当前位置:文档之家› 自动控制理论实验指导书

自动控制理论实验指导书

自动控制理论实验指导书
自动控制理论实验指导书

自动控制理论实验指导书

目录

实验一典型环节与典型系统的模拟 (1)

实验二二阶系统阶跃响应特性 (6)

实验三自动控制系统稳定性实验 (10)

实验四线性系统动态特性的研究 (12)

实验五自动控制系统静态误差实验 (13)

实验六控制系统的品质及校正装置的应用(设计性) (15)

实验七控制系统频率特性仿真研究 (17)

实验八非线性系统运动特性的研究 (18)

实验九非线性系统的计算机仿真 (20)

附录 KJ82-3型自动控制系统模拟机可做模拟运算电路举例 (21)

实验一 典型环节与典型系统的模拟

一.实验目的

1.观察典型环节阶跃响应曲线,定性了解参数变化对典型环节动特性的影响;

2.观测不同阶数线性系统对阶跃输入信号的瞬态响应,了解参数变化对它的影响。

二.实验设备和仪器

1.KJ82-3型自动控制系统模拟机一台

2.Tektronix TDS 1002数字存储示波器一台

3.万用表一块

三.实验内容及步骤

(一)典型环节的阶跃响应

1.实验步骤:

(1)开启电源前先将所有运算放大器接成比例状态,拔去不用的导线。

(2)闭合电源后检查供电是否正常。分别将各运算放大器调零,并用示波器观察调整好方波信号。

(3)断开电源后按图接好线,由信号源引出方波信号接到各环节输入端。

(4)闭合电源,调节有关旋钮,观察阶跃响应波形,并利用表1.1-1.6记录之。

2.实验内容: (1)比例调节器

U s c

A 1

100K

50K

W

表1.1

(2

U s c

A 1

100K

C

改变C 时保护输入信号不变

表1.2

sc

U A 1

100K

50K

R

C

表1.3

U s c K

5K

1μ0K

50A 5

R 0

10

表1.4

(5)比例积分

U s c A

100K

C R

表1.5

(6)比例、积分、微分

U s c

100K

C=3.3μ200K

50K

1M 5K 5

A 1μ

(二)典型二阶系统模拟

1.实验线路:

sc

2.方框图:

α

T S

-11K -3

K T S -+1

22+U sr U sc

-

U S U S G S K T S K T S T S K T S K K T T S T S K T T K K S T K K S T S TS sc sr ()()()==??

++??+=

++=

++=

++213

213232

12213123221

32

221111

1

11

21

αααα

ααξ

其中:T T T K K =

12

32

α 时间常数;

ξα=

1

21322

T K T K 为阻尼比;

ωn T

=

1

为无阻尼自然频率(角频率:弧度/秒)。 f n n

=

ωπ

2 为阻尼自振频率(单位Hz )。 3.实验步骤:

(1)关上电源,按上图接线,经教师检查后,再合电源,由调零转入工作。 (2)在T T 1201==.秒(F C μ11=,C F 201=.μ)3K =10附近改变增益系数α,观察方波输入作用下之响应曲线,利用表1.7记录之。

(3)让F C μ11=,F C μ12=,1T =0.1秒,2T =1秒,3K =10改变增益系数α,观察方波输入作用下之响应曲线,利用表1.7记录之。

(三)三阶系统的模拟

1.接线图:

sc

2.方框图:

U sc

T S

11αT S +1

K 22K T S 4

41

++

-

U sr

G S U S U S aS bS cS sc sr ()()()=

=

+++1

1

32 式中:α

4421K T

T T a =;b T T T K =+1244()α;c T K =11α

3.实验步骤:

(1)按图接线,先取X C =0.1μ,缓缓改变α的值,观察并记录阶跃响应曲线(用表1.8记录)。

(2)取X C =1μ,重复上述实验过程。

四.思考题

1.积分环节和惯性环节主要差别是什么?什么条件下惯性环节可视为积分环节?

2.惯性环节在什么条件下可近似为比例环节?

3.为什么典型二阶系统实验中加入比例环节?三阶系统是否要加?

4.二阶系统在什么情况下不稳定,怎样构成振荡环节?

五.实验报告要求

1.写出实验各环节的结构图和传递函数,推出理想阶跃响应曲线。

2.实测各环节不同参数下输出波形,认真填写表1.1至表1.8,并与理想曲线对照。

3.分析实验中出现的现象。

实验二 二阶系统阶跃响应特性

一.实验目的

1.学习二阶系统阶跃响应特性测试方法。

2.了解系统参数对阶跃响应特性的影响。

二.实验设备和仪器

1.KJ82-3型自动控制系统模拟机一台

2.Tektronix TDS 1002数字存储示波器一台

3.万用表一块

三.实验线路

四.方框图

K 3

T S

11T S 21K 4α

+U sr +

-

-

U sc

11T S

3

K 234T S K K +α

U sr U sc

+

-

G S Usc S Usr S K T S T S K K K K T T K S K T S T S TS ()()

()()=

=++=

++=

++31234331232

412211

21

ααξ

自动控制理论实验指导书

ξαα

=

=K T T K T T K 4141

2

322

例:若T T T 120== 则T T K =

03

当 C C F 121==μ T 001=.秒,K 310=

T =00316.

