忽略电感参数的差异,假定L1=L2=L,IL1=IL2,d1(t)^=d3(t)^=d(t)

^,Il1(t)^=iL2(t)^=iL(t)^。同时,因为电路的稳态量D1=D3,设D1=D3=D.

根据小信号模型等效电路,可以求出Boost工作模式下占空比到电感电流的传递函Gid(s):

Boost模式下,通过控制双向DC/DC变换器的输出电流来补偿蓄电池额定放电电流的不足。其控制框图如图9所示:

图9 Boost模式下的系统控制框图

输出电流经过低通滤波和功率守恒计算,得到输入电流的给定值。通过分别控制两路电感电流,一方面减小了两路之间的电流误差,同时也达到了间接控制输出电流的目的。

5.2 Buck模式下控制系统建模与仿真

采用受控电流源、受控电压源和理想变压器等效,建立变换器在Buck模式下的信号交流等效电路,如图10所示:

图10 Buck模式下的小信号交流等效电路

为了简化计算,忽略电感参数的差异,假定L1=L2=L,IL1=IL2,d2(t)^=d4(t)^= d(t)^,Il1(t)^=iL2(t)^=iL(t)^。同时,因为电路的稳态量D2=D4,设D2=D4=D.

根据小信号模型等效电路,可以求出Buck工作模式下占空比到电感电流的传递函数Gid(s):

占空比到输出电压的传递函数Gud(s):

电感电流到输出电压的传递函数Gv1(s):

Buck模式下,采用电压电流双向闭环的控制策略,给超级电容充电。通过电压外环精确控制充电电压,通过电流内环提高响应速度。其控制框图如图11所示:

图11 Buck模式下的系统控制框图

电压外环通过PI控制器得到内环的电流给定值,即两路电感电流之和,电流内环控制没一路的电感电流等于电流给定值的一半,与Boost模式一样,两路电感电流分别独立控制。

第六章总结

单端反激电路的三种工作模式

单端反激电路的三种工作模式 HDJ 2011-9-6 反激电源有三种工作模式:连续工作模式、断续工作模式、临界连续工作模式。 本文分为3个部分:(1)连续工作模式;(2)断续工作模式;(3)临界连续工作模式; 单端反激电源简图如图表 1所示 图表 1 单端反激电源简图 1. 连续工作模式 单端反激电源满载或者重载时,开关占空比大,副边二极管未关断时MOS 管就会开通,其工作过程没有原副边电流同时为0的情况,即工作在连续模式,其工作波形如图表 2所示。 U q U l k i 2 i q U 2U 1 t t t t t t t 0t 1t 2t 3 V g s t 图表 2 单端反激电源工作过程 工作过程分析如下: 1) t0时刻之前,开关管处于导通状态,原边电流上升,变压器储能,原边电压为正, 副边电压为负,电容C1上对R1缓慢放电,C1电压减小。 原边电流 副边电流

2) t0~t1阶段。t0时刻,关断开关管。(a) 原边电流迅速减小,其减小的速度为Vin/Lm, 副边二极管导通,副边电流迅速增大;(b) 原边激磁电感上的电流减小,原边电压减小,副边电压升高,两者同时过0,然后各自达到最小值和最大值,副边电压为 2V ,原边电压为)//(2p s N N V 。(c) 由于MOS 管有结电容存在,所以其上电压不 能突变,是零电压关断。MOS 管承受的压降为)//(2p s in N N V V +;(d) 这个过程中,由于漏感上的电流不能突变,开始对C1充电,C1不再减小,有增大的趋势。 3) t 1~t2时刻。这个过程中,(a) 原副边电压和MOS 管压降基本保持不变;(b) 由于 t1时刻U1达到负的最大值,其电压高于C1电压,所以C1被充电,并很快达到最大值;(c) 由于变压器能量在释放,副边电流缓慢减小。 4) t 2~t3时刻。t2时刻关断MOS 管。(a) 原边电压迅速升高,副边电压开始降低,并 且在t3时刻达到最大值和最小值。(b) 该过程中电流有一个很大的尖峰,该尖峰产生的原因有两个方面:第一、由于副边电流未减小到0时被强迫关断,所以反射到原边产生;第二、由于原边电感电压在这一过程中变化很快,由dt di L U /?=可知,电流随着电压的变化也迅速增加,该尖峰电流在t3时刻达到最小值; 5) t 3时刻以后,MOS 管结电容放电,很快完全导通,其工作过程跟t0时刻之前一样。 2. 断续工作模式 反激电源在空载或者轻载时有可能工作在断续模式。空载或轻载时,开关的占空比较小,开关关断后副边电流线性减小,在开关开通之前减小到0,这时原、副边电流均为0,反激电源工作在断续工作模式。 单端反激电源断续工作模式下的工作过程如图表 3所示。 t V g s t 3 t 2t 1t 0t t t t t t U 1 U 2i q i 2 U l k U q 图表 3 断续模式反激电源工作过程

