当前位置:文档之家› “一步法”制备纳米相丝素蛋白_羟基磷灰石生物复合材料

“一步法”制备纳米相丝素蛋白_羟基磷灰石生物复合材料

“一步法”制备纳米相丝素蛋白_羟基磷灰石生物复合材料
“一步法”制备纳米相丝素蛋白_羟基磷灰石生物复合材料

羟基磷灰石研究进展

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个 [ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

浅谈中职学校就业方向英语教学

浅谈中职学校就业方向英语教学 摘要:中职学校英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生性质的不同而有针对性地进行英语教学。中职英语老师需要有针对性的备课,灵活多变的课堂组织教学,以及不可忽略的课后教学。 关键词:中职学生就业方向英语教学 中图分类号: g718 文献标识码: c 文章编号:1672-1578(2011)11-0215-02 许多中等职业学校的教师都认为教学就是把自己所学知识倾囊 相授,这些年教学实践使笔者明白中职英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生的性质不同,而有针对性地进行英语教学。下面笔者主要针对就业方向的中职学生浅谈一下英语教学应该注意的几点: 1 有针对性地备课 中等职业学校学生的文化知识一般比较差,英语老师在教学前是否认真的有针对性的备课是教学是否成功的首要条件,备课时教师要熟悉大纲和教材,把握教学内容;分析教学任务,明确教学目标;研究学生特点和性质以及学生的知识基础,选择教学方法;设计教学过程,编写教学计划,从而为上课做好充分的准备。中等职业学校就业方向的英语教学应以“适用”为备课原则,以求学生能掌握一些基础英语知识以及能说一些日常生活适用的英语,很多属于高

考的英语知识点或难点则可以选择不予讲解。 2 进行有效的课堂组织教学 2.1激发学习英语的激情与兴趣 每个教师都明白学习兴趣对于教学的重要性,而在中职学校教学过程中这一点显得尤为重要,中职学生在中学的文化课已经相对薄弱,这严重导致了他们缺乏对文化课的学习兴趣,进入中职学校还要学习文化课,他们显然没有任何的学习兴趣,尤其是英语这一学科,一些学生甚至连26个英语字母都在中学时没能掌握,不能准确的针对国际音标发音,怎能还有学习兴趣?所以作为一名中职学校的英语教师,怎样唤醒中职学生的英语学习兴趣是一个教学过程中的一个重点也是难点,培养中职学生学习英语的激情与兴趣应该从两点出发:首先,要从教师本身出发。我们很多人都认为老师一般都需要在学生面前建立自己的威信,这点的确需要,但是往往很多老师过于严肃,让学生产生了相当大的畏惧心理,再加上教学内容全是枯燥的英语语法知识,中职学生怎能对英语学习充满学习兴趣?其实老师上英语课应该一改严肃的教学风格,上课可以带上丰富的肢体语言,英语语言可以抑扬顿挫,面部表情可以根据授课内容而变化,同时老师面对学生要少一点架子,多一点的尊重和真诚,少一点尖酸刻薄,多一点赏识和信赖,少一些冷漠,多一点的热情和交流.师生之间只有互相了解,互相沟通,互相平等,学生才会喜欢你,才会爱你,到那时候,“亲其师而信其道”,一名这样的英语教师在学生喜欢的环境下教学必定充满了教学乐趣,学生同时也

羟基磷灰石研究进展

2010-2011 第2学期《生物医用材料》期中考试 姓名: 学号: 学院: 专业: 班级: 任课老师:

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

纳米羟基磷灰石_HAP_的制备方法及应用 (1)

