当前位置:文档之家› CISSP-要点第八章密码学

CISSP-要点第八章密码学

CISSP-要点第八章密码学
CISSP-要点第八章密码学

密码学是通过将信息加密成不可读格式以对其进行保护的一门学科。

历史上最著名的转子密码机是德国人在第二次世界大战中使用的Enigma机。

可读消息是一种称为明文的文件形式。明文一旦被加密,就处于称为密文的文件形式。密码算法就是规定加密和解密函数的数学规则。

密码分析学就是研究对密码系统的破解。

不可否认性是这样一种服务:确保发送方不能在发送消息之后否认曾经发生过消息。密钥群集指的是不同密钥对同一明文加密可生成相同的密文。

可能密钥所在的范围称为密钥空间。密钥空间越大,允许创建的随机密钥就越多,从而可以提供更多的保护。

对称密码中使用的两种基本加密机制是替代和换位。替代密码就是使用不同的字符(或位)来替换原来的字符(或位换位密码则搅乱原来的字符(或位)。

多字母表替代密码使用多个字母表来挫败频率分析攻击。

隐写术是一种在其他介质类型(如图片、WAV文件或文档)内隐藏数据的方法。这种方法用于隐藏数据的存在性。

密钥是插入加密算法的一大串随机位。结果是决定对消息执行哪些加密函数以及按什么顺序执行。

在对称密钥算法中,发送方和接收方使用相同的密钥来加密和解密。

在非对称密钥算法中,发送方和接收方使用不同的密钥来加密和解密。

对称密钥方法给密钥的安全分发和可扩展性带来了障碍。然而,对称密钥算法的运行比非对称密钥算法的运行快得多。

对称密钥算法能够提供机密性,但是不能提供身份验证或不可否认性。

对称密钥算法的示例包括DES、3DES、Blowfish、IDEA、RC4、RC5、RC6和AES。

非对称密钥算法用于加密密钥,对称密钥算法则用于加密批量数据。

非对称密钥算法要比对称密钥算法慢得多,但是能够提供身份验证和不可否认性服务。非对称密钥算法的示例包括RSA、ECC、Diff-Hellman、El Gamal、Knapsack和DSA。

对称算法的两种主要类型是流密码和分组密码。流密码使用密钥流生成器,一次加密消息的一个位。分组密码将消息分为若干位分组,然后对每个分组进行加密。

分组密码通常实现在软件中,而流密码通常实现在硬件中。

许多算法都是公开的,因此它们的保密部分就是密钥。密钥提供了必要的加密随机选择性。

数据加密标准(Data Encryption Standard,DES)是一种分组密码,它将消息分为若干64位分组,并且在这些分组上应用8盒类型函数。

因为DES密钥空间已被成功破解,所以人们开发了三重DES(Triple-DES,3DES)来替代它。3DES具有48轮计算,并且最多可以使用3个不同的密钥。

国际数据加密算法(International Data Encryption Algorithm,IDEA)是密钥长度为128位的对称分组算法。

RSA是由Rivest、Shamir和Adleman设计开发的一种非对称算法,它是数字签名的事实上的标准。

椭圆曲线密码系统(Elliptic Curve Cryptosystem,ECC)用作为非对称算法,它能够提供数字签名、安全的密钥分发以及加密功能。ECC使用的资源很少,因此更适合用在无线设备和蜂窝电话的加密功能上。

当对称密钥算法和非对称密钥算法结合使用的时候,就称之为混合加密系统。非对称算法加密对称密钥,而对称密钥用于加密数据。

会话密钥是消息的发送方和接收方用于加密和解密的对称密钥。会话只有在通信会话活跃时是安全的,通信会话结束后就销毁会话密钥。

公钥基础设施(Public Key Infrastructure,PKI)是由程序、过程、通信协议和公钥密码学组成的一个架构,它使得分散的人们能够安全地通信。

认证授权机构(Certificate Authority,CA)是生成和保存用户证书的、被人们信任的第三方,它保存着用户的公钥。

CA使用证书取消列表(ertificate Revocation List,CRL)来跟踪被取消的证书

证书是CA用于将用户的公钥和身份关联在一起的机制。

注册授权机构(Registration Authority,RA)确证用户的身份,随后向CA发送证书请求。但是,它不能生成证书。

单向函数是在一个方向上运算比在相反方向上运算容易得多的一种数学函数。

RSA将大数字因式分解为两个质数的单向函数为基础。只有私钥才知道如何使用陷门,以及如何解密使用相应公钥加密的消息。

散列函数只提供数据完整性。

当某个散列算法应用到消息上时,它会产生消息摘要,随后使用私钥对消息摘要值组行签名就可以生成数字签名。

散列算法的示例包括SHA-1、MD2、MD4、MD5和HAVAL。

HAVAL算法产生长度可变的散列值,而其他散列算法则产生固定长度的散列值。

SHA-1算法产生160位的散列值,并且用在DSS中。

生日攻击是通过穷举对散列函数进行的一种攻击。攻击者试图创建两条具有相同散列值的不同消息。

一次性密码本使用随机的密钥值和消息进行异或运算,从而生成密文。一次性密码本至少与消息一样长,并且使用一次之后就被丢弃。

数字签名是用户使用私钥对散列值进行签名的结果,它提供身份验证、数据完整性和不可否认性。签名动作实际上是使用私钥加密散列值。

用于数字签名的算法示例包括RSA、El Gamal、ECDSA和DSA。

密钥管理是密码学中最富有挑战性的部分之一,它涉及加密密钥的创建、维护、分发和销毁。

Diffie-Hellman协议是一种密钥约定协议,它并不提供数据加密,而且不能用在数字签名中。

TLS是SSL的“下一版本”,并且是一种开放社区协议,它允许扩展以及与其他技术的互操作性。

链路加密加密整个分组,包括首部和尾部,并且分组在每一跳上都要解密。端对端加密并不加密首部和尾部,因此不需要在每一跳上解密。

保密增强邮件(Privacy-Enhanced Mail,PEM)是一种通过使用加密、数字签名和密钥管理而在Internet上提供安全电子邮件的Internet标准。