ωn =316.,f Hz =5。

当 C C F 121==μ T 001=.秒,K 31= T =01.,

ωn =10,Hz f 6.1=。

3321422K K T T K ααξ== (K 41=,T T 12=)

当 K 310=时,αξ58.1=; 而 K 31=时,则ξα=052.

根据T 及ξ的值则依下述公式可求其它参量。

无阻尼自然角频率:ωn T =1

无阻尼自然频率: f T =1

阻尼自然频率: ωωξd n =-12 衰减系数: σωξ=n

超调量: M e P =?--ξπ

ξ12

100%

峰值时间: t P d =π

ω

调整时间: t S =3

σ

阻尼振荡周期: d

T t ωπ

2=

五.实验步骤

1.将各运放接成比例状态(反馈电阻调到最大),仔细调零,(用万用表直流毫伏档或示波器直流电平档)。

2.调整好方波信号源,频率调到1Z H 以下。

3.断开电源按图接线,经检查无误后再闭合电源,按以下步骤进行实验记录: (1)令1C =2C =1μ,4K =1,3K =10,保持输入方波幅值不变,依表2.1所列α的变化值逐次改变α,记录输出波形,并与理论值比较。

1243)(t U SC 的瞬态响应曲线并与理论曲线比较。

t

ms ()

Usc t ()

六.实验分析及思考

1.结合实验数据进一步从物理意义上分析改变系统参数 对M

P ,t

S

等系统瞬态响

参数的影响。

2.为满足一般控制系统瞬态响应特性的性能指标,各参量一般取值范围。

3.通过实验总结出观测一个实验二阶系统阶跃响应的方法。

七.实验报告要求

1.根据理论计算,认真填写表

2.1中各项数据。

2.根据实验观测,认真绘制表2.1中输出波形,特别注意M

P ,

P

t,t

S

的变化。

3.绘制实验步骤(2)所要求的二阶系统瞬态响应曲线。

实验三 自动控制系统稳定性实验

一.实验目的

1.观察线性系统稳定和不稳定的运动状态,验证理论上的稳定判别的正确性。

2.研究系统的开环放大系数K 对稳定性的影响。

3.了解系统时间常数对稳定性的影响。

二.实验设备和仪器

1.KJ82-3型自动控制系统模拟机一台

2.Tektronix TDS 1002数字存储示波器一台

3.万用表一块

三.实验内容

(一)系统稳定性观察,验证理论判据。

1.实验线路

R M α

R 11R 12

R 13R 21

R 22

R 31

R 32

C 1C 2C 3A 1

A 2

A 3

K 100K 100K

100K

100

图3.1

2.

在1A R M 逐步变化,观察并记录各组参数时系统稳定性变化,特别是系统由稳定到出现自持振荡的α值。

3.按上面的线路,依下表调整参数(

A 接成积分器)

重复2(二)测系统临界比例系数,观察该系数对稳定性影响。

1.实验线路结构图

+-

++T S K T S n

n R S ()C S ()K 1111α

图3.2

2.对于图

3.2所示的系统,当n =4,5,6,7时,分别测出其临界开环比例系数,并与理论值比较。建议T 选0.01-0.5秒,K 选0.5-10。

K 临测试方法:

设计记录表及接线图,先取较大K 值(即将衰减电位器系数α值于1)使系统出现饱和的等幅自持振荡,然后缓缓减小α的值,直到出现很慢的衰减振荡时,记下此时的α值,即可求得K 临。

3.当n =4时,观察K 由小到大变化时,系统动态响应的变化。

(三)研究系统中各时间常数的比例对稳定性的影响。

对于一个

G S K

a T S TS S T a ()()()()=

+++111开

的系统,

建议选T =0.5秒,测出当a =1,2,5时系统的K 临和自振频率。

四.实验准备及要求

1.对实验内容(一)的实验线路,分别用代数稳定判据和频率分析法判据,判定其稳定性,实验结果验证。

2.对实验内容(二)所给结构图,分别画出模拟实验图,选择好各组参数,拟定实验步骤,分别计算K 临。

3.对实验内容(三)给的开环传递函数,选择设计各项参数,拟定实验步骤。

4.设计各项实验内容中的记录表格。

五.实验报告要求

1.画出各项实验的模拟实验线路图。

2.各项实验参数选择方案。

3.按各选择方案进行预先理论计算,包括计算中有关公式及运算结果。

4.实验中数据整理,实验现象记录。

5.实验结果分析得出结论。

6.实验中出现问题,体会及建议。

六.思考题

1.三阶系统的各时间常数怎样组合时系统稳定性最好?何种组合时最差?

2.已知三阶系统各时间常数,如何估计其自振频率?