08_储能变流器技术规范

国家新能源示范城市吐鲁番示范区屋顶光伏电站暨微电网试点工程 储能双向变流器 招标文件 (技术规范书) 招标人:龙源吐鲁番新能源有限公司 设计单位:龙源(北京)太阳能技术有限公司 二零一二年七月

目录 1 总则 (1) 2 工程概况 (3) 3 储能系统储能双向变流器技术规范 (5) 3.1相关概念及定义 (6) 3.2设计和运行条件 (6) 3.3规范和标准 (7) 3.4技术要求 (9) 3.4.1 储能双向变流器技术要求 (9) 3.4.2 变流器通讯设置要求 (14) 3.4.3设备及元器件品质承诺 (16) 3.5包装、装卸、运输与储存 (16) 3.5.1 概述 (16) 3.5.2 包装 (16) 3.5.3 装运及标记 (17) 3.5.4 装卸 (18) 3.5.5 随箱文件 (19) 3.5.6 储存 (19) 3.5.7 质量记录 (19) 3.6性能表(投标人细化填写) (19) 4 安装、调试、试运行 (21) 4.1安装 (21) 4.2设备调试 (22) 4.3设备试运行 (22) 5 质量保证和试验 (22) 5.1质量保证 (22)

5.2试验 (23) 5.3型式试验 (23) 5.4工厂试验FAT (23) 5.5现场试验SAT (24) 5.5.1 现场调试 (24) 5.5.2 现场试验 (24) 5.6整体考核验收 (24) 附录1 技术差异表 (25) 附录2 供货范围 (26) 附录3 技术资料及交付进度 (28) 附录4 设备检验和性能验收试验 (34) 附录5 技术服务和设计联络 (37) 附录6 投标文件附图 (41) 附录7 运行维护手册 (42) 附录8 投标人需要说明的其他技术问题 (43)

储能系统设计方案

110KWh储能系统 技术方案

微电网:储能系统独立或与其他能源配合,给负载供电,主要解决供电可靠性问题。 本系统主要包含: * 储能变流器:1台50kW 离并网型双向储能变流器,在0.4KV交流母线并网,实现能量的双向流动。 * 磷酸铁锂电池:125KWH * EMS&BMS:根据上级调度指令完成对储能系统的充放电控制、电池SOC 信息监测等功能。

1、系统特点 (1)本系统主要用于峰谷套利,同时可作为备用电源、避免电力增容及改善电能质量。 (2)储能系统具备完善的通讯、监测、管理、控制、预警和保护功能,长时间持续安全运行,可通过上位机对系统运行状态进行检测,具备丰富的数据分析功能。 (2)BMS系统即跟EMS系统通信汇报电池组信息,也跟PCS采用RS485总线直接通信,在PCS的配合下完成对电池组的各种监控、保护功能。 (3)常规0.2C充放电,可离网或并网工作。 2、系统运行策略 ◇储能系统接入电网运行,可通过储能变流器的PQ模式或下垂模式调度有功无功,满足并网充放电需求。 ◇电价峰时段或负荷用电高峰期时段由储能系统给负荷放电,既实现了对电网的削峰填谷作用,又完成了用电高峰期的能量补充。 ◇储能变流器接受上级电力调度,按照峰、谷、平时段的智能化控制,实现整个储能系统的充放电管理。 ◇储能系统检测到市电异常时控制储能变流器由并网运行模式切换到孤岛(离网)运行模式。 ◇储能变流器离网独立运行时,作为主电压源为本地负荷提供稳定电电压和频率,确保其不间断供电。 3、储能变流器(PCS) 先进的无通讯线电压源并联技术,支持多机无限制并联(数量、机型)。 ●支持多源并机,可与油机直接组网。 ●先进的下垂控制方法,电压源并联功率均分度可达99%。 ●支持三相100%不平衡带载运行。 ●支持并、离网运行模式在线无缝切换。 ●具有短路支撑和自恢复功能(离网运行时)。 ●具有有功、无功实时可调度和低电压穿越功能(并网运行时)。 ●采用双电源冗余供电方式,提升系统可靠性。 ●支持多类型负载单独或混合接入(阻性负载、感性负载、容性负载)。