消息安全协议(Message Security Protocal,MSP),是军用的PEM。

可靠加密(Pretty Good Privacy,PGP)是一种使用公钥加密的电子邮件保护程序,它利用可信WEB,而不是PKI中使用的层次化结构。

S-HTTP为两台计算机之间传送的每一条消息(但不是实际的链路)都提供保护。HTTPS保护通信通道。HTTPS指的是HTTP使用SSL来实现安全目的。

安全电子交易(Secure Electronic Transaction,SET)是一种被提议的电子商务技术,它为客户和商家提供了一种更安全的、在上实现交易的方法。

在IPSec中,AH提供完整性和身份验证,而ESP则提供上述功能以及机密性。IPSEC协议可以工作在两种模式中:传输模式(保护数据净荷)和隧道模式(保护数据净荷与首部。

IPSEC使用IKE作为其密钥交换协议。IKE是一种事实标准,它是ISAKMP和OAKLEY的组

合。

DEA是用于DES标准的算法。

密码学入门知识

~密码学入门知识~发现密码学挺有意思啊 一、几种常见密码形式: 1、栅栏易位法。 即把将要传递的信息中的字母交替排成上下两行,再将下面一行字母排在上面一行的后边,从而形成一段密码。 举例: TEOGSDYUTAENNHLNETAMSHV AED 解: 将字母分截开排成两行,如下 T E O G S D Y U T A E N N H L N E T A M S H V A E D 再将第二行字母分别放入第一行中,得到以下结果 THE LONGEST DAY MUST HA VE AN END. 课后小题:请破解以下密码Teieeemrynwetemryhyeoetewshwsnvraradhnhyartebcmohrie 2、恺撒移位密码。 也就是一种最简单的错位法,将字母表前移或者后错几位,例如: 明码表:ABCDEFGHIJKLMNOPQRSTUVWXYZ 密码表:DEFGHIJKLMNOPQRSTUVWXYZABC 这就形成了一个简单的密码表,如果我想写frzy(即明文),那么对照上面密码表编成密码也就是iucb(即密文)了。密码表可以自己选择移几位,移动的位数也就是密钥。 课后小题:请破解以下密码 dtzwkzyzwjijujsixtsdtzwiwjfrx 3、进制转换密码。 比如给你一堆数字,乍一看头晕晕的,你可以观察数字的规律,将其转换为10进制数字,然后按照每个数字在字母表中的排列顺序, 拼出正确字母。 举例:110 10010 11010 11001

解: 很明显,这些数字都是由1和0组成,那么你很快联想到什么?二进制数,是不是?嗯,那么就试着把这些数字转换成十进制试试,得到数字6 18 26 25,对应字母表,破解出明文为frzy,呵呵~ 课后小题:请破解以下密码 11 14 17 26 5 25 4、摩尔斯密码。 翻译不同,有时也叫摩尔密码。*表示滴,-表示哒,如下表所示比如滴滴哒就表示字母U,滴滴滴滴滴就表示数字5。另外请大家不要被滴哒的形式所困,我们实际出密码的时候,有可能转换为很多种形式,例如用0和1表示,迷惑你向二进制方向考虑,等等。摩尔斯是我们生活中非常常见的一种密码形式,例如电报就用的是这个哦。下次再看战争片,里面有发电报的,不妨自己试着破译一下电报 内容,看看导演是不是胡乱弄个密码蒙骗观众哈~由于这密码也比较简单,所以不出小题。 A *- B -*** C -*-* D -** E * F **-* G --* H **** I ** J *--- K -*- L *-** M -- N -* O --- P *--* Q --*- R *-* S *** T - U **- V ***- W *-- X -**- Y -*-- Z --** 数字 0 ----- 1 *---- 2 **--- 3 ***-- 4 ****- 5 ***** 6 -**** 7 --*** 8 ---** 9 ----* 常用标点 句号*-*-*- 逗号--**-- 问号**--** 长破折号-***- 连字符-****- 分数线-**-* 5、字母频率密码。 关于词频问题的密码,我在这里提供英文字母的出现频率给大家,其中数字全部是出现的百分比: a 8.2 b 1.5 c 2.8 d 4.3 e 12.7 f 2.2 g 2.0 h 6.1 i 7.0 j 0.2 k 0.8 l 4.0 m 2.4 n 6.7 o 7.5 p 1.9 q 0.1 r 6.0 s 6.3 t 9.1 u 2.8 v 1.0 w 2.4 x 0.2 y 2.0 z 0.1 词频法其实就是计算各个字母在文章中的出现频率,然后大概猜测出明码表,最后验证自己

现代密码学知识点整理:.

第一章 基本概念 1. 密钥体制组成部分: 明文空间,密文空间,密钥空间,加密算法,解密算法 2、一个好密钥体制至少应满足的两个条件: (1)已知明文和加密密钥计算密文容易;在已知密文和解密密钥计算明文容易; (2)在不知解密密钥的情况下,不可能由密文c 推知明文 3、密码分析者攻击密码体制的主要方法: (1)穷举攻击 (解决方法:增大密钥量) (2)统计分析攻击(解决方法:使明文的统计特性与密文的统计特性不一样) (3)解密变换攻击(解决方法:选用足够复杂的加密算法) 4、四种常见攻击 (1)唯密文攻击:仅知道一些密文 (2)已知明文攻击:知道一些密文和相应的明文 (3)选择明文攻击:密码分析者可以选择一些明文并得到相应的密文 (4)选择密文攻击:密码分析者可以选择一些密文,并得到相应的明文 【注:①以上攻击都建立在已知算法的基础之上;②以上攻击器攻击强度依次增加;③密码体制的安全性取决于选用的密钥的安全性】 第二章 古典密码 (一)单表古典密码 1、定义:明文字母对应的密文字母在密文中保持不变 2、基本加密运算 设q 是一个正整数,}1),gcd(|{};1,...,2,1,0{* =∈=-=q k Z k Z q Z q q q (1)加法密码 ①加密算法: κκ∈∈===k X m Z Z Y X q q ;,;对任意,密文为:q k m m E c k m od )()(+== ②密钥量:q (2)乘法密码 ①加密算法: κκ∈∈===k X m Z Z Y X q q ;,;* 对任意,密文为:q km m E c k m od )(== ②解密算法:q c k c D m k mod )(1 -== ③密钥量:)(q ? (3)仿射密码 ①加密算法: κκ∈=∈∈∈===),(;},,|),{(;21* 2121k k k X m Z k Z k k k Z Y X q q q 对任意;密文