!""#年第$期(第$$期)佛山陶 瓷!!!!!!! %&&前言 ’()由于其成份与生物机体骨骼的无机成份相近,因而引起了人们的广泛的关注。上世纪#"年代,就有人合成了’()。随着科学技术的进步和人们认识的不断提高,许多研究结果表明,’()是一种无毒、无致癌、无副作用和具有良好生物相容性的生物活性材料;人们还发现’()具有固体碱性能*%+和较强的离子交换能力,因此在催化载体、离子交换领域得到了广泛的应用;同时还能吸附有毒的离子*!+和具有温敏、湿敏效应*#+,因此还是绿色环保材料和智能材料。此外,武汉理工大学生物中心研究发现纳米’()能抑制癌细胞的生长,而对正常的细胞没有副作用,为制备新一代抗癌药物提供了新的途径。 ’()具有许多优良的特性,除与本身特性有关外,还与其制备方法和制备工艺有密切的关系。 !&&’()的晶体结构 羟基磷灰石英文名称’,-./0,12134356分子式为71%" 8)9:;<=9’;!&>简写为’(或’()?>钙磷比71@)AB@#!%C<$(当71@)小于%C<$称为钙亏’()>当71@)大于%C<$称为钙盈’()>当71@)为%C<$称为正常’())>属磷酸钙=D7);陶瓷中的一种生物活性材料。从分子式可以看出,71!E位置=(位;易被%、!、#价和FGG#E等离子替换;*)9:+#H 位置=I位;易被*(J9:+#H、*K9:+#H、*L49:+!H、*L9:+!H、*79#+!H等基团替换;*9’+H位置=M位>通道离子;易被卤素元素替代,并且置换速度非常快;它还可以与含羧基=799’;的氨基酸、蛋白质、有机酸等反应。(、I、M还能相互耦合替代*:+。 D.N5O1P*B+等研究发现’()与氟磷灰石具有同样结构属于六方晶系,空间群为)<#@O。其结构为六角柱体,与Q 轴垂直的面是一个六边形,1、R轴的夹角为%!"",晶胞常数1ARASC:#!!,QA