UCC38C43隔离单端反激式开关电源电路图

UC3842/UC3843隔离单端反激式开关电源电路 图 开关电源以其高效率、小体积等优点获得了广泛应用。传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。 电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。Unitrode公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。 DC/DC转换器 转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器 次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD 导通,给输出电容C充电,同时负载R上也有电流I流过。M1导通与截止的等效拓扑如 图2所示。 图2 M1导通与截止的等效拓扑 电流型PWM 与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一 个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。 下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。电路如图3所示。 设V导通,则有 L·diL/dt = ui (1) iL以斜率ui/L线性增长,L为T1原边电感。经无感电阻R1采样 Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器 的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开

储能双向逆变器

Product Guide AC &DC Power System Power for the better life 上海汉升电源系统有限公司 地址:上海市闵行区召楼路号3286销售热线:(021)34902073 (021)34902079传真:(021)34902073-816 (021)34902079-816网址:..www handsunpower com S H A N G H A I H A N D S U N P O W E R S Y S T E M C o.,L T D 邮编:201112 公司总机:(021)55091913 24小时服务热线:400-688-0619

企业概况 Company p r o f i l e 3286号。

01 储能双向逆变器 储能双向逆变器是汉升电源结合多年专业电源研制经验,推出的一套专门应用于储能的并网逆变器。储能双向逆变器可以精确、高效实施各种电池类型、电压等级以及功率等级的电池充电任务,能量可双向流动,既可以给电池充电储能,也可以将电池能量逆变成交流输入电网。配备功能强大的智能控制软件,可实现在远程 PC机上控制各主要运行参数设定,实现能量在电池与电网之间及时双向流动,实时记录运行过程数据,自动保存运行测量数据。 可实现能量双向流动,电池充放电 充电模式为:恒流充电、恒压充电、恒功率充电放电模式为:恒流放电、限压放电、恒功率放电 可以设置不同的电池充电特性曲线,可以与多种电池接口完善的显示和通讯功能适合严酷的电网环境 电池与电网完全隔离,内置隔离变压器完善的数字化保护功能,提高系统可靠性具有操作历史记忆功能具有上位机软件 充电控制与逆变一体化设计 产品特点: 智能电网系统 需要调整白昼用电量的工厂等 应用领域: 规格表 : 储能双向逆变器

单端反激开关电源方案

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。 设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V 到265V ,输出5V ,2A 的电源,开关频率是100KHZ 。 第一步,选定原边感应电压V OR 这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,为了便于理解,我们从下面图一所示的例子谈起,慢慢的来。 这是一个典型的单端反激式开关电源,大家再熟悉不过了,下面分析一下一个工作周期的工作情况,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的电流: I 升=V S *Ton/L 这三项分别是原边输入电压、开关开通时间和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的电流: I降=V OR *T OFF /L 这三项分别是原边感应电压(即放电电压)、开关管关断时间和电感量.在经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以,有: V S *T ON /L=V OR *T OFF /L 即上升了的等于下降了的,懂吗?好懂吧!上式中可以用D来代替T ON ,用(1-D)来代替T OFF 。移项可得: 图一

储能与智能微网双向逆变器主要技术功能与参数

储能与智能微网双向逆变器主要技术功能与参数 双向并网逆变器是既可以将直流电变换成交流电,也可以将交流电变换成直流电的逆变器。双向并网逆变器主要控制蓄电池组的充电和放电,同时是系统的中心控制设备。双向并网逆变器可以应用到有蓄电功能要求的并网发电系统,蓄电系统用于对应急负载和重要负载的临时供电。它可以和组串式逆变器结合构成独立运行的光伏发电系统。 双向并网逆变器由蓄电池组供电,将直流电变换为交流电,在交流总线上建立起电网。组串式并网逆变器自动检测太阳电池方阵是否有足够能量,检测交流电网是否满足并网发电条件,当条件满足后进入并网发电模式,向交流总线馈电,系统启动完成。系统正常工作后,双向并网逆变器检测负载用电情况,组串式并网逆变器馈入电网的电能首先供负载使用。如果有剩余的电能,双向并网逆变器将其变换成直流电给蓄电池组充电;如果组串式并网逆变器馈入的电能不够负载使用,双向并网逆变器又将蓄电池组供给的直流电变换为交流电馈入交流总线共负载使用。 型号 交流侧参数 额定容量10kW20kW50 kW100 kW250kW 过载能力11kW22 kW55 kW110 kW275kW 并网充放电模式 额定电网电压380 Vac 允许电网电压范围310~450Vac 允许电网频率范围50Hz/60Hz 总电流波形畸变率(THD)<3% 功率因数≥0.99 独立逆变模式 额定输出电压380 Vac 输出电压失真度<3% 输出频率50Hz/60Hz 输出过压保护>450 Vac 输出欠压保护<310 Vac 直流电压范围 最大直流功率11kW22 kW55 kW110 kW275kW 直流电压范围450-750Vdc 最大直流电流25A50A122A244A611A <5% 直流电流纹波 &, amp;, lt;, /TD>