现代密码学考试重点总结 (1)

古典密码 1.密码的基本概念 ○1作为数学的一个分支,是密码编码学和密码分析学的统称 ○2密码编码学:使消息保密的技术和科学 研究内容:1、序列密码算法的编码技术 2、分组密码算法的编码技术 3、公钥密码体制的编码技术 ○3密码分析学:破译密文的科学和技术 研究内容:1、密码算法的安全性分析和破译的理论、方法、技术和实践 2、密码协议的安全性分析的理论与方法 3、安全保密系统的安全性分析和攻击的理论、方法、技术和实践2.密码体制的5构成要素: ○1M:明文消息空间,表示所有可能的明文组成的有限集。 ○2C:密文消息空间,表示所有可能的密文组成的有限集。 ○3K:密钥空间,表示所有可能的密钥组成的有限集。 ○4E:加密算法集合。 ○5D:解密算法集合 3.密码体制的分类: ○1对称密匙密码系统加密密钥=解密密钥钥匙是保密的依赖密钥选择 ○2非对称密匙密码系统加密密钥≠解密密钥 加密密钥为公钥(Public Key)解密密钥为私钥(Private Key) 4.古典密码体制的算法 ○1棋盘密码希腊作家Polybius提出密钥空间:25 ○2移位密码 ○3代换密码 ○4维吉尼亚密码 ○5仿射密码:仿射密码是移位密码的一个推广,其加密过程中不仅包含移位操作,而且使用了乘法运算 例题: 1-1mod26=1 3-1mod26=9 5- 1mod26=21 7-1mod26=15 11-1mod26=19 17-1mod26=23 25- 1mod26=25 ○6置换密码 ○7Hill密码 例题: 5.密码分析的Kerckhoffs原 则:攻击者知道所用的加密算法的内部机理,不知道的仅仅是加密算法所采用的加密密钥 6.常用的密码分析攻击分为以下四类:

椭圆曲线密码总结大全

椭圆曲线密码 概述: 椭圆曲线密码学(ECC, Elliptic curve cryptography )是基于椭圆曲线数学的一种公钥密码的方法。1985年,Neal Koblitz 和Victor Miller 分别独立提出了椭圆曲线密码体制(ECC),其依据就是定义在椭圆曲线点群上的离散对数问题的难解性。 引言: ECC 被广泛认为是在给定密钥长度的情况下,最强大的非对称算法,因此在对带宽要求十分紧的连接中会十分有用。 ECC 的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA ——提供相当的或更高等级的安全。ECC 的另一个优势是可以定义群之间的双线性映射,基于Weil 对或是Tate 对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。 国家标准与技术局和ANSI X9已经设定了最小密钥长度的要求,RSA 和DSA 是1024位,ECC 是160位,相应的对称分组密码的密钥长度是80位。NIST 已经公布了一列推荐的椭圆曲线用来保护5个不同的对称密钥大小(80, 112, 128, 192, 256)。一般而言,二进制域上的ECC 需要的非对称密钥的大小是相应的对称密钥大小的两倍。 椭圆曲线密码学的许多形式有稍微的不同,所有的都依赖于被广泛承认的解决椭圆曲线离散对数问题的困难性上,对应有限域上椭圆曲线的群。 引理及有关概念: (1) 无穷远元素(无穷远点,无穷远直线)平面上任意两相异直线的位置关系 有相交和平行两种。引入无穷远点,是两种不同关系统一。AB ⊥L1, L2∥L1,直线AP 由AB 起绕A 点依逆时针方向转动,P 为AP 与L1的交点,如图1。Q=∠BAP →π /2则AP → L2,可设想L1上有一点P ∞,它为L2和L1的交点,称之为无穷远点。直线L1上的无穷远点只能有一个(因为过A 点只能有一条平行于L1的直线L2,而两直线的交点只能有一个)。 图1 结论: 1. 平面上一组相互平行的直线,有公共的无穷远点(为与无穷远点相区别,把

国内外密码学发展现状

国内外密码学发展现状 简述国内外密码学发展现状 一、近年来我国本学科的主要进展 我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。 (一)最新理论与技术研究进展 我国学者在密码学方面的最新研究进展主要表现在以下几个方面。 (1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。 (2)分组密码方面,我国许多学者取得了重要的研究成果。吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。 (3)Hash函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hash函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hash函数首次给出有效碰撞攻击和原像攻击。 (4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。

(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。该项成果获得2005年国家科技进步二等奖。 (6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。 (7)实验方面,主要有郭光灿院士领导的团队和潘建伟教授领导的团队取得了 一些令人瞩目的成绩,其中的“量子政务网”和“量子电话网”均属世界首创。 (二)最新成果应用进展 2009年是我国《商用密码管理条例》发布实施10周年。10年来我国的商用密码取得了长足发展。尤其值得一提的是可信计算和WAPI方面的密码应用。 (1)通过在可信计算领域中的密码应用推广,推出了我国自主的《可信计算密码支撑平台功能与接口规范》,大大提升了我国密码算法的应用水平和密码芯片的设计和研制水平。 (2)我国自主研发的宽带无线网络WAPI安全技术,弥补了同类国际标准的安全缺陷,形成并颁布了两项国家标准;其中的加密算法采用了自主研发的分组密码算法SMS4。该成果2005年获得国家发明二等奖。 二、密码学的发展趋势和展望 (1)密码的标准化趋势。密码标准是密码理论与技术发展的结晶和原动力,像AES、NESSE、eSTREAM和SHA 3等计划都大大推动了密码学的研究。 (2)密码的公理化趋势。追求算法的可证明安全性是目前的时尚,密码协议的形式化分析方法、可证明安全性理论、安全多方计算理论和零知识证明协议等仍将是密码协议研究的主流方向。