纳米羟基磷灰石及其复合材料的研究进展_李志宏

医疗卫生装备?2007年第28卷第4期 ChineseMedicalEquipmentJournal?2007Vol.28No.4 纳米羟基磷灰石及其复合材料的研究进展 李志宏 武继民 李瑞欣 许媛媛 张西正 (军事医学科学院卫生装备研究所 天津市 300161) 摘要纳米羟基磷灰石具有良好的生物相容性和生物活性,是较好的生物材料,被广泛应用于骨组织的修复与替代技 术。但是,由于材料本身力学性能较差制约了羟基磷灰石的进一步应用,因此,提高及制备综合性能优越的纳米羟基磷灰石复合生物材料是当今研究的重心和热点。综述了纳米羟基磷灰石制备的主要方法及其复合生物材料的研究进展,并探讨了纳米羟基磷灰石骨修复材料的发展方向。关键词 纳米羟基磷灰石;复合材料;骨修复 Advancesinnano-hydroxyapatiteanditscomposite LIZhi-hong,WUJi-min,LIRui-xin,XUYuan-yuan,ZHANGXi-zheng (InstituteofMedicalEquipment,AcademyofMilitaryMedicalSciences,Tianjin300161,China) AbstractNano-hydroxyapatitehasbeenwidelyusedasreconstructiveandprostheticmaterialforosseoustissue,owingtoitsexcellentbiocompatibilityandtissuebioactivity.Butthepoormechanicalpropertyofhydroxyapatiterestrictsitsfurtherapplication.Inordertoenhancethecomprehensiveperformanceofthematerial,manyresearcheshavebeendedicatedtothesynthesizationofthecompositematerials.Thisarticlereviewsthemainpreparationmethodsofnano-hydroxyapatiteandtheadvancementinresearchofitscomposite.Thedirectionsinthisresearchareaaredescribedaswell.Keywordsnano-hydroxyapatite;compositematerial;bonerepair 作者简介:李志宏,硕士,主要从事高分子材料和生物材料方面的研究; 武继民,博士,硕士生导师,副研究员。 羟基磷灰石(hydroxyapatite,HA或HAP)是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长。其表面具有极性,与机体组织有较强的亲和力,与骨组织形成牢固的骨性结合,是公认性能良好的骨修复替代材料。本文综述了纳米羟基磷灰石复合生物材料的研究进展,并探讨了其可能的发展方向。 1纳米羟基磷灰石的合成 羟基磷灰石超微粉属无机材料,常用制备方法有水热法、 沉淀法、溶胶-凝胶法、微乳液法等。此外,还有等离子体喷涂法、干法、冲击波法等。 1.1水热法 水热法是指在密封压力容器中,以水溶液作反应介质,在 高温、高压下,使通常难溶或不溶的物质溶解且重结晶的一种制备材料的方法。它可以用来生长各种单晶,制备超细、无团聚或少团聚、结晶完好的陶瓷粉体和无机纤维或晶须增强材料。近年来,水热法制备羟基磷灰石也取得了很大的进展。 廖其龙等[1]经水热反应获得了晶粒完整、 粒度在100nm以下的柱状或针状HA晶体,结果表明:随Ca/P比的增加,进入磷灰石结构的CO32-的量增加,引起晶格畸变,晶粒尺寸降低。肖秀峰等[2]研究发现随水热温度的提高和时间的延长,晶体发育越完整,晶粒尺寸越大。郭广生等[3] 研究中发现水热温度和反应时间对HA微晶尺寸变化有较大的影响,高温有利于HA微晶在a轴方向的生长,而延长时间则有利于其在c轴方向的生长。刘晶冰等[4]在较低温度下合成了结晶度较高的棒状羟基磷灰石粉末,同时研究了pH值及温度对产物结构及形貌的 影响。 1.2沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合, 在混合溶液中加入适当的沉淀剂制备超微颗粒的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应的超微颗粒。此法制备纳米HA大多采用无机钙盐和磷酸盐反应得到。 任卫等[5]采用均相共沉淀法和爆发成核法制备出了可长期稳定的、尺度在60~70nm的HA溶胶和纳米粒子。 吕奎龙等[6] 经研究发现:加入形核剂、适当提高反应温度及搅拌速度有 利于制备纯净的羟基磷灰石。李玉峰[7]研究表明:控制反应温度、加料速率,使体系维持一定pH值范围,并适当引入超声波及其它强化条件,可以合成Ca/P比值较为理想、HA相较纯、晶粒度(272.2 ̄544.7)分布好的羟基磷灰石。郭大刚等[8]制得尺寸和形状更接近于人体骨磷灰石结构的HA颗粒,并具有较好的尺寸稳定性,600℃下仍能保持不团聚长大。 1.3溶胶-凝胶法(Sol-Gel) 溶胶凝胶法的基本原理是:将金属醇盐或无机盐水水解, 然后使溶质聚合胶化,再将凝胶干燥、焙烧,最后得到无机材料。其优点是:原料均匀混合;产品粒子化学均匀性好、纯度高、颗粒细;可容纳不溶性组分或不沉淀组分;烘干后凝胶颗粒烧结温度低。 黄志良等[9]用Sol-Gel法制备了不同钙磷摩尔比的HAP和不同CO32-含量的HAP,并系统研究此2类磷灰石的热稳定性。结果表明:Ca和HAP由于存在填隙缺陷结构,表现出较高的热稳定性;在150 ̄800℃范围内CHAP(含有CO32-的HAP)中的CO32-脱除是非平衡态的连续固溶体分解,同时其结晶度增加且晶粒重结晶长大。袁媛等[10]以四水硝酸钙和磷酸三甲酯为 中图分类号:TB383;TB33 文献标识码:A 文章编号:1003-8868(2007)04-0030-02 GENERALREVIEW 综述 30

纳米复合材料制备

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。)原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PV A[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合物,则将其预聚物溶解在含有剥离层状硅酸盐的溶液中,使预聚物吸附在层状硅酸盐上,然后采用物理或化学方法将预聚物转化为目标聚合物,如聚酞亚胺。 1.3.2原位插层聚合法 将层状硅酸盐在液体单体(或单体溶液)中溶胀,然后单体在层间引发聚合,引发可以采