基于UC2844的单端反激电源原理及波形

单端反激拓扑的基本电路 单端反激拓扑的基本电路 (b)为Q1电流,(c)为次级整流二极管电流,(d)为Q1的Vce电压工作原理如下:当Q1导通时,所有的次级侧整流二极管都反向截止,输出电容(Co、C1)给负载供电。T1相当于一个纯电感,流过Np的电流线性上升,达到峰值Ip。当Q1关断时,所有绕组电压反向,次级侧整流二极管导通,同时初级侧线圈储存的能量传递到次级,提供负载电流,同时给输出电容充电。若次级侧电流在下一周期Q1导通前下降到零,则电路工作于断续模式(DCM),波形如上图(b)(c)(d),反之则处于连续模式(CCM)

电流模式控制芯片UC2844/3844内部框图如下 工作时序图如下

开关电源启动时输出时序不正确的案例: 电动汽车驱动板有两路开关电源,如下图 开关电源1的UC2844启动电路,其输出包含VDD5 开关电源2的UC2844启动电路,其输出包含+5V电路 尽管两路开关电源的启动电路中电容都是200uF,充电电阻是30kΩ,但由于开关电源2中D26的存在,使得开关电源2充电快,先开始工作,导致光耦U24的副边电源+5V比原边电源先建立。

当光耦U24的副边电源比原边电源先建立时,光耦会输出负压(V out+相对于V out-的电压),如下图。 CH1:VDD5电压CH2:+5V电压CH3:U31 pin6CH4:U31 Pin7 光耦的负压会让运放U20输出一段600mV的负压,如下图 U20 Pin1电压 这段负压输入到控制板的比较器U5反向输入端,此时GENERATRIX信号的电压为-470mV,这个电压已经超过了比较器允许的最大负压(器件资料规定输入负压不得大于0.3V),在环境温度超过73℃时,-470mV 的电压会导致比较器U5输出异常。

储能逆变器的控制策略研究

储能逆变器的控制策略研究 发表时间:2018-05-30T10:13:41.427Z 来源:《电力设备》2018年第1期作者:杜学平 [导读] 摘要:目前我国经济发展十分快速,电力行业越来越普遍,随着分布式电源不断接入电网和微电网系统的发展,微电网对系统的运行稳定性及供电可靠性都提出了一定的要求。 (青岛科技大学自动化与电子工程学院山东青岛 266199) 摘要:目前我国经济发展十分快速,电力行业越来越普遍,随着分布式电源不断接入电网和微电网系统的发展,微电网对系统的运行稳定性及供电可靠性都提出了一定的要求。储能系统应运而生,储能系统可以存储过剩的电能,在发电能力较弱时再放出电能给负载供电,实现削峰填谷,完美解决新能源间歇性发电的问题。储能系统在微电网中发挥着非常重要的作用,而储能逆变器又是储能系统中的核心部分,因此储能逆变器的控制策略研究是非常有实用价值的。 关键词:储能;逆变器;控制策略;研究 1系统结构和基本原理 图1 系统结构简图 以电池为介质的储能系统主要由电池及其管理系统(风能、太阳能的储能系统)和能量转换系统(PCS)两个部分组成(如图1所示)。电池通过PCS与电网交换能量(或离网负载),根据实际需要储存或释放能量。作为电池与大电网之间接口的PCS,实际上是大功率的电力电子变流器,此处PCS特指储能逆变器(储能变流器)。 常见的储能逆变器分为单级型和多级型两种主要形式。单级型储能变流器的拓扑仅由一个AC/DC环节构成,其优点是结构简单、控制方法简便,逆变器损耗低,能量转换效率高。但是存在以下缺点:1)一个AC-DC不可以充分多路输出;2)电池电压的工作范围不能灵活控制;3)电池电压固定不能灵活分配。由于以上确定我们选择两多级型,我们选择两级,增加一级隔离DC-DC的控制,该级控制可以根据功率灵活的扩展DC-DC通道的数量和输出电压的大小(如图2所示)。 1.1 AC-DC部分介绍: AC-DC部分拓扑采用三电平,其中开关频率为20K,功率器件为:初步选定英飞凌的DF100R07W1H5FP_B3的IGBT模组。此部分效率可达到98%。在大功率PWM变流装置中,常采用三点式电路,这种电路也称为中点钳位型(Neutral Point Clamped)电路(如图3所示)。与两点式PWM相比,三点式PWM调制主要有以下优点,一是对于同样的基波与谐波要求而言,开关频率可以低得多,从而能够大幅度减少开关损耗;二是主功率器件断开时所承受的电压仅为直流侧电压的一半,因此这种电路应用在高电压大容量的产品上特别合适。在控制策略方面,在传统的PWM整流器双闭环控制的基础上,采用内模控制代替电流内环PI调节器,以提高系统的鲁棒性能、跟踪性能和动态响应能力。 图2 两级PCS框图图3 AC-DC主原理图 1.2 DC-DC部分介绍: DCDC部分拓扑采用CLLC准谐振开关技术,开关频率100K或者是更高频率,功率器件采用单管MOS并联组成(并联数量根据功率确定,具体原理框图见图4)。功率器件为:初步选定英飞凌的IRFP4668P6F。此部分效率可达到90%以上。隔离DC/DC部分采用CLLC谐振软开关技术,它应用谐振的原理,使开关器件中的电流(或电压)按照正弦或标准正弦规律变化。当电流通过零点时,使器件关断(或电压为零时,器件打开),从而减少开关损耗。它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题并且还能解决二极管反向恢复问题,对于由于硬开关引起的EMI 等问题也有很好的改善。这种拓扑结构,电路结构简单,工作效率高,并在输入电压和负载变化范围很宽的情况下依旧具有良好的电压调节特性,不仅可以在原边实现开关管 ZVS,还可以使副边整流管实ZCS,且原副边管子的电压应力较低。 图4 DC-DC 原理框图 2、几种必要的控制模式 2.1并网模式到孤岛模式: 储能逆变器并网模式到离网模式的切换分为两种主动切换和被动切换。主动切换指人为的把储能逆变器离网;被动切换指因电网故障或者电压过低等原因,储能逆变器受到不良影响,把储能逆变器切离电网PW。主动切换情况下,电网电压幅值和频率等指标正常,此时模式切换策略较为简单,只需要提供一个与电网电压相同的量作为离网模式下储能逆变器控制策略的参考值,在断开开关的同时控制方式切换为VF,电压外环给定值为电网电压幅值和频率。被动切换情况下,电网电压幅值和频率等指标可能不正常,此时的控制策略需参考