现代密码学 学习心得

混合离散对数及安全认证 摘要:近二十年来,电子认证成为一个重要的研究领域。其第一个应用就是对数字文档进行数字签名,其后Chaum希望利用银行认证和用户的匿名性这一性质产生电子货币,于是他提出盲签名的概念。 对于所有的这些问题以及其他的在线认证,零知识证明理论成为一个非常强有力的工具。虽然其具有很高的安全性,却导致高负荷运算。最近发现信息不可分辨性是一个可以兼顾安全和效率的性质。 本文研究混合系数的离散对数问题,也即信息不可识别性。我们提供一种新的认证,这种认证比因式分解有更好的安全性,而且从证明者角度看来有更高的效率。我们也降低了对Schnorr方案变形的实际安全参数的Girault的证明的花销。最后,基于信息不可识别性,我们得到一个安全性与因式分解相同的盲签名。 1.概述 在密码学中,可证明为安全的方案是一直以来都在追求的一个重要目标。然而,效率一直就是一个难以实现的属性。即使在现在对于认证已经进行了广泛的研究,还是很少有方案能兼顾效率和安全性。其原因就是零知识协议的广泛应用。 身份识别:关于识别方案的第一篇理论性的论文就是关于零知识的,零知识理论使得不用泄漏关于消息的任何信息,就可以证明自己知道这个消息。然而这样一种能够抵抗主动攻击的属性,通常需要许多次迭代来得到较高的安全性,从而使得协议或者在计算方面,或者在通信量方面或者在两个方面效率都十分低下。最近,poupard和stern提出了一个比较高效的方案,其安全性等价于离散对数问题。然而,其约减的代价太高,使得其不适用于现实中的问题。 几年以前,fiege和shamir就定义了比零知识更弱的属性,即“信息隐藏”和“信息不可分辨”属性,它们对于安全的识别协议来说已经够用了。说它们比零知识更弱是指它们可能会泄漏秘密消息的某些信息,但是还不足以找到消息。具体一点来说,对于“信息隐藏”属性,如果一个攻击者能够通过一个一次主动攻击发现秘密消息,她不是通过与证明者的交互来发现它的。而对于“信息不可分辨”属性,则意味着在攻击者方面看来,证据所用的私钥是不受约束的。也就是说有许多的私钥对应于一个公钥,证据仅仅传递了有这样一个私钥被使用了这样一个信息,但是用的是哪个私钥,并没有在证据传递的信息中出现。下面,我们集中考虑后一种属性,它能够提供一种三次传递识别方案并且对抗主动攻击。Okamoto 描述了一些schnorr和guillou-quisquater识别方案的变种,是基于RSA假设和离散对数子群中的素数阶的。 随机oracle模型:最近几年,随机oracle模型极大的推动了研究的发展,它能够用来证明高效方案的安全性,为设计者提供了一个有价值的工具。这个模型中理想化了一些具体的密码学模型,例如哈希函数被假设为真正的随机函数,有助于给某些加密方案和数字签名等提供安全性的证据。尽管在最近的报告中对于随机oracle模型采取了谨慎的态度,但是它仍然被普遍认为非常的有效被广泛的应用着。例如,在这个模型中被证明安全的OAPE加密

密码学知识点总结----考试复习专用

1 密码学分类 2 攻击分类 3 安全业务 4 算法输入输出位数 5 密钥分配管理 6 密钥分配 7 公钥分配 8 三重DES 9 杂凑的要求 10 欧几里得 11 本原根 12勒让德符号 13数字签名的执行方式 14强单向杂凑 15模运算性质 16 同余式 17 DES 18 AES 19 RSA 20 MD5 21费尔马定理 22 欧拉定理 23 中国剩余定理 24 四种工作模式 1 密码学分类 单钥体制双钥体制 2 攻击分类 唯密文攻击已知明文攻击选择明文攻击选择密文攻击 3 安全业务 认证业务保密业务完整性业务不可否认业务访问控制 4 算法输入输出位数 DES 64比特明文56比特密钥输出64比特密文 AES 128 192 256 比特 RSA 输入664比特 MD5 输入512比特分组128比特输出 5 密钥分配管理 两个用户A和B获得共享密钥的方法包括: ①密钥由A选取并通过物理手段发送给B。 ②密钥由第三方选取并通过物理手段发送给A和B。

③如果A、B事先已有一密钥,则其中一方选取新密钥后,用已有的密钥加密新密钥并发送给另一方。 ④如果A和B与第三方C分别有一保密信道,则C为A、B选取密钥后,分别在两个保密信道上发送给A、B 6 密钥分配 ①A向KDC发出会话密钥请求 ②KDC为A的请求发出应答。 ②A存储会话密钥,并向B转发EKB[KS‖IDA]。 ④B用会话密钥KS加密另一个一次性随机数N2,并将加密结果发送给A。 ⑤A以f(N2)作为对B的应答,其中f是对N2进行某种变换(例如加1)的函数,并将应答用会话密钥加密后发送给B。 7 公钥分配 ①用户A向公钥管理机构发送一个带时戳的消息,消息中有获取用户B的当前公钥的请求。 ②管理机构对A的请求作出应答,应答由一个消息表示,该消息由管理机构用自己的秘密钥SKAU加密,因此A能用管理机构的公开钥解密,并使A相信这个消息的确是来源于管理机构。 ③A用B的公开钥对一个消息加密后发往B,这个消息有两个数据项: 一是A的身份IDA,二是一个一次性随机数N1,用于惟一地标识这次业务。 ④B以相同方式从管理机构获取A的公开钥(与步骤①、②类似)。这时,A和B都已安全地得到了对方的公钥,所以可进行保密通信。然而,他们也许还希望有以下两步,以认证对方。 ⑤B用PKA对一个消息加密后发往A,该消息的数据项有A的一次性随机数N1和B产生的一个一次性随机数N2。因为只有B能解密③的消息,所以A收到的消息中的N1可使其相信通信的另一方的确是B。 ⑥A用B的公开钥对N2加密后返回给B,可使B相信通信的另一方的确是A。

密码学复习要点

密码学复习要点 第一章引言 密码学的基本概念: 1.什么是密码体制?(五大部分) 2.根据密码分析者所拥有的资源来看,对密码体制的攻击通常有哪 几种方式?其攻击强弱程度排序。(四种方式)。 3.密码体制的安全性的几个不同概念? 4.什么是公钥(非对称)密码体制?什么是(对称)私钥密码体制?第二章古典密码 1.欧几里得算法求公因子及求逆的过程。 2.单表代替密码(仿射密码)的加解密流程。 第三章Shannon 理论 1.熵的定义。(熵,条件熵,联合熵) 2.贝叶斯公式。 3.密码体制中各部分熵的计算。例3.1 第四章分组密码 1.Shannon提出的分组密码设计的两种基本方法。(扩散和混乱) 2.分组密码的两种基本结构:Feistel网络和SP网络.