纳米羟基磷灰石综述

纳米羟基磷灰石制备方法及应用 赖荣辉 西南民族大学化学与环境保护工程学院高分子化学与物理 摘要 羟基磷灰石(HA)具有良好的生物相容性和生物活性,被广泛的应用于骨修复和药物载体中。但是其本身容易团聚,而形成较大的晶体,使得其生物学性能下降。合成纳米级的羟基磷灰石,使得羟基磷灰石具有较大的比表面积,而具有较好的生物学性能。本文综述了近年来合成纳米羟基磷灰石的进展和几种主要的合成方法包括:水热法、超声法、溶胶-凝胶法、自燃烧法。并对纳米羟基磷灰石的一些改性方法做了简述。最后还对纳米羟基磷灰石的一些应用做了简述。 关键词:羟基磷灰石;制备方法;生物材料;纳米晶体 0 前言 羟基磷灰石,英文名Hydroxyapatite(HA),其化学式为Ca10(PO4)6(OH)2作为一种现代的纳米生物材料,是动物和人体骨骼和牙齿的主要无机成分,具有良好的生物相容性。故常用作骨修复材料和药物载体[1] 1 纳米羟基磷灰石的合成方法 一、自燃烧法 自燃烧法是一种利用硝酸盐与羧酸反应,在低温下实现原位氧化、自发燃烧、快速合成产物前驱体粉末的方法[2]。王欣宇等[3, 4]通过自燃烧法投制备纳米羟基磷灰石粉,他们结合络合物机理和氧化还原反应机理,以柠檬酸为络合剂并通过其具有还原性与硝酸盐混合均匀后进行充分络合,在加热条件下就会发生氧化还原反应,在较低的温度下就可以燃烧。其反应方程式如下:

C6H8O7 + Ca2+ = C6H6O7Ca + 2H+(l) 5C6H6O7Ca + l8NO3- + l8H+ = 30CO2 +9N2 + 24H2O + 5CaO (2)9Ca(NO3)2+ 5C6H8O7 = 30CO2 + 9N2 +20H2O + 9CaO (3)王欣宇等最后所得的自燃烧法制备纳米羟基磷灰石的最佳条件为n(H2O): n (Ca2+)= 30 ~ 35时,可使自燃烧反应进行,反应时间短。对于该反应体系pH的最佳范围为2 ~ 3。最佳的加热温度为80℃,自燃烧产物粉末煅烧的最佳温度为750℃。采用上述最佳工艺条件制备出的HAP 粉末,经超声分散,分散介质为水,然后用粒度分析仪测定粉末的二次平均粒径为494.6±l0.l nm。可见,虽然他们得到了纳米级的羟基磷灰石,但是其平均粒径对于现在的临床研究来说仍然太大了,并且在自燃烧法的反应过程复杂,过程的煅烧温度750℃过高,不利于控制。 二、水热法 水热法是在特定的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶,从而得到纳米结构的晶体。其优点是可以通过控制水热条件(温度、反应时间、前驱物形式等)面得到不同的粉体晶粒物相和形貌[5],徐光亮, 聂轶霞[5]等人利用CaCO3和CaHPO4·2H2O按一定的n(Ca)/n(P)混合在高温高压下合成纳米羟基磷灰石,并且通改变反应的条件:前驱物配比、水热反应温度、以用反应时间等来研究羟基磷灰石合成的最佳反应条件。对于水热法,仍存在一些缺点,因为水热反应耍要在一个高温高压的反应条件下进行,过程不易控制。并且,反应时间耍8h以上才能达到最佳反应,反应时间过长。 另,据报道,任强,罗宏杰等[6]人通过低温燃烧/水热法联合法制备了纳米羟基磷灰石。该方法充分发挥了低温燃烧法(LCS)和水热法的优势,具有制备温度低、反应速度快、制备效率高以及粉体的纯度高、粒度小(40 nm~80 nm)且均匀等优点。该次实验主要用Ca(NO)2,(NH4)2HPO4和柠檬酸(C6H8O7H2O),通过羟基磷灰石中的Ca:P=5:3,并根据燃烧化学基本理论来参加反应。该实验的主要环节是反应温度的确定和硝酸钙与磷酸氢二铵和柠檬酸的比例,其最佳比例为Ca(NO3)2·4H2O:(NH4)2HPO4:C6H8O7·H2O=5:3:2.2。实验的具体过程是:

纳米复合材料制备

纳米复合材料制备文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发

生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。) 原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PVA[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合

羟基磷灰石

由羟基磷灰石、氟磷灰石、磷酸三钙和碳酸磷灰石等磷酸钙盐或其复合物构成的生物陶瓷。Ca/P原子比和材料结构决定其表面是否具有生物活性或生物可吸收性。 羟基磷灰石和磷酸三钙等磷酸钙类生物材料与脊椎动物骨和齿的主要无机成分十分相近,具有良好的生物相容性,植入骨组织后能在界面上与骨形成很强的化学键合,各国学者均给予广泛关注,是临床医生喜用的医用材料。目前,医用的磷酸钙粉末是用分析纯化学原料人工合成的,其主要制备方法有在高温下反应的干式方法与在溶液中进行沉淀反应的湿式方法。传统的磷酸钙粉末制备方法均很难得到力学性能好的磷酸钙陶瓷,这就限制了磷酸钙陶瓷材料作为承重骨的应用。因而有必要寻求一些合成及改性的新方法。冲击波技术作为材料制备、活化、改性等的研究手段,正日益受到人们的重视,它具有能产生高压、高温及作用时间短等特点,在材料研究中占有独特的地位。凝聚态物质经冲击波作用后,位错密度大大增加,表面能明显提高,化学活性增加,可显著改善粉体的烧结性能及反应活性。在冲击波作用下固体粉末混合物间相互碰撞、挤压、摩擦和穿透,能使晶粒粒度减小,分布均匀,达到细化与均化的目的。同时,在冲击波的作用下,固体颗粒发生高速运动,使其扩散速度是一般条件下固相反应中扩散速度的几倍,大大提高了反应速度,是一种合成超细粉末材料的新方法。因此,本研究提出了用冲击波技术合成磷酸钙

陶瓷粉末及对磷酸钙粉末活化改性这一新的研究课题,以制备力学性能优良的磷酸钙人工骨材料。经查新表明在国内外的相关文献中关于这一领域的研究还未见报道,本研究将填补这方面的空白,具有较大的科学价值和实际意义。本研究用冲击波方法处理CaCO3与CaHPO4·2H2O的混合物制备出了羟基磷灰石粉末。冲击波实验装置采用接触爆轰柱面装置,使用硝基甲烷液体炸药时,其炸药厚度应在20mm厚左右,既能顺利引爆又能保证样品的完整回收,所产生的初始入射压力约为16GPa,这种装置比现有用冲击波技术制备磷酸钙块状材料专利所用装置更简单、处理样品的量更多。与传统固相反应法相比较,冲击波合成的HA粉末有与之相似的晶体结构和组成,而且其粒度更细,分布更均匀,内部存在着大量的晶格畸变,有更高的活性。X射线衍射数据分析表明,用冲击波方法合成的HA粉末,其布拉格角队宽化度刀及晶面间距d三个参数均与动物骨的参数更为接近,作为骨修复和替换材料应用更为有利。用冲击波方法合成的HA粉末为含cO32一离子的碳酸盐轻基磷灰石,其钙磷含量的比值为1.65,与人骨的结构、组成相似,植入人体后更有利于促进骨的生长和骨性结合。作者认为冲击波合成方法是制备HA 粉末的一种有效的新方法。所制备的HA粉末与焙烧方法获得的HA粉末相比,在粒度分布、表面活性以及结构参数等方面具有更有利的优势。但是,冲击波方法合成HA粉末的具体反应机理、合适的反应条件以及反应条件与HA粉末的性能间的关系还可以