实验四线性系统动态特性的研究

一.实验目的

观察并熟悉线性系统在不同稳定储备的条件下动态过程的特征,验证经验公式的适用性。

二.实验内容

1.对于传递函数为

G S

K T S

S T S T S T S

()

()

()()() =

+

+++

4

123

1

111

的系统,排出模拟运算图,选择合适的K,使系统稳定储备如下表所示,分别计算和描

1234

2.测出该系统的临界K值和自振频率,与理论值比较。

三.预习要求

1.复习有关内容,画出系统伯德图。

2.排出模拟实验图,拟定实验步骤。

四.实验报告要求

1.画出实验的模拟实验线路图。

2.各项实验参数选择方案。

3.按各选择方案进行预先理论计算,包括计算中有关公式及运算结果。

4.实验中数据整理,实验现象记录。

5.实验结果分析得出结论。

6.实验中出现问题,体会及建议。

实验五 自动控制系统静态误差实验

一.实验目的

分析O 型、I 型、II 型系统在三种不同典型输入下的静态误差,验证理论上的结论。

二.实验原理与线路

1.实验线路

图5.1 (○型系统)

图5.2 (Ⅰ型系统)

图5.3 (Ⅱ型系统)

S )

S )

S )

2.典型输入信号

(1)方波信号S 1 0.4s

由信号源直接取得

(2)斜坡信号S 2

100K

20K

1

S 2

S 2

A 10μ

(3)加速度输入信号S 3

S 2

50K

200K

3

S 33.μ

说明:由于运算放大器非理想特性,存在积分源移,故采用近似方式取代理想信号:即用

111

TS S

+≈ ;

11122()TS S +≈ 3.校正网络

20K

100K

047.μ

三.实验内容

1.定性观察三种系统在三种不同典型输入时的误差,记录a 点波形。

2.改变O 型系统的放大系数(即改变电位器的衰减系数α值)观察在S 1信号输入时的静态误差有何变化。

四.预习要求

1.复习有关控制系统误差的理论,设计记录波形的表格。

2.写出实验内容所给三种系统的结构图。

3.估计在a 点测量误差时的波形。

五.实验报告要求

1.按设计的表格画好实验中各种波形图。

2.将实验结果与理论分析比较,分析产生实验误差的原因,讨论实验中出现的现象。

六.思考问题

在取得不同典型输入信号波形的线路中,在什么情况下可以用

11TS +近似 1

S

;用112()TS +近似1

2

S ?

实验六控制系统的品质及校正装置的应用(设计性)

一.实验目的

利用伯德图对给定非稳定系统(或动态特性不良的系统)设计校正装置,并验证设计的正确性。

二.实验预习和准备

1.对本实验所给电路,分别推出开环传递函数。

2.画出各系统的伯德图,根据伯德图分析讨论系统稳定性,选择校正方案,设计校正装置,制定实验计划(包括实验步骤、记录表格等)。

三.实验设备和仪器

1.KJ82-3型自动控制系统模拟机一台

2.Tektronix TDS 1002数字存储示波器一台

3.万用表一块

四.实验线路

图6.1

图6.2

五.实验步骤

1.按所给实验电路图接线,先不加校正,调节系统开环放大倍数,使系统处于临界振荡。

2.加入自己设计的校正装置,观察系统输出波形的变化,与理论计算比较。

六.实验报告要求

1.写明设计过程,画出实验电路图校正前后的伯德图。

2.按设计的记录表格画出校正前后系统阶跃输入响应曲线,分析系统稳定性与品质,与实验结果对照。

3.总结实验体会。

实验七 控制系统频率特性仿真研究

一.实验目的

1.熟悉MATLAB 的一些基本操作。

2.掌握使用MATLAB 绘制系统的频率特性图,如绘制伯德图、奈奎斯特曲线。

3.利用频率特性图分析闭环系统的稳定性,并用响应曲线验证。

二.实验内容

1.典型二阶系统

2

222)(n

n n

s s s G ωξωω++= 绘制出ξ取不同值时的伯德图。

2.开环系统

)

2)(5(50

)(-+=s s s G

绘制出系统的奈奎斯特曲线,并判别闭环系统的稳定性,最后求出闭环系统的单位冲激响应。

三.实验步骤

1.熟悉MATLAB 的一些基本操作。

2.熟悉MATLAB 编程语言中与实验相关的函数的使用。

3.打开M 文件(file M -),在命令窗口(Command Window )中输入编写的m 语句程序。

4.打开自动生成的图形窗口(Figure )查看频率特性图及单位冲激响应。

四.实验报告要求

1.使用MATLAB 语言编制仿真程序。

2.在坐标纸上画出图形窗口(Figure )显示的频率特性图及单位冲激响应。

3.分析仿真结果。

实验八非线性系统运动特性的研究

一.实验目的

1.了解非线性环节对控制系统的影响。

2.观察非线性系统的自持振荡。

3.学习和理解描述函数分析法。

二.实验内容

(一)死区特性对控制系统的影响。

)

)

图8.1

1.如图,先不加非线性环节(A

7

单元接成反相器)逐步加大K值,观察系统动特性变化。

2.加进非线性环节,使K值由小到大逐步变化,观察并记录系统动特性变化,与不加非线性环节时比较。

(二)饱和特性对线性系统的影响。

某非线性系统

u sr

N

L

u

sc

+

-G j()

ω

R

Y

R12

R

21

R

51

R52

R

61

R62

R11

R

73

71

R42

R43R

41

R32

R

33

R

31

R74

75

R76

R

77

R72

A

1

A

2

A

3

A

4

A

5

A

6

A

7

C2

C5

C6

C4C3

D1

D2

K

50

K

100K

330

K

1

TDS1002

v

10

+

v

10

-

K

15.