3.DES和AES分组密码算法的基本结构。(主要参数,圈变换主要组 成部件) 4.分组密码的工作模式。 第五章公钥密码 1.欧拉定理,费马定理,利用欧拉定理或费马定理进行快速模幂运 算。例5.4 例5.7 2.RSA公钥密码体制的详细加解密流程及解密正确性证明。 3.ElGamal公钥加密体制的详细加解密流程。 4.椭圆曲线上点的计算(P+Q和2P)注意是有限域上的点。 第六章序列密码与移位寄存器 1.线性反馈移位寄存器的反馈函数、递推关系、联系多项式的定义。 2.给定联系多项式和初态,求输出序列及其周期。 3.求线性反馈移位寄存器序列的线性综合解。(B-M算法) 第七章数字签名 1.RSA数字签名算法及其签名有效性证明。(参考加密体制的证明) 2.ElGamal数字签名算法。 第八章Hash函数 1.Hash函数的抗强碰撞性(弱无碰撞性)和抗强碰撞性(强无碰撞 性) 2.MD5和SHA-1的一些基本结构和重要参数:消息摘要长度,消息 填充格式。

椭圆曲线加密算法

椭圆曲线加密算法 椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为 ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。 ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA 加密算法——提供相当的或更高等级的安全。ECC的另一个优势是可以定义群之间的双线性映射,基于Weil对或是Tate对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长 1.椭圆曲线 在数学上,椭圆曲线(英语:Elliptic curve,缩写为EC)为一代数曲线,被下列式子所定义 y2=x3+ax+b 其是无奇点的;亦即,其图形没有尖点或自相交。 满足此条件的a b满足:4a3+27b2≠0 图1 在基础上需要定义一个无穷远的点,将此点作为零点:此时椭圆曲线定义为:{(x,y)∈?2|y2=x3+ax+b,4a3+27b2≠0}∪{0} 在椭圆曲线中的群的运算律: 1. 所有的点都在椭圆曲线上 2. 0点作为群上的单元点即 P+0=P 3. P点关于X轴的对称点为P点的逆即 P+(?P)=0

4.对于位于同一条直线上的三个点P,Q,R.则有 P+Q+R=0 图2 P+Q+R=0(无限远点 P Q R三个点的位置是任意的,他们满足加法的结合律,因为这个群是一个阿贝尔群。 2.椭圆曲线加法 当P和Q不相等时(x P≠x Q) 由于是在阿贝尔群上可以将P+Q+R=0改写为P+Q=?R所以在椭圆曲线上的加法定义为P Q 两点加法为P,Q两点连线与曲线的交点R的关于X轴对称点?R 图2-3 P+Q=-R P Q两点的直线的斜率为: m=y P?y Q x P?x Q 这条线与曲线的交点为:R=(x R,y R) x R=m2?x P?x Q y R=y P+m(x R?x P) 因此(x P,y P)+(x Q,y Q)=(x R,?y R)如果在图上表示即为上述的P+Q=?R

密码学发展史

密码学发展简史 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 密码是什么?什么是密码学? 信息泛指人类社会传播的一切内容。人通过获得、识别自然界和社会的不同信息来区别不同事物,得以认识和改造世界。而密码便是对信息进行隐藏的一种手段。它既是一种工具又是一门艺术。 《破译者》一书说:“人类使用密码的历史几乎与使用文字的时间一样长。”因为自从有了文字以来,人们为了某种需要总是想方设法隐藏某些信息,以起到保证信息安全的目的。人们最早为了包通信的机密,通过一些图形或文字互相传达信息的密令。连闯荡江湖的侠士和被压迫起义者各自有一套秘密的黑道行话和地下联络的暗语。 而在今天信息泛滥的计算机世界里,如何保护好自己的重要信息不被泄露,保护自己的通讯不被窃听等一系列与信息有关的内容中,同样需要一个较好的密码协议来完成对信息的私密化!可以看出密码学在不同的时代里有着不同的诠释。 所以密码学是一门既古老又新兴的学科。 古典密码学 密码学大致可以分为五个时期: 1、第一阶段从古代到1949,这一时期称为古典密码时期,密码学可以 说是一门艺术,而不是一种学科。(发展缓慢) 2、第二阶段是从1949年到1976年,这一时期,由香浓发表的“保密系 统的信息理论”一文产生了信息论,信息论为对称密码系统建立了理论基础,从此密码学成为一门学科。 3、第三个阶段是从1976年到1984年。1976年Diffie和Hellman发表了 《密码学新方向》一文,从而导致了密码学上的一场革命。他们首次证明了发送端和接收端无密钥传输的保密通讯是可能的,从而开创了公钥密码学的新纪元。 4、第四个阶段是从1984年至今,1984年Goldwasser和Micali首次提出 了证明安全的思想。他们讲概率论中的东西引入到密码学,在计算复杂度理论假设下,安全性是可以证明的。 5、第五个阶段,这是我个人认为有必要写出来的——两字密码学时期: 当量子计算机大量的投入使用后,可以预见好多目前主流的加密算法将不再实用,新的方案新的体系将被人们发现利用。 公元前400年,斯巴达人就发明了“塞塔式密码”,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。这是最早的密码技术。

密码学入门知识

~密码学入门知识~ 最近推理小说看多了~感觉密码学挺有意思的~改天在图书馆里找找看有没有好玩的密码 学的书~~那个利用键盘的密码我没看懂~ 本少爷以后跟别人告白就用密码了~哈哈~ 一、几种常见密码形式: 1、栅栏易位法。 即把将要传递的信息中的字母交替排成上下两行,再将下面一行字母排在上面一行的后边,从而形成一段密码。 举例: TEOGSDYUTAENNHLNETAMSHVAED 解: 将字母分截开排成两行,如下 T E O G S D Y U T A E N N H L N E T A M S H V A E D 再将第二行字母分别放入第一行中,得到以下结果 THE LONGEST DAY MUST HAVE AN END. 课后小题:请破解以下密码Teieeemrynwetemryhyeoetewshwsnvraradhnhyartebcmohrie 2、恺撒移位密码。 也就是一种最简单的错位法,将字母表前移或者后错几位,例如: 明码表:ABCDEFGHIJKLMNOPQRSTUVWXYZ 密码表:DEFGHIJKLMNOPQRSTUVWXYZABC 这就形成了一个简单的密码表,如果我想写frzy(即明文),那么对照上面密码表编成密码也就是iucb(即密文)了。密码表可以自己选择移几位,移动的位数也就是密钥。 课后小题:请破解以下密码 dtzwkzyzwjijujsixtsdtzwiwjfrx