光伏储能一体化充电站设计方案

光伏储能一体化充电站 设 计 方 案 : 项目名称: 项目编号: 版本: 日期: … 拟制: ^ 审阅: 批准:

目录 1 技术方案概述 (3) 1.1 项目基本情况 (3) 1.2 遵循及参考标准 (4) 1.3 系统拓扑结构 (5) 1.4 系统特点 (6) 2 系统设备介绍 (7) 2.1 250K W并离网型储能变流器 (7) 2.1.1 EAPCS250K型储能变流器特点 (7) 2.1.2 EAPCS250K型并离网逆变器技术参数 (7) 2.1.3 电路原理图 (8) 2.1.4 通讯方式 (9) 2.2 50K_DCDC变换器 (9) 2.2.1 50K_DCDC变换器特点 (9) 2.2.2 50K_DCDC变换器技术参数 (10) 2.3 光智能光伏阵列汇流箱 (11) 2.3.1汇流箱简介 (11) 2.3.2汇流箱参数 (12) 2.4 光伏组件系统 (13) 2.4.1 270Wp光伏组件 (13) 2.5 60KW双向充电桩 (15) 2.5.1 60KW充电柱概述 (15) 2.5.2 充电桩功能与特点 (15) 2.5.3 EVDC-60KW充电桩技术参数 (16) 2.6 消防系统 (17) 2.7 微网能量管理系统 (17) 2.7.1 能量管理 (18) 2.7.2 光电预测 (19) 2.7.3 负荷预测 (19) 2.7.4 储能调度 (20) 2.7.5 购售计划 (20) 2.7.6 管理策略 (20) 2.8 动环监控系统 (22) 2.9 电池系统 (23) 2.9.1 电池组 (23) 2.9.2电池模组与电池架设计 (23) 2.9.3电池系统参数表 (24) 2.10 定制集装箱 (25) 3 设备采购信息介绍 (26)

单端反激式开关电源-主电路设计

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。 本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。 关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244Y ABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form. The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output. Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y 目录 前言 (3) 1.反激式PWM高频开关电源的工作原理 (4)