033

.μ01.μ

33.μ

K

50

K

50

K

50

K

50

K

50

K

50

K

100

K

100

K

100

K

100

K

K

1

33.μ

扰动

图8.2

注:33K

1.按所给模拟运算图,分别画出三个方案的频率特性曲线,并依此判断系统的稳定性,若不稳定,计算系统自持振荡的频率及振幅。

2.在学习机上接模拟运算图接线,分别实现三个方案,对于出现自持振荡,记录振荡的频率和振幅并记录各运放输出端的波形(画出草图即可)。

3.对于稳定的方案,改变输入扰动信号的幅度(例如V1,V

3,V

5,V

10)分别记

录系统输出端M

P 及t

S

三.实验预习要求

1.实验前复习条件稳定系统的开环比例系数与稳定性关系,典型非线性系统的描述函数以及如何应用描述函数法分析系统。

2.画好频率特性曲线,完成有关计算。

3.拟定实验步骤及记录表格。

四.实验报告要求

1.按实验内容要求,整理实验中记录的数据及图形,并按自己设计的表格填写。

2.对比理论计算与实验结果,分析对比结果。

3.总结如何用描述函数法分析非线性系统。

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

《自动控制原理》实验指导书

自动控制原理实验指导书 池州学院 机械与电子工程系

目录 实验一、典型线性环节的模拟 (1) 实验二、二阶系统的阶跃响应 (5) 实验三、根轨迹实验 (7) 实验四、频率特性实验 (10) 实验五、控制系统设计与校正实验 ......................................... 错误!未定义书签。实验六、控制系统设计与校正计算机仿真实验...................... 错误!未定义书签。实验七、采样控制系统实验 ..................................................... 错误!未定义书签。实验八、典型非线性环节模拟 ................................................. 错误!未定义书签。实验九、非线性控制系统分析 ................................................. 错误!未定义书签。实验十、非线性系统的相平面法 ............................................. 错误!未定义书签。

实验一、典型线性环节的模拟 一、实验目的: 1、学习典型线性环节的模拟方法。 2、研究电阻、电容参数对典型线性环节阶跃响应的影响。 二、实验设备: 1、XMN-2型实验箱; 2、LZ2系列函数记录仪; 3、万用表。 三、实验内容: 1、比例环节: r(t) 方块图模拟电路 图中: i f P R R K= 分别求取R i=1M,R f=510K,(K P=0.5); R i=1M,R f=1M,(K P=1); R i=510K,R f=1M,(K P=2); 时的阶跃响应曲线。 2、积分环节: r(t) 方块图模拟电路图中:T i=R i C f 分别求取R i=1M,C f=1μ,(T i=1s); R i=1M,C f=4.7μ,(T i=4.7s););

自动化控制实验报告(DOC 43页)

自动化控制实验报告(DOC 43页)

本科生实验报告 实验课程自动控制原理 学院名称 专业名称电气工程及其自动化 学生姓名 学生学号2013 指导教师 实验地点6C901 实验成绩 二〇一五年四月——二〇一五年五月

线性系统的时域分析 实验一(3.1.1)典型环节的模拟研究 一. 实验目的 1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式 2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响 二.典型环节的结构图及传递函数 方 框 图 传递函数 比例 (P ) K (S) U (S) U (S)G i O == 积分 (I ) TS 1 (S)U (S)U (S)G i O == 比例积分 (PI ) )TS 1 1(K (S)U (S)U (S)G i O +== 比例微分 (PD ) )TS 1(K (S) U (S) U (S)G i O +== 惯性 TS 1K (S)U (S)U (S)G i O += =

环节 (T) 比例 积分 微分 (PI D) S T K S T K K (S) U (S) U (S) G d p i p p i O + + = = 三.实验内容及步骤 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。 改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 传递函数: 1 (S) (S) (S) R R K K U U G i O= = = ;单位阶跃响应:

混凝土结构实验指导书及实验报告(学生用)