3、进制转换密码。 比如给你一堆数字,乍一看头晕晕的,你可以观察数字的规律,将其转换为10进制数字,然后按照每个数字在字母表中的排列顺序, 拼出正确字母。 举例:110 10010 11010 11001 解: 很明显,这些数字都是由1和0组成,那么你很快联想到什么?二进制数,是不是?嗯,那么就试着把这些数字转换成十进制试试,得到数字6 18 26 25,对应字母表,破解出明文为frzy,呵呵~ 课后小题:请破解以下密码 11 14 17 26 5 25 4、摩尔斯密码。 翻译不同,有时也叫摩尔密码。*表示滴,-表示哒,如下表所示比如滴滴哒就表示字母U,滴滴滴滴滴就表示数字5。另外请大家不要被滴哒的形式所困,我们实际出密码的时候,有可能转换为很多种形式,例如用0和1表示,迷惑你向二进制方向考虑,等等。摩尔斯是我们生活中非常常见的一种密码形式,例如电报就用的是这个哦。下次再看战争片,里面有发电报的,不妨自己试着破译一下电报 内容,看看导演是不是胡乱弄个密码蒙骗观众哈~由于这密码也比较简单,所以不出小题。 A *- B -*** C -*-* D -** E * F **-* G --* H **** I ** J *--- K -*- L *-** M -- N -* O --- P *--* Q --*- R *-* S *** T - U **- V ***- W *-- X -**- Y -*-- Z --** 数字 0 ----- 1 *---- 2 **--- 3 ***-- 4 ****- 5 ***** 6 -**** 7 --*** 8 ---** 9 ----* 常用标点 句号*-*-*- 逗号--**-- 问号**--** 长破折号-***- 连字符-****- 分数线-**-* 5、字母频率密码。 关于词频问题的密码,我在这里提供英文字母的出现频率给大家,其中数字全部是出现的百分比:

《密码学的新方向》阅读笔记

信息安全技术 研究性专题阅读报告 学院电子信息工程学院班级通信1306班 学号13272053 姓名卢文涛 指导老师毕红军

目录 Part Ⅰ文章简介 (3) 一、简介及摘要 (3) 二、常规密码体制 (3) 三、公钥密码体制 (4) 四、单向认证 (7) 五、问题的相关性和陷门 (7) 六、计算复杂度 (8) 七、历史回顾 (8) Part Ⅱ个人感想 (9)

《密码学的新方向》读书笔记 Part Ⅰ文章简介 一、简介及摘要 本文讨论了当代密码学的两个发展方向:加密和认证。随着远程通信的发展,特别是计算机网络的发展,密码学面临着两大难题:可靠的密钥传输通道问题,和如何提供与书面签名等效的认证体系。为了解决这些问题,文中提出了公钥密码算法和公钥分配算法,并且把公钥密码算法经过变换成为一个单向认证算法,来解决有效认证问题。此外还讨论了密码学中各种问题之间的相互关系,陷门问题,计算复杂性问题,最后回顾了密码学发展的历史。 二、常规密码体制 密码学问题包括加密和认证,而认证又可分为消息认证和身份认证。作者简单介绍了使用一般密码系统进行通信时信息的流动(如图一)。它包含三部分:发送方,接收方和攻击者。接着,作者介绍了算法的无条件安全与计算性安全,三种攻击法,即唯密文攻击、已知明文攻击、选择明文攻击。并给出了密码学的一个定义:研究解决保密和认证这两类安全问题的“数学”方法的学科。根据Shannon的理论,无条件安全的算法是存在的,但由于其密钥过长而不实用,这也是发展计算上安全的算法的原因。

三、公钥密码体制 公钥密码体制包括:公钥密码算法和公钥分配算法。公钥密码算法有利于实现认证机制,而公钥分配算法更接近于实现。 公钥密码算法是指定义在有限信息空间{M}上的,基于算法{kE}和{kD}的可逆变换: E k:{M} D K:{M} 算法必须满足下列条件: ⑴对任给K∈{K},kE是kD的互逆变换; ⑵对任意的K∈{K}和,用kE和kD进行加密和解密是容易计算的; ⑶对几乎所有的K∈{K},从kE推出kD在计算上是不可行的; ⑷对任意的K∈{K},从K计算kE和kD是可行的性质; ⑶保证了我们可以公开而不损害的安全性,这样才保证了公钥密码算法的安全性。因此,公钥密码算法可以分为两部分:加密算法和解密算法。利用加密算法推导解密算法是计算不可行的,反之亦然。 ⑷确保了在对加密和解密函数没有限制的条件下,计算这两个函