化学沉淀法制备纳米羟基磷灰石粉体

化学沉淀法制备纳米羟基磷灰石粉体 1、实验目的: 熟练使用化学沉淀法制备纳米粉体; 2、实验原理 化学沉淀法为制备纳米粉体的常用方法,本实验以Ca(NO3)2、(NH4)2HPO4和NH3·H2O 为原料,制备纳米羟基磷灰石粉体,基本原理如下: (NH4)2HPO4+NH3·H2O (NH4)3PO4+ H2O 3(NH4)3PO4+ NH3·H2O (NH4)10(PO4)3·OH 2(NH4)10(PO4)3·OH+10Ca(NO3)2Ca10(PO4)6(OH)2+20NH4NO3 3、试剂和仪器 Ca(NO3)2·4H2O,分析纯;(NH4)2HPO4,分析纯;氨水,分析纯;无水乙醇,分析纯;蒸馏水,实验室自制。 电动搅拌器;三口瓶;烧杯,分液漏斗,量筒,玻璃棒,天平,抽滤装置等。 4、实验过程 (1)安装实验装置。将三口烧瓶,铁架台,水浴锅,冷凝管,搅拌器等安装成需要的装置形式; (2)配料。按n(Ca)/n(P)=1.67的配比分别称取相应量的Ca(NO3)2·4H2O和(NH4)2HPO4,放入500ml烧杯中,迅速加入250ml蒸馏水,用玻璃棒进行搅拌直至溶解完毕; (3)加料、反应。将硝酸钙溶液加入三口烧瓶中,开动搅拌器进行搅拌,加入一定量氨水,调节pH>12,将(NH4)2HPO4溶液加入250ml分液漏斗中,慢慢滴入三口瓶中,控制时间为1小时,整个过程保持搅拌并在室温下进行; (4)升温反应。(NH4)2HPO4溶液滴加完毕后,使水浴升温至90℃,并保温反应3小时,整个过程保持搅拌; (5)降温冷却。保温3小时完成后,使其降温冷却至室温; (6)抽滤、洗涤。将所得反应物用抽滤装置进行抽滤、洗涤,过程中用蒸馏水不断冲洗,直至溶液p H≈7; (7)干燥。将所得粉体放入真空干燥箱中进行干燥,于80℃保温4小时,120℃保温4小时; (8)研磨、过筛。将干燥后的粉体研磨后过200目筛; (9)煅烧。将过筛后的粉体于800℃保温30分钟进行煅烧处理,得纳米羟基磷灰石粉体。 本实验具体要求: (1)配制 3.0mol/lCa(NO3)2·4H2O溶液250ml,按n(Ca)/n(P)=5:3配置相应浓度的(NH4)2HPO4溶液250ml,要计算出Ca(NO3)2·4H2O和(NH4)2HPO4的具体称量重量; (2)氨水按120ml加入。

纳米羟基磷灰石的结构设计

纳米羟基磷灰石的结构设计 摘要 羟基磷灰石与人体硬组织的化学成分和晶体结构极为相似,具有独特的生物活性和生物相容性,是目前生物材料研究的热点。当尺寸在1~100nm时,羟基磷灰石(HAP)纳米粒子有独特的生物学特性。此外羟基磷灰石粉体在吸附、催化、荧光、半导体、抗癌等领域也有广泛应用。 关键词:纳米材料羟基磷灰石结构设计抗癌 NANO HYDROXY APATITE STRUCTURE DESIGN ABSTRACT Hydroxyapatite is the main inorganic components of bone tissues,has good biocompatibility and biological activity,which is the research hotspot of biologicalmaterials.HAP particles have unique biological properties when their size maintained in nano scale.In addition,HAP also has wide application in adsorption,catalysis,fluorescence,semiconductor,cancer areas. KEYWORDS:nanometer materials hydroxyapatite physical design anticancer