土木工程学院 《混凝土结构设计基本原理》实验指导书 及实验报告 适用专业:土木工程周淼 编 班级::学 号: 理工大学 2018 年9 月

实验一钢筋混凝土梁受弯性能试验 一、实验目的 1.了解适筋梁的受力过程和破坏特征; 2.验证钢筋混凝土受弯构件正截面强度理论和计算公式; 3.掌握钢筋混凝土受弯构件的实验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术 和有关仪器的使用方法; 4.培养学生对钢筋混凝土基本构件的初步实验分析能力。 二、基本原理当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段:第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。梁开裂标志着第一阶段的结束。此时,梁纯弯段截面承担的弯矩M cr称为开裂弯矩。第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力急增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。压区混凝土中压应力也由线性分布转化为非线性分布。当受拉钢筋屈服时标志着第二阶段的结束。此时梁纯弯段截面承担的弯矩M y称为屈服弯矩。第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。此时,梁承担的弯矩M u 称为极限弯矩。适筋梁的破坏始于纵筋屈服,终于混凝土压碎。整个过程要经历相当大的变形,破坏前有明显的预兆。这种破坏称为适筋破坏,属于延性破坏。 三、试验装置

《自动控制原理 》实验讲义

《自动控制原理》 实验讲义 目录 实验一典型环节的时域响应 (2) 实验二典型系统的时域响应和稳定性分析 (12) 实验三线性系统的频域响应分析 (17) 实验四线性系统的校正 (23) 实验五线性系统的根轨迹分析 (26) 安徽大学电气工程与自动化学院 2010年9月 张媛媛编写

实验一典型环节的时域响应 时域分析法是在时间域内研究控制系统在各种典型信号的作用下系统响应(或输出)随时间变化规律的方法。因为它是直接在时间域中对系统进行分析的方法,所以具有直观、准确的优点,并且可以提供系统响应的全部信息。下面就实验中将要遇到的一些概念做以简单介绍: 1、稳态分量和暂态分量:对于任何一个控制系统来说,它的微分方程的解,总是包括两部分:暂态分量和稳态分量。稳态分量反映了系统的稳态指标或误差,而暂态分量则提供了系统在过渡过程中的各项动态性能信息。 2、稳态性能和暂态性能:稳态性能是指稳态误差,通常是在阶跃函数、斜坡函数或加速度函数作用下进行测定或计算的。若时间趋于无穷时,系统的输出量不等于输入量或输入量的确定函数,则系统存在稳态误差。稳态误差是对系统控制精度或抗扰动能力的一种度量。暂态性能又称动态性能,指稳定系统在单位阶跃函数作用下,动态过程随时间t的变化规律的指标。其动态性能指标通常为: ? 延迟时间td:指响应曲线第一次达到其终值一半所需的时间。 ? 上升时间tr:指响应从终值10%上升到终值90%所需的时间。对于有振荡的系统,亦可定义为响应从第一次上升到终值所需的时间。上升时间是系统响应速度的一种度量,上升时间越短,响应速度越快。 ? 峰值时间tp:指响应超过其终值到达第一个峰值所需的时间。 ? 调节时间ts:指响应到达并保持在终值±5%或±2%内所需的时间。 ? 超调量δ%:指响应的最大偏离量 h (tp) 与终值h (∞) 之差的百分比。 上述五个动态性能指标基本上可以体现系统动态过程的特征。在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。通常,用tr或tp评价系统的响应速度;用δ%评价系统的阻尼程度;而ts是反映系统响应振荡衰减的速度和阻尼程度的综合性能指标。应当指出,除简单的一、二阶系统外,要精确确定这些动态性能指标的解析表达式是很困难的。本章通过对典型环节、典型系统的时域特性的实验研究来加深对以上概念的认识和理解。 1.1 典型环节的时域响应 1.1 实验目的 1.熟悉并掌握TD-ACC+设备的使用方法及各典型环节模拟电路的构成方法。 2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异、分析原因。 3.了解参数变化对典型环节动态特性的影响。 1.2 实验设备 PC机一台,TD-ACC实验系统一套。 1.3 实验原理及内容

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

土工实验指导书及实验报告

土工实验指导书及实验报告编写毕守一 安徽水利水电职业技术学院 二OO九年五月

目录 实验一试样制备 实验二含水率试验 实验三密度试验 实验四液限和塑限试验 实验五颗粒分析试验 实验六固结试验 实验七直接剪切试验 实验八击实试验 土工试验复习题

实验一试样制备 一、概述 试样的制备是获得正确的试验成果的前提,为保证试验成果的可靠性以及试验数据的可比性,应具备一个统一的试样制备方法和程序。 试样的制备可分为原状土的试样制备和扰动土的试样制备。对于原状土的试样制备主要包括土样的开启、描述、切取等程序;而扰动土的制备程序则主要包括风干、碾散、过筛、分样和贮存等预备程序以及击实等制备程序,这些程序步骤的正确与否,都会直接影响到试验成果的可靠性,因此,试样的制备是土工试验工作的首要质量要素。 二、仪器设备 试样制备所需的主要仪器设备,包括: (1)孔径0.5mm、2mm和5mm的细筛; (2)孔径0.075mm的洗筛; (3)称量10kg、最小分度值5g的台秤; (4)称量5000g、最小分度值1g和称量200g、最小分度值0.01g的天平;