密码学的发展历史简介

密码学的发展简史 中国科学院研究生院信息安全国家重点实验室聂旭云学号:2004 密码学是一门年轻又古老的学科,它有着悠久而奇妙的历史。它用于保护军事和外交通信可追溯到几千年前。这几千年来,密码学一直在不断地向前发展。而随着当今信息时代的高速发展,密码学的作用也越来越显得重要。它已不仅仅局限于使用在军事、政治和外交方面,而更多的是与人们的生活息息相关:如人们在进行网上购物,与他人交流,使用信用卡进行匿名投票等等,都需要密码学的知识来保护人们的个人信息和隐私。现在我们就来简单的回顾一下密码学的历史。 密码学的发展历史大致可划分为三个阶段: 第一个阶段为从古代到1949年。这一时期可看作是科学密码学的前夜时期,这段时间的密码技术可以说是一种艺术,而不是一门科学。密码学专家常常是凭直觉和信念来进行密码设计和分析,而不是推理证明。这一个阶段使用的一些密码体制为古典密码体制,大多数都比较简单而且容易破译,但这些密码的设计原理和分析方法对于理解、设计和分析现代密码是有帮助的。这一阶段密码主要应用于军事、政治和外交。 最早的古典密码体制主要有单表代换密码体制和多表代换密码体制。这是古典密码中的两种重要体制,曾被广泛地使用过。单表代换的破译十分简单,因为在单表代换下,除了字母名称改变以外,字母的频度、重复字母模式、字母结合方式等统计特性均未发生改变,依靠这些不变的统计特性就能破译单表代换。相对单表代换来说,多表代换密码的破译要难得多。多表代换大约是在1467年左右由佛罗伦萨的建筑师Alberti发明的。多表代换密码又分为非周期多表代换密码和周期多表代换密码。非周期多表代换密码,对每个明文字母都采用不同的代换表(或密钥),称作一次一密密码,这是一种在理论上唯一不可破的密码。这种密码可以完全隐蔽明文的特点,但由于需要的密钥量和明文消息长度相同而难于广泛使用。为了减少密钥量,在实际应用当中多采用周期多表代换密码。在

密码学的新方向读后感

密码学的新方向读后感 密码技术是保障信息安全的核心技术。密码技术在古代就已经得到应用,但仅限于外交和军事等重要领域。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。密码技术不仅能够保证机密性信息的加密,而且完成数字签名、身份验证、系统安全等功能。所以,使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。 二、密码学基础及新方向提出的前提 密码学(Cryptography)包括密码编码学和密码分析学。密码体制设计是密码编码学的主要内容,密码体制的破译是密码分析学的主要内容,密码编码技术和密码分析技术是相互依相互支持、密不可分的两个方面。 密码体制有对称密钥密码体制和非对称密钥密码体制。对称密钥密码体制要求加密解密双方拥有相同的密钥。而非对称密钥密码体制是加密解密双方拥有不相同的密钥,在不知道陷门信息的情况下,加密密钥和解密密钥是不能相互算出的。 然而密码学不仅仅只包含编码与破译,而且包括安全管理、安全协议设计、散列函数等内容。不仅如此,密码学的进一步发展,涌现了大量的新技术和新概念,如零知识

证明技术、盲签名、量子密码技术、混沌密码等。 密码学还有许许多多这样的问题。当前,密码学发展面临着挑战和机遇。计算机网络通信技术的发展和信息时代的到来,给密码学提供了前所未有的发展机遇。在密码理论、密码技术、密码保障、密码管理等方面进行创造性思维,去开辟密码学发展的新纪元才是我们的追求。 三、密码学的新方向 对称密钥密码体制中,加密运算与解密运算使用同样的密钥。这种体制所使用的加密算法比较简单,而且高效快速、密钥简短、破译困难,但是存在着密钥传送和保管的问题。例如:甲方与乙方通讯,用同一个密钥加密与解密。首先,将密钥分发出去是一个难题,在不安全的网络上分发密钥显然是不合适的;另外,如果甲方和乙方之间任何一人将密钥泄露,那么大家都要重新启用新的密钥。 通常,使用的加密算法比较简便高效,密钥简短,破译极其困难。但是,在公开的计算机网络上安全地传送和保管密钥是一个严峻的问题。 1976年,Diffie和Hellman为解决密钥管理问题,在他们的奠基性的工作”密码学的新方向”一文中,提出一种密钥交换协议,允许在不安全的媒体上通讯双方交换信息,安全地达成一致的密钥,它是基于离散指数加密算法的新方案:交易双方仍然需要协商密钥,但离散指数算法的妙处在

《现代密码学》教学大纲

《现代密码学》教学大纲 课程编号:CE6209 课程名称:现代密码学英文名称:Modern Cryptography 学分/学时:2/32 课程性质:学院选修 适用专业:网络工程(含卓越班) 建议开设学期:5 先修课程:离散数学、信息安全数学基础、概率论、C语言等 开课单位:网络与信息安全学院 一、课程的教学目标与任务 本课程是网络与信息安全学院网络工程专业的学院选修课。 本课程的目标是全面介绍现代密码学的基本概念、基础理论和基本核心部件;研究和分析密码算法和安全协议的设计原理和思想;了解现代密码学的理论分析方法及技术。通过本课程的学习使学生系统地掌握密码学的基本概念和原理,掌握密码技术应用的基本要求,了解现代密码学的发展方向和新兴密码技术;具备进行密码学理论研究的基础知识;具备在信息安全中分析和应用密码技术的能力。 本课程以理论教学为主,并在各个环节注意加强学生实践能力的培养。注重密码学部件的正确应用,实践环节将针对各种不安全的密码协议进行分析,理论和实践攻击。通过本课程的学习,学生将全面了解密码技术的正确应用,并在使用中规避不安全的密码协议设计,分析和评估不同场景下密码部件应用的安全性,跟踪前沿的密码技术、标准,能充分运用并掌握先进的密码设计原理、分析方法、应用场景,为学生从事网络安全相关工作打下坚实的基础。 二、课程具体内容及基本要求 (一)密码学基础(4学时) 主要包括密码学基本概念,用途和发展历史,介绍古典密码学的一些简单实际应用和初等密码分析技术,从信息论角度分析密码安全。 1. 基本要求 (1)保密学的基本概念; (2)密码体制分类;

(3)古典密码:掌握凯撒密码,维吉尼亚密码等古典密码的原理、实现、应用和攻击; (4)初等密码分析:掌握密码分析的初等方法; 2. 重点、难点 重点:古典密码的应用和安全性分析,离散概率的各种定义和分析方法。 难点:古典密码的安全性分析。 3. 作业及课外学习要求: (1)掌握单钥体制与双钥体制的区别以及双钥体制产生的原因; (2)掌握古典密码中代换密码的工作原理; (3)分析维吉尼亚密码,掌握初等密码分析方法的分类以及分析方法具体细节。 (二)单钥体制——分组密码(2学时) 主要包括分组密码的基本概念、组件;DES与Feistel结构;穷举搜索攻击,差分密码分析和线性密码分析;分组密码的运行模式。 1. 基本要求 (1)熟悉分组密码的基本概念、了解代换和置换等基本组件及分组密码发展现状; (2)熟悉DES算法和Feistel结构; (3)了解分组密码的攻击方法:线性攻击,差分攻击,穷举搜索等; (4)了解分组密码的四种运算模式:ECB,CBC,CFB,OFB; 2. 重点、难点 重点:Feistel结构;DES算法结构和S盒。 难点:Feistel网络结构。 3. 作业及课外学习要求: (1)完成课堂练习; (2)DES算法的编程实现。 (三)双钥密码体制(6学时) 主要包括公钥密码的基本概念和原理,包括单向函数、陷门函数、密码学困难问题、RSA密码体制、Rabin密码体制、ElGamal密码体制及相关安全性分析。 1. 基本要求 (1)掌握公钥密码的基本概念原理,包括单向函数、陷门函数; (2)掌握密码学困难问题的有关概念,包含大整数分解困难问题和离散对数困难问题; (3)掌握Diffle-Hellman密钥交换协议及其安全性分析。