KW储能系统初步设计方案及配置

K W储能系统初步设计 方案及配置 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录

一、项目概述 分布式能源具有间歇性、波动性、孤岛保护等特点,分布式能源电能质量差,分布式能源设备利用率没有被充分发掘。微电网是为整合分布式发电的优势、削弱分布式发电对电网的冲击和负面影响而提出的一种新的分布式能源组织方式和结构,能有效改善分布式能源电能质量差、分布式能源设备利用率不能被充分发掘等分布式能源的不足。 微电网通过整合分布式发电单元与配电网之间关系,在一个局部区域内直接将分布式发电单元、电力网络和终端用户联系在一起,可以方便地进行结构和配置以及电力调度的优化,优化和提高能源利用效率,减轻能源动力系统对环境的影响,推动分布式电源上网,降低大电网的负担,改善可靠安全性,并促进社会向绿色、环保、节能方向发展。微电网是当前国际国内能源和电力专家普遍认可的解决方案。 本项目拟建设一套锂电池储能系统,通过低压配电柜给部分办公楼宇负荷供电,可实现对各个设备接口采集相关信息,并通过智能配电柜对各个环节进行投切,在并网及孤岛情况下实现发电、储能及负荷的控制,保持微电网系统的平衡运行。 二、项目方案 2.1智能光伏储能并网电站 本电站系统目的在于拟建设中山铨镁能源科技有限公司储能并离网系统示范工程,通过接入办公楼宇的日常照明等真实负载,可演示离网状态下正常供

电系统示范;分布式光伏多余电量进行储能示范;以及后台监控及能量调度等示范。 本项目拟建设的储能系统,系统由锂电池储能系统、控制系统、监控系统以及能量管理系统构成。其中控制系统可实现对分布式电源、负载装置和储能装置的远程控制,监控系统对分布式电源实时运行信息、报警信息进行全面的监视并进行多方面的统计和分析实现对分布式电源的全方面掌控,能量管理系统可控制分布式电源平滑出力与能量经济调度。系统一次拓扑结构如下图所示: 能量管理及系统监控网络结构图如下图所示: 能量管理系统可以根据储能情况及负载情况实现并离网切换控制,以及微电网系统几种不同运行模式的切换,可以实现分布式电源离网运行控制,并网点电气参数监控,实现系统负载远程投切控制。配置一套电池管理系统实现对储能电池的充放电状态及电池电量估计,实现分布式电源能量均衡控制及系统的经济运行。根据微电网交流母线电压频率情况,实现负荷分类切除,保证重要负荷的优先供电保障。 2.2储能系统 2.2.1磷酸铁锂电池 配置容量300kWh。 2.2.2电池管理系统(BMS) BMS是用于监测、评估及保护电池运行状态的电子设备集合。主要功能:1)监测并传递锂离子电池、电池组及电池系统单元的运行状态信息,如电池电压、电流、温度以及保护量等;

(完整版)单端反激式开关电源的设计..

《电力电子技术》 课程设计报告 题目:单端反激式开关电源的设计学院:信息与控制工程学院

一、课程设计目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用; (3)增强设计、制作和调试电力电子电路的能力; 二、课程设计的要求与内容 本课程设计要求根据所提供的元器件设计并制作一个小功率 的反激式开关电源。我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。有条件的可以用protel99 SE进行PCB电路板的印制。 三、设计原理 1、开关型稳压电源的电路结构 (1)按驱动方式分,有自激式和他激式。 (2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。 (3)按电路组成分,有谐振型和非谐振型。 (4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式; ③PWM与PFM混合式。 DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。 DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。M1导通与截止的等效拓扑如图2所示。 图2 M1导通与截止的等效拓扑 2、反激变换器工作原理 基本反激变换器如图3所示。假设变压器和其他元器件均为理想元器件,稳态工作如下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,如图 3(a)所示,无源开关VD1因反偏而截止,输出由电容C向负 载提供能量,而原边则从电源吸收能量,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,故VD1正偏而导通,

2018年储能双向变流器及储能系统集成产业化项目可行性研究报告

2018年储能双向变流器及储能系统集成产业化项目可行性研究报告 2018年12月

目录 一、项目概况 (3) 二、项目建设背景 (3) 1、储能商业化应用提速发展 (3) 2、国内储能扶持政策逐步加力 (4) 三、项目建设必要性 (6) 1、迅速占领市场,赢得市场先机 (6) 2、优化产品结构,形成新的利润增长点 (6) 3、发挥与光伏逆变器业务的协同优势 (6) 四、项目产品和技术方案 (7) 7 1、集中式交流储能变流器 .................................................................................... 7 2、分布式直流储能变流器 .................................................................................... 五、项目建设方案 (8) 1、主要原材料和辅料供应情况 (8) 8 2、项目建设方案 .................................................................................................... (1)工程费用 (8) (2)设备费用 (8) 六、项目经济效益分析 (10)