(5)不锈钢环刀(内径61.8mm、高20mm;内径79.8mm、高20mm或内径61.8mm、高40mm); (6)击样器:包括活塞、导筒和环刀; (7)其他:切土刀、钢丝锯、碎土工具、烘箱、保湿器、喷水设备、凡士林等。 三、试样制备 (一)原状土试样的制备步骤 1、将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取土样。 2、检查土样结构,若土样已扰动,则不应作为制备力学性质试验的试样。 3、根据试验要求确定环刀尺寸,并在环刀内壁涂一薄层凡士林,然后刃口向下放在土样上,将环刀垂直下压,同时用切土刀沿环刀外侧切削土样,边压边削直至土样高出环刀,制样时不得扰动土样。 4、采用钢丝锯或切土刀平整环刀两端土样,然后擦净环刀外壁,称环刀和土的总质量。 5、切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述。 6、从切削的余土中取代表性试样,供测定含水率以及颗粒分析、界限含水率等试验之用。

自动控制理论实验指导书

《自动控制理论》实验指导书

目录 《自动控制原理》实验须知 (3) 一、仪器简介 (3) 二、预习及预习报告 (6) 三、实验及实验报告 (6) 实验一典型环节及其阶跃响应 (7) 实验二控制系统的瞬态响应 (12) 实验三控制系统的稳定性分析 (14) 实验四系统的频率特性测量 (16) 实验五连续系统的串联校正 (19)

《自动控制原理》实验须知 一、仪器简介 本课程实验的仪器主要为爱迪克labACT自控/计控原理教学实验系统。 (一) 构成 labACT自控/计控原理实验机由以下七个模块组成: 1.自动控制原理实验模块 2.计算机控制原理实验模块 3.信号源模块 4.控制对象模块 5.虚拟示波器模块 6.控制对象输入显示模块 7.CPU控制模块 各模块相互交联关系框图见图1-1-1所示: 图1-1-1 各模块相互交联关系框图 自动控制原理实验模块由模拟运算单元及模拟运算扩充库组成,这些模拟运算单元的输入回路和反馈回路上配有多个各种参数的电阻、电容,因此可以完成各种自动控制模拟运算。例如构成比例环节、惯性环节、积分环节、比例微分环节,PID环节和典型的二阶、三阶系统等。利用本实验机所提供的多种信号源输入到模拟运算单元中去,再使用本实验机提供的虚拟示波器界面可观察和分析各种自动控制实验的响应曲线。 主实验板外形尺寸为35厘米×47厘米,主实验板的布置简图见图1-1-2所示。

根据功能本实验机划分了各种实验区均在主实验板上。实验区组成见表1-1-1。

表1-1-1 实验区组成 (二 1)虚拟示波器的显示方式 为了满足自动控制不同实验的要求我们提供了示波器的四种显示方式。 (1)示波器的时域显示方式 (2)示波器的相平面显示(X-Y)方式 (3)示波器的频率特性显示方式有对数幅频特性显示、对数相频特性显示(伯德图),幅相特性显示方式(奈奎斯特图),时域分析(弧度)显示方式。 (4) 示波器的计算机控制显示方式 2)虚拟示波器的设置 用户可以根据不同的要求选择不同的示波器,具体设置方法如下: (1)示波器的一般用法:运行LABACT程序,选择‘工具’栏中的‘单迹示波器’项或‘双迹示波器’

自动控制原理_实验2(1)

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在 单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部 信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分 别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1) 阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随 即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位 阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。则MATLAB 的调用语句:

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

CAD上机实验指导书及实验报告

北京邮电大学世纪学院 实验、实习、课程设计报告撰写格式与要求 (试行) 一、实验报告格式要求 1、有实验教学手册,按手册要求填写,若无则采用统一实验报告封面。 2、报告一律用钢笔书写或打印,打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 3、统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。 4、实验报告中的实验原始记录,须经实验指导教师签字或登记。 二、实习报告、课程设计报告格式要求 1、采用统一的封面。 2、根据教学大纲的要求手写或打印,手写一律用钢笔书写,统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 三、报告内容要求 1、实验报告内容包括:实验目的、实验原理、实验仪器设备、实验操作过程、原始数据、实验结果分析、实验心得等方面内容。 2、实习报告内容包括:实习题目、实习任务与要求、实习具体实施情况(附上图表、原始数据等)、实习个人总结等内容。 3、课程设计报告或说明书内容包括:课程设计任务与要求、总体方案、方案设计与分析、所需仪器设备与元器件、设计实现与调试、收获体会、参考资料等方面内容。 北京邮电大学世纪学院 教务处 2009-8

实验报告 课程名称计算机绘图(CAD) 实验项目AutoCAD二维绘图实验 专业班级 姓名学号 指导教师实验成绩 2016年11月日

《自动控制原理》实验指导书

《自动控制原理》实验指导书梅雪罗益民袁启昌许必熙 南京工业大学自动化学院

目录 实验一典型环节的模拟研究--------------------------1 实验二典型系统时域响应和稳定性-------------------10 实验三应用MATLAB进行控制系统根轨迹分析----------15 实验四应用MATLAB进行控制系统频域分析------------17 实验五控制系统校正装置设计与仿真-----------------19 实验六线性系统校正-------------------------------22 实验七线性系统的频率响应分析---------------------26 附录:TDN—ACP自动控制原理教学实验箱简介----------31