1.1 纳米羟基磷灰石的特点 nHA是一种粒径较一般细胞粒径小,粒径为1~100 nm的超微粒子。当物质小到纳米级后,会具有表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等特点。这些特性导致其特有的热、磁、光敏感特性和表面稳定性,容易通过外场(电、磁、光)实现对其性能的控制,有利于实现靶向输送、控制释放、保护和稳定被输送物质。同时还具有不易被机体网状内皮细胞清除、有效避免脾滤过效应、通过增加渗透和滞留效应增强靶组织累积等优势。 人体骨中无机结构的基本单元式针状和柱状的磷灰石晶体,呈高度有序的排列,其结晶学C轴平行于胶原纤维方向定向生长,这种结构是一种理想的等强度优化结构,具有优良的生物力学性能。人工合成的羟基磷灰石是一种优良的硬组织替代材料,具有良好的生物亲和性,生物相容性,生物活性和骨传导作用。依据“纳米效应”理论,纳米级的羟基磷灰石其粒子活性更高,更有利于骨组织的整合,骨传导性能,溶解性能和力学性能提高。 1.2 纳米磷灰石的基本特性 1.2.1 HAP粒子的晶体结构 羟基磷灰石的理论组成为Ca10(P04)6(OH)2,为六方晶系,属于L6PC对称型和P63/m空间群,其结构为六角柱体,晶胞参数为a0=b0=0.943~0.938nm,C0=0.688~0.686nm,z=2, α=β=900,γ=1200。晶胞含有l0个Ca2+、6个PO43-,和2个OH-,结构中Ca2+离子分别位于配位数为9的Ca(Ⅰ)位置和配位数为7的Ca(Ⅱ)位置,结构比较复杂,其在(0001)面上的投影如图1.1。

羟基磷灰石在生物医用材料中的研究进展

《生物医用材料》期末论文 学院:材料与化工学院 专业:材料科学与工程 学生姓名: 学号: 任课教师:唐敏 2010年6月20日

羟基磷灰石在生物医用材料中的研究进展 材料与化工学院07材料科学与工程卢仁喜 摘要:羟基磷灰右是一种优质的医用生物材料,在生物医用材料和医学研究领域有着广泛的应用和研究。本文在综合了一些文献的基础上,对羟基磷灰石在生物医用材料的研究上做了总结和概括,并且提出了一些自己的看法。 关键字:羟基磷灰石生物医用材料进展 1.引言 生物材料(biomaterials)是对生物体进行治疗和置换损坏的组织、器官或增进其功能的材料。随着材料科学、生命科学与生物技术的发展,越来越多的生物材料得到广泛应用,人们开始在分子水平上去认识材料和机体问的相互作用,力求使无生命的材料通过参与生命组织的活动,成为有生命组织的一部分。其中金属材料、生物陶瓷材料、高分子材料、聚合物及其复合材料是应用最广泛的生物材料。近年来,常用的骨骼替代品是金属、塑料以及陶瓷等,其中以钛和钛合金为主。但是由于它们的惰性,它们不能很好的与生物体本身产生相容性,作为硬组织植入材料,它们与骨之间只是一种机械嵌连的骨整合,而非化学骨性结合,致使植入后与骨组织之间结合较差,常引起植入失效。同时金属的耐磨性和耐腐蚀性较差,腐蚀产牛的离子会对人体组织产生不良影响。羟基磷灰石(Hydroxyapatite,HA)生物陶瓷材料具有优良的生物活性和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。但是HA的力学性能较差,抗弯强度和断裂韧性指标均低于人体致密骨,限制了它们单独在人体负重部位的使用。但是由于它本身的特点,以及自然界再也找不出与它具有类似生物相容性的陶瓷材料,同时他又可以同多种材料进行复合来改变它在某一方面的劣势。所以,近年来羟基磷灰石及其复合物的研究受到广泛关注。 2.羟基磷灰石及特点 羟基磷灰石(Hydroxyapatite,HA)是一种微溶于水的弱碱性磷酸钙盐,它是脊椎动物骨和齿的主要无机成分,在人骨中约占72%,齿骨中则高达97%,其生物相容性及活性良好,对人体无毒副作用,可增强骨愈合作用,能与自然骨产生化学结合,被认为是最有前途的人工齿及人工骨的替代材料。目前有关羟基磷灰石的研究已经取得了很大的进展,人工合成HA的方法主要有沉淀法、水热反应法和溶胶一凝胶法。然而,羟基磷灰石的烧结性能差,力学性能特别是冲击韧性不足以作为骨替代的理想材料,因此必须通过与其它材料复合来提高有关性能,使之得以在临床上推广应用。所以,基于羟基磷灰石在力学上的性质,它在生

高分子纳米复合材料的制备

高分子纳米复合材料的制备 摘要: 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。 关键词:高分子纳米复合材料,纳米单元,制备 由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。 高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。 纳米单元与高分子直接共混 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