一、项目概况 项目建设期为18个月,在项目期内将完成厂房建设、储能双向变流器生产线建设、办公及配套设施建设、人员配置等。 项目总投资11,477万元,具体概算如下: 二、项目建设背景 1、储能商业化应用提速发展 当前全球能源转型迫在眉睫,伴随新能源产业的迅速发展,全球的储能行业革命正在进一步的深化过程中。储能技术应用广泛,市场需求潜力较大,是能源互联网中的关键环节,主要体现在以下几个方面: 第一,光伏与风电等间歇性电源输出不稳定,光伏发电集中在白天阳光充足的时间,风力发电受风量风速等直接影响,当其发电量提升时,其不稳定电量会对电网造成一定的冲击,这就需要配套一定比

单端反激式开关电源

交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。 (二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护

霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。 C2电容; 吸收电容,主要作用为吸收IGBT的过流与过压能量。 (2)直-交部分 VT1-VT6逆变管(IGBT绝缘栅双极型功率管):构成逆变电路的主要器件,也是变频器的核心元件。把直流电逆变频率,幅值都可调的交流电。 VT1-VT6是续流二极:作用是把在电动机在制动过程中将再生电流返回直流电提供通道并为逆变管VT1-VT6在交替导通和截止的换相过程中,提供通道。(3)控制部分:电源板、驱动板、控制板(CPU板) 电源板:开关电源电路向操作面板、主控板、驱动电路、检测电路及风扇等提供低压电源,开关电源提供的低压电源有:±5V、±15V 、±24V向CPU其附属电路、控制电路、显示面板等提供电源。 驱动板:主要是将CPU生成的PWM脉冲经驱动电路产生符合要求的驱动信号激励IGBT输出电压。 控制板(CPU板):也叫CPU板相当人的大脑,处理各种信号以及控制程序等部分 [注:再次整流(直流变交流)--->更贴切的叫法是逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议!mym(2005.08.23) ]

300KW储能系统初步设计方案及配置

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录 1 项目概述 (3) 2项目方案 (3) 2.1智能光伏储能并网电站 (3) 3.2储能系统 (5) 3.2.1磷酸铁锂电池 (5) 3.2.2电池管理系统(BMS) (5) 3.2.3储能变流器(PCS) (6) 3.2.4 隔离变压器 (8) 3.3能量管理监控系统 (9) 3.3.1微电网能量管理 (9) 3.3.2系统硬件结构 (9) 3.3.3系统软件结构 (10) 3.3.4系统应用功能 (11)

一、项目概述 分布式能源具有间歇性、波动性、孤岛保护等特点,分布式能源电能质量差,分布式能源设备利用率没有被充分发掘。微电网是为整合分布式发电的优势、削弱分布式发电对电网的冲击和负面影响而提出的一种新的分布式能源组织方式和结构,能有效改善分布式能源电能质量差、分布式能源设备利用率不能被充分发掘等分布式能源的不足。 微电网通过整合分布式发电单元与配电网之间关系,在一个局部区域内直接将分布式发电单元、电力网络和终端用户联系在一起,可以方便地进行结构和配置以及电力调度的优化,优化和提高能源利用效率,减轻能源动力系统对环境的影响,推动分布式电源上网,降低大电网的负担,改善可靠安全性,并促进社会向绿色、环保、节能方向发展。微电网是当前国际国内能源和电力专家普遍认可的解决方案。 本项目拟建设一套锂电池储能系统,通过低压配电柜给部分办公楼宇负荷供电,可实现对各个设备接口采集相关信息,并通过智能配电柜对各个环节进行投切,在并网及孤岛情况下实现发电、储能及负荷的控制,保持微电网系统的平衡运行。 二、项目方案 2.1智能光伏储能并网电站 本电站系统目的在于拟建设中山铨镁能源科技有限公司储能并离网系统示范工程,通过接入办公楼宇的日常照明等真实负载,可演示离网状态下正常供电系统示范;分布式光伏多余电量进行储能示范;以及后台监控及能量调度等示范。 本项目拟建设的储能系统,系统由锂电池储能系统、控制系统、监控系统以及能量管理系统构成。其中控制系统可实现对分布式电源、负载装置和储能装置的远程控制,监控系统对分布式电源实时运行信息、报警信息进行全面的监视并进行多方面的统计和分析实现对分布式电源的全方面掌控,能量管理系统可控制分布式电源平滑出力与能量经济调度。系统一次拓扑结构如下图所示:

储能双向逆变器(PCS)重要功能实验介绍

PCS重要功能实验介绍 一、并离网切换控制 (1)主动离网:并网转离网无缝切换,当电网出现故障时,储能系统能够快速识别并迅速切换到离网运行模式,切换的时间应足够短,最大限度地减少电网故障对供电系统内负荷和电源的影响。项目采用频率检测和幅值检测相结合的方法综合判断和快速检测电网故障,实现这种切换过程的平滑、无冲击。切换过程如图1所示。 A相电压 A相电流 图1并网转离网主动方式切换波形图 (2)被动离网:并网转离网有缝切换,被动离网无缝切换控制策略:PCS 处于并网状态时,通过检测并网点Vm电压,当电压连续N个采样点发生电压跌落或者上升超过阈值时,即认为主网与微网断开或者主网故障,PCS自动切换到离网控制模式,同时,发出开出分闸接点跳开主网开关实现被动离网。 图2并网转离网被动方式切换波形图

二、同期并网切换控制 (1)被动同期并网控制,采用保护装置并网合闸的方式:储能变流器从离网到并网的切换过程中,实现控制模式从电压/频率(V/f)控制模式切换到恒功率控制模式。并网前储能变流器必须首先通过锁相环跟踪控制,使变流器输出电压在幅值、频率和相位上都与电网电压匹配。否则,并网开关闭合时存在较大的电压差,从而导致并网冲击电流过大,对变流器的安全造成威胁。 切换过程如图3所示,采用同期保护装置并网合闸,PCS收到同期并网干接点后,通过通讯接收保护装置发来的电网侧电压与频率,调节电压频率,保护装置实时判断,当满足合闸条件后立即合闸,PCS判断后进入待机状态。 图3 离网转并网切换波形图 (2)自动同期并网控制,采用PCS自动判断同期点的方式:该模式下不使用同期保护装置,PCS检测电网侧电压,当接收监控系统发来同期命令后,开始跟踪电网侧电网相位,当完成相位跟踪后,立即开出并网合闸命令,由相应的执行开关合闸完成自动同期并网。

单端反激开关电源

因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的! 反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。 先学习下Buck-Boost变换器 工作原理简单介绍下 1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量! 2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量! 3.接着开始下个周期! 从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量! 根据电流的流向,可以看出上边输出电压为负输出! 根据伏秒法则 Vin*Ton=Vout*Toff Ton=T*D Toff=T*(1-D)

代入上式得 Vin*D=Vout*(1-D) 得到输出电压和占空比的关系Vout=Vin*D/(1-D) 看下主要工作波形 从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout); 再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。 如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!

从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。 把上边的Buck-Boost变换器的开关管和续流管之间加上一个变压器就会变成反激变换器! 还是和上边一样,先把原理大概讲下:

单端反激DCDC电路仿真

单端反激D C D C电路仿 真 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

题目:单端反激D C /D C 电路仿真 输入直流电压源,电压28V ,输出电压5V ,电压纹波小于1%,输出额定功率 30W ,最小负载电流1A ,开关频率50kHz ,整流二极管通态压降。计算必须的电感(变压器电感),电容,变压器的变比,功率管的工作占空比等参数,利用 simpowersystems 建立单端反激电路的仿真模型。 进行DC/DC 变换器输出功率20W 的仿真,仿真时间。观察并记录MOSFET 的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形)和输出电压波形。 1、 参数计算 选择开关管的耐压不高于56V 选择死区时间为,则2.0 t d , 取效率为% 纹波电压1% 最小负载电流1A ,则最大电阻有5欧

2、仿真图 一、负载的仿真。DC/DC变换器输出功率20w,仿真时间。观察并记录MOSFET的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形),输出波形。 输出电压5V,输出额定功率20w,可以算出输出电阻为欧姆。参数设置如下。 R=(5V)2/20W=Ω DCM模式 1)MOSFET管通过的电流、电压波形 分析:在MOSFET管关断时,MOSFET两端电压为直流侧电压加上输出侧反应到输入侧的电压之和,当MOSFET管导通时,管子端电压为0V。在MOSFET管关断时,变压器原边电流为0,副边等效电感对电路放电,电流线性降低,在MOSFET管导通时,变压器原边电源对电感充电,原边电流线性增加。 2)二极管电流电压波形 3)输出电压波形 根据仿真,当D=40%时,输出V= 不能满足V=5。 调整占空比是D=53%,则输出电压的平均值为,,电压波动范围是,满足1%电压纹波的条件。 (2)CCM模式根据波形调试得D=43%,L(pu)= 1)MOSFET管通过的电流、电压波形 2)二极管电流电压波形 3)输出电压波形

相关主题
文本预览
相关文档 最新文档