实验一 典型环节的模拟研究 一. 实验目的 1.熟悉并掌握TD-ACC + 设备的使用方法及各典型环节模拟电路的构成方法。 2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异、分析原因。 3.了解参数变化对典型环节动态特性的影响。 二.实验内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) A 方框图:如图1.1-1所示。 图1.1-1 B 传递函数: K S Ui S Uo =) () ( C 阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = D 模拟电路图:如图1.1-2所示。 图1.1-2 注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。以 后的实验中用到的运放也如此。 E 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。

自动控制原理实验一

《自动控制原理》MATLAB仿真实验控制系统理论、计算方法与计算机技术的结合是当代控制理论发展的标志,因此在以MATLAB为代表的软件平台上,对控制系统进行分析、设计与仿真就成了控制工程师必须熟练掌握的重要知识与技能。 控制系统CAD及仿真是建立在古典控制理论、现代控制理论、计算方法、计算机技术等多方面知识上的综合性学科,是一门综合性与实践性较强的专业课,目前已成为自动化学科重要的研究分支,灵活地掌握与运用它有助于我们深刻理解已学过的有关课程内容,为今后从事控制系统领域的研究与开发工作提供坚实的基础。 本书是编者们对教学、实验与科研工作的总结,并在借鉴国内外控制领域专家、学者研究成果的基础上编写而成的。在内容编排上具有如下几方面的特点: 1、将MATLAB的使用方法和程序设计以简练的篇幅进行介绍,使得直接、快速地了解和掌握MATLAB软件平台成为可能,并采用由浅到深,由易到难逐步深入的方式对控制系统应用MATLAB软件进行刻化; 2、在已学习的古典与现代控制理论的基础上,介绍在MATLAB软件平台上对系统进行分析和设计的方法; 3、重点介绍目前控制系统仿真技术中状态空间法和Simulink仿真的主要思想,达到学以致用的效果; 4、所有的实验、习题都经过精心选择,书中所有的用MATLAB描述的程序都经过严格的上机调试,保证所写程序的可用性,是本书的最重要的特色。

准备工作 熟悉MATLAB的仿真实验环境 一、实验目的 1.学习了解MATLAB的仿真实验环境 2.练习MATLAB命令的基本操作; 3.练习MATLAB的m文件的基本操作。 二、实验步骤 1.学习了解MATLAB仿真实验环境 开机执行程序进入MATLAB环境 在命令提示符位置键入下述命令: help 显示MATLAB的功能目录.并浏览内容。 intro 显示MATLAB语言的基本介绍,如矩阵输人、数值激位计算、曲线绘图等,阅读命令平台上的注释,内容,以尽快MATLAB函数的应用方法。内容,以尽快了解毗LAn函数的应用方法。 help heLp 显示联机帮助查阅功能(要求用中文作简要记录)。 info 显示工具箱中各种工具箱组件信息和开发商的联络信息; demo MATLAB的各种功能演水。 help control 阅读控制系统工具箱命令清单,阅读如下命令的帮助文件内容: help step help impule help cloop help printsys 2.练习MATLAB命令的基本操作 键人常数矩阵输人命令 a=[1 2 3]与a=[1;2;3] 记录结果,比较显示结果有何不同、 b=[1 2 5]与b=[l 2 5]; 记录结果,比较显示结果有何不同! a a’ b b’ 记录结果,比较变量加“'”后的区别。

西安交大自动控制原理实验报告

自动控制原理实验报告 学院: 班级: 姓名: 学号:

西安交通大学实验报告 课程自动控制原理实验日期2014 年12月22 日专业班号交报告日期 2014 年 12月27日姓名学号 实验五直流电机转速控制系统设计 一、实验设备 1.硬件平台——NI ELVIS 2.软件工具——LabVIEW 二、实验任务 1.使用NI ELVIS可变电源提供的电源能力,驱动直流马达旋转,并通过改变电压改变 其运行速度; 2.通过光电开关测量马达转速; 3.通过编程将可变电源所控制的马达和转速计整合在一起,基于计算机实现一个转速自 动控制系统。 三、实验步骤 任务一:通过可变电源控制马达旋转 任务二:通过光电开关测量马达转速 任务三:通过程序自动调整电源电压,从而逼近设定转速