密码学入门知识~发现密码学挺有意思啊

最近推理小说看多了~感觉密码学挺有意思的~改天在图书馆里找找看有没有好玩的密码 学的书~~那个利用键盘的密码我没看懂~ 本少爷以后跟别人告白就用密码了~哈哈~ 一、几种常见密码形式: 1、栅栏易位法。 即把将要传递的信息中的字母交替排成上下两行,再将下面一行字母排在上面一行的后边,从而形成一段密码。 举例: TEOGSDYUTAENNHLNETAMSHVAED 解: 将字母分截开排成两行,如下 T E O G S D Y U T A E N N H L N E T A M S H V A E D 再将第二行字母分别放入第一行中,得到以下结果 THE LONGEST DAY MUST HAVE AN END. 课后小题:请破解以下密码Teieeemrynwetemryhyeoetewshwsnvraradhnhyartebcmohrie 2、恺撒移位密码。 也就是一种最简单的错位法,将字母表前移或者后错几位,例如: 明码表:ABCDEFGHIJKLMNOPQRSTUVWXYZ 密码表:DEFGHIJKLMNOPQRSTUVWXYZABC 这就形成了一个简单的密码表,如果我想写frzy(即明文),那么对照上面密码表编成密码也就是iucb(即密文)了。密码表可以自己选择移几位,移动的位数也就是密钥。 课后小题:请破解以下密码 dtzwkzyzwjijujsixtsdtzwiwjfrx 3、进制转换密码。 比如给你一堆数字,乍一看头晕晕的,你可以观察数字的规律,将其转换为10进制数字,

然后按照每个数字在字母表中的排列顺序, 拼出正确字母。 举例:110 10010 11010 11001 解: 很明显,这些数字都是由1和0组成,那么你很快联想到什么?二进制数,是不是?嗯,那么就试着把这些数字转换成十进制试试,得到数字6 18 26 25,对应字母表,破解出明文为frzy,呵呵~ 课后小题:请破解以下密码 11 14 17 26 5 25 4、摩尔斯密码。 翻译不同,有时也叫摩尔密码。*表示滴,-表示哒,如下表所示比如滴滴哒就表示字母U,滴滴滴滴滴就表示数字5。另外请大家不要被滴哒的形式所困,我们实际出密码的时候,有可能转换为很多种形式,例如用0和1表示,迷惑你向二进制方向考虑,等等。摩尔斯是我们生活中非常常见的一种密码形式,例如电报就用的是这个哦。下次再看战争片,里面有发电报的,不妨自己试着破译一下电报 内容,看看导演是不是胡乱弄个密码蒙骗观众哈~由于这密码也比较简单,所以不出小题。 A *- B -*** C -*-* D -** E * F **-* G --* H **** I ** J *--- K -*- L *-** M -- N -* O --- P *--* Q --*- R *-* S *** T - U **- V ***- W *-- X -**- Y -*-- Z --** 数字 0 ----- 1 *---- 2 **--- 3 ***-- 4 ****- 5 ***** 6 -**** 7 --*** 8 ---** 9 ----* 常用标点 句号*-*-*- 逗号--**-- 问号**--** 长破折号-***- 连字符-****- 分数线-**-* 5、字母频率密码。 关于词频问题的密码,我在这里提供英文字母的出现频率给大家,其中数字全部是出现的百分比: a 8.2 b 1.5 c 2.8 d 4.3 e 12.7 f 2.2 g 2.0 h 6.1 i 7.0 j 0.2 k 0.8 l 4.0 m 2.4 n 6.7 o 7.5 p 1.9

密码学复习提纲

第一章引言 1.信息安全面临的威胁,被动攻击与主动攻击,入侵者和病毒? 2.5种安全业务? 3.信息安全模型(图1-3),信息安全的两个基本成分,安全通信网络的4个方面? 4.信息系统的保护模型,两道防线? 5.信息安全的3个层次:系统安全,数据安全,内容安全? 6.保密通信系统模型,密码分析,密码分析学? 7.保密通信系统应该满足的要求? 8.密码体制分类:单钥体制,双钥体制,流密码,分组密码? 9.对密码系统的4种攻击类型? 10.单表代换密码? 11.多表代换密码? 12.课后习题:1,2,3? 第二章流密码 1.同步流密码,自同步流密码,同步流密码的加密器构成? 2.有限自动状态机? 3.密钥流产生器的结构p15? 4.线性反馈寄存器,反馈函数,M序列 5.特征多项式,生成函数,特征多项式的阶,不可约多项式,本原多项式 6.定理2-1到2-6 7.M序列的伪随机性,定理2-7 8.Geffe序列生成器? 9.JK触发器? 10.Pless生成器? 11.钟控序列生成器? 12.课后习题:1,3,4,8,9?, 第三章分组密码体制 1.分组密码设计应该满足的要求?, 2.代换,扩散,混淆?, 3.Feistel密码结构? 4.DES, 二重DES, 三重DES? 5.分组密码的运行模式:ECB, CBC, CFB, OFB, (图3-10到图3-13)? 6.AES算法? 第四章公钥密码 1.密码学常用的数学知识(密码学学习用到的部分一定要掌握)? 2.公钥密码体制原理(图4-1到4-3)? 3.公钥密码算法应满足的要求,陷门单向函数? 4.RSA算法? 5.背包密码体制? 6.Rabin密码体制? 7.椭圆曲线密码体制?

相关主题
文本预览
相关文档 最新文档