纳米羟基磷灰石

纳米材料学作业 2005202027 张峰 一.外文综述 1.纳米羟基磷灰石与胶原和聚乙烯醇的复合生物材料[1] 材料的制备 1.合成纳米羟基磷灰石 根据羟基磷灰石中Ca/P摩尔比nCa/Np=1.67,配制Ca(NO3)2·4H2O(80 ml, 0.1 M)溶液和Na3PO4 (48 ml, 0.1 M)溶液,室温下共滴定,不断搅拌混合液。用Na(OH)2调节PH,使PH保持在10。反应得到悬浊液用布氏漏斗过滤后,去离子水清洗,沉淀物80℃隔夜干燥。 2.合成纳米羟基磷灰石/PVA复合物 90℃下配制不同浓度的PVA/去离子水混合液,90℃保持30min。在搅拌的条件下加入1中制备的羟基磷灰石粉体,持续搅拌30min,制得的HAp/PVA凝胶体。用冷冻分相干燥法对该胶体脱水干燥(将胶体降温至-20℃后在升温至20℃,如此反复进行1~4个周期)。 3.合成羟基磷灰石/胶原复合物(HAp/Col) 先在室温下配制30ml、浓度为0.6 mg/ml胶原/水的混合液,持续搅拌2h。之后加入80 ml 0.1M 的Ca(NO3)2·4H2O溶液,再缓慢滴加Na3PO4 (48 ml, 0.1 M)溶液,用Na(OH)2调节PH至10,制得呈凝胶状的HAp/Col复合物。将该凝胶用布氏漏斗过滤,去离子水清洗,室温干燥。4.合成羟基磷灰石/胶原/PVA复合物(HAp/Col/PVA) 室温、搅拌的条件下配制15ml浓度为0.3mg/ml的一型胶原/水混合物,持续搅拌1h后把该混合液倒入等体积的PVA/水的混合液中。将得到的混合物室温搅拌30min,再加入40ml0.1M 的Ca(NO3)2(PH调为10),搅拌,70℃保持24h。之后加入24ml0.1M Na3PO4(PH调为10)。如此,在胶原/PVA上原位合成HAp。然后将反应混合物过滤、冲洗、干燥、检测。 结果与讨论 1.不论是单独合成还是在胶原或PVA或是胶原/PVA纤维上原位合成,所制得的羟基磷灰石都为纳米微粒,其宽为10~30nm,长为40~50nm。 2.羟基磷灰石通过氢键或[OH-]-Ca2+-[-OH]和PVA和胶原结合形成有机-无机杂化体,此外胶原上的羧基也是和羟基磷灰石上的钙离子结合的位点。由于氢键的形成,随着有机相的增加,在有机相原位合成的羟基磷灰石的粒径和结晶度减小。 3.在PVA有机相中引入羟基磷灰石无机相后,复合材料的线性粘弹性大大提高,经低温处理后塑性大幅度增加。 4.复合材料由于胶原的加入、并经脱水处理后强度得到提高,且形成孔径在50~500nm范围内的贯通孔多孔材料。 2.用多糖基羟基磷灰石制备可生物吸收的骨水泥[2] 材料的制备 1.合成纳米羟基磷灰石 用CaCl2和(NH4)2HPO4共沉淀法制备羟基磷灰石纳米晶体。将0.3M(NH4)2HPO4 水溶液缓慢逐滴滴加到0.5M的CaCl2水溶液中。搅拌速度调整为1000rpm,反应温度保持在60℃,用注射器滴加NH4OH的方法调节混合液的PH值,最小为10。反应所得沉淀在相同的搅拌速度下陈化24h,然后过滤,蒸馏水洗4~5次,微波照射15min。微波照射后将最终的沉淀物10,000rpm转速下离心分离10min,去离子水反复冲洗,之后60℃真空干燥。 2.制备复合骨水泥 将适量壳聚糖分散在含2%乙酸的蒸馏水中。37℃,1000rpm搅拌的条件下,将1中反应

相关主题
文本预览
相关文档 最新文档