编程思路:PID控制器输入SP为期望转速输出,PV为实际测量得到的电机转速,MV为PID输出控制电压。其中SP由前面板输入;PV通过光电开关测量马达转速得到;将PID 的输出控制电压接到“可变电源控制马达旋转”模块的电压输入控制端,控制可变电源产生所需的直流电机控制电压。通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,达到直流电机转速的负反馈控制。 PID参数:比例增益:0.0023 积分时间:0.010 微分时间:0.006 采样率和待读取采样:采样率:500kS/s 待读取采样:500 启动死区:电机刚上电时,速度为0,脉冲周期测量为0,脉冲频率测量为无限大。通过设定转速的“虚拟下限”解决。本实验电机转速最大为600r/min。故可将其上限值设为600r/min,超过上限时,转速的虚拟下限设为200r/min。 改进:利用LabVIEW中的移位寄存器对转速测量值取滑动平均。

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编 汽车工程学院 2005年9月

前言 1.实验总体目标、任务与要求 1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、动量方程实 验,实现对基本理论的验证。 2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。 2.适用专业 热能与动力工程 3.先修课程 《流体力学》相关章节。 4.实验项目与学时分配 5. 实验改革与特色 根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一伯努利方程实验 1.观察流体流经实验管段时的能量转化关系,了解特定截面上的总水头、测压管水头、压强水头、速度水头和位置水头间的关系,从而加深对伯努利方程的理解和认识。 2.掌握各种水头的测试方法和压强的测试方法。 3.掌握流量、流速的测量方法,了解毕托管测速的原理。 二、实验条件 伯努利方程实验仪 三、实验原理 1.实验装置: 图一伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验 细管9. 实验粗管10.测压管11.调节阀12.接水箱13.量杯14回水管15.实验桌 2.工作原理 定压水箱7靠溢流来维持其恒定的水位,在水箱下部装接水平放置的实验细管8,水经实验细管以恒定流流出,并通过调节阀11调节其出水流量。通过布置在实验管四个截面上的四组测压孔及测压管,可以测量到相应截面上的各种水头的大小,从而可以分析管路中恒定流动的各种能量形式、大小及相互转化关系。各个测量截面上的一组测压管都相当于一组毕托管,所以也可以用来测管中某点的流速。 电测流量装置由回水箱、计量水箱和电测流量装置(由浮子、光栅计量尺和光电子

自动控制实验讲义_

自动控制原理实验讲义 郭烜 内蒙古民族大学物理与电子信息学院 信息与自动化技术教研室 2018年8月 目录 绪论 第一章自动控制原理实验 实验一 MATLAB软件和THDAQ虚拟实验设备的使用 实验二控制系统的单位阶跃响应 实验三高阶系统的时域动态性能和稳定性研究

实验四线性系统的根轨迹 实验五线性系统的频域分析 实验六线性系统校正与PID控制器设计 第二章自动控制原理模拟实验环境简介 第一节 MATLAB软件系统与Simulink仿真工具 第二节 CZ-AC型自动控制原理实验箱与THDAQ虚拟实验设备 绪论 《自动控制原理》是电子信息专业的专业基础课程,自动控制原理实验课程是一门理论验证型实验课程,结合自动控制理论课开设了一系列相应的实验,使学生理论与实践结合,更好的掌握控制理论。通过实验,学生可以了解典型环节的特性,模拟方法及控制系统分析与校正方法,掌握离散控制系统组成原理,调试方法;使学生加深对控制理论的理解和认识,同时有助于培养学生分析问题和解决问题的工程综合能力,拓宽学生的专业面和知识面,为以后的深入学习与工作打下良好的扎实的基础。

第一章自动控制原理实验 实验一MATLAB软件与THDAQ虚拟实验设备的使用 一、实验目的 1. 学习MATLAB软件、动态仿真环境Simulink以及THDAQ虚拟实验设备的正确使用方法。 2. 掌握建立控制系统数学模型的初步方法。 二、实验设备 计算机、MATLAB软件、CZ-AC型自动控制原理实验箱、THDAQ虚拟实验设备、万用表 三、实验内容及原理 1. MA TLAB基本运算 见第二章1.4节: MA TLAB基本运算 2. 用MATLAB建立控制系统数学模型 控制系统常用的三种数学模型: <1>传递函数模型(多项式模型> 用函数tf(>建立控制系统传递函数模型: 命令调用格式:sys=tf(num, den> 或 printsys(num, den> 也可以用多项式乘法函数conv(>输入num/den 如:, num=5*conv(conv([1,2],[1,2]>,[1,6,7]> <2>零极点模型 调用格式:z=[z1,z2,…,z m]。 p=[p1,p2,…,p n]。 k=[k]。 sys=zpk(z, p, k> <3>部分分式展开式模型 调用格式:[r, p, k]=residue(num, den> 3. 用Simulink建立系统模型 点击MATLAB命令窗口菜单“File”下“New”子菜单下“Model”命令打开扩展名为“.mdl”的模型文件,或在MATLAB命令窗口输入命令“simulink”,选定模块拖到模型设计窗口,单击模块的输入或输出端,当光标变成十字时,拖到目标模块的输出或输入端口,当光标变成双十字时,松开鼠标,形成连接信号线。 4. 用CZ-AC型实验箱构建典型环节的模拟电路 比例环节:,图中:K P= R f/R i

相关主题
文本预览
相关文档 最新文档