当前位置:文档之家› 迭代器模式实验(含答案)

迭代器模式实验(含答案)

迭代器模式实验(含答案)
迭代器模式实验(含答案)

课程名称:软件体系结构与设计

迭代器(Iterator)模式实验

一、实验目的

1. 掌握迭代器模式的概念;

2. 掌握迭代器模式的功能;

3. 加深对迭代器模式的了解;

4. 提高对迭代器模式的运用;

5. 将该模式运用但实际的生活中。

二、实验内容

1. 阅读和查看资料了解迭代器模式的概念和功能;

2. 将有关代理模式的迭代器模式理解透彻并运行;

3. 举例说明生活中的一个可以使用迭代器模式的例子;

4. 熟悉迭代器模式的扩展,迭代器模式是比较有用途的一种模式,

而且变种较多,应用场合覆盖从小结构到整个系统的大结构。三、实验环境

Windows7 、Java虚拟机、MyEclipse 环境下运行代码。

四、实验设计原理

迭代器(Iterator)模式,又叫做游标(Cursor)模式。它提供一种方法顺序访问一个聚合对象(或容器对象:container)中各个元素, 而又不需暴露该对象的内部。

聚合:表示一组对象的组合结构,比如JAVA中的数组,集合等从定义可见,迭代器模式是为容器而生。很明显,对容器对象的访问必然

涉及到遍历算法。你可以一股脑的将遍历方法塞到容器对象中去;或者根本不去提供什么遍历算法,让使用容器的人自己去实现去吧。这两种情况好像都能够解决问题。

然而在前一种情况,容器承受了过多的功能,它不仅要负责自己“容器”内的元素维护(添加、删除等等),而且还要提供遍历自身的接口;而且由于遍历状态保存的问题,不能对同一个容器对象同时进行多个遍历。第二种方式倒是省事,却又将容器的内部细节暴露无遗。

而迭代器模式的出现,很好的解决了上面两种情况的弊端。

迭代器模式的类图如下图所示:

类图解读:

从结构上可以看出,迭代器模式在客户与容器之间加入了迭代器角色。迭代器角色的加入,就可以很好的避免容器内部细节的暴露,

而且也使得设计符号“单一职责原则”。

注意,在迭代器模式中,具体迭代器角色和具体容器角色是耦合在一起的——遍历算法是与容器的内部细节紧密相关的。为了使客户程序从与具体迭代器角色耦合的困境中脱离出来,避免具体迭代器角色的更换给客户程序带来的修改,迭代器模式抽象了具体迭代器角色,使得客户程序更具一般性和重用性。这被称为多态迭代。

迭代器模式所涉及的角色有:

参与者:

?迭代器角色(Iterator):

定义访问和遍历元素的接口。

?具体迭代器角色(Concrete Iterator):

关联到被迭代的具体聚集对象角色,继承迭代器角色实现具体的迭代,并负责管理记录遍历中的当前位置。

?聚集对象抽象角色(Aggregate):

负责提供创建具体迭代器角色的接口。

?具体聚集对象角色(Concrete Aggreate):

持有一个对象的集合,实现创建具体迭代器角色的接口,返回集合遍历所依赖的一个迭代器。

●一个迭代器模式例子:

●20世纪80年代的黑白电视机,没有遥控器,每次开关机或者换

台都需要通过电视机上面的那些按钮来完成,如果你想换台的话,

需要亲自用手去旋转换台的按钮,每转一下就“啪”的响一声,如果没有收到任何电视频道就会出现一片让人眼花的雪花点。还要移动电视机上面那两根可以前后左右移动变长变短的天线。随着科技的飞速发展,越来越高级的电视机相继出现,那种古老的电视机几乎看不到了。与那时的电视机相比,现今的电视机给我们带来的最大便利之一就是增加了电视机遥控器,我们在进行开机、关机、换台、改变音量等操作时都无须直接操作电视机,可以通过遥控器来间接实现。我们可以将电视机看成一个存储电视频道的集合对象,通过遥控器可以对电视机中的电视频道集合进行操作,如返回上一个频道、跳转到下一个频道或者跳转至指定的频道。遥控器为我们操作电视频道带来很大的方便,用户并不需要知道这些频道到底如何存储在电视机中。电视机遥控器和电视机示意图如图1所示:

●在软件开发中,也存在大量类似电视机一样的类,它们可以存储多

个成员对象(元素),这些类通常称为聚合类(Aggregate Classes),

对应的对象称为聚合对象。为了更加方便地操作这些聚合对象,同时可以很灵活地为聚合对象增加不同的遍历方法,我们也需要类似电视机遥控器一样的角色,可以访问一个聚合对象中的元素但又不需要暴露它的内部结构。本章我们将要学习的迭代器模式将为聚合对象提供一个遥控器,通过引入迭代器,客户端无须了解聚合对象的内部结构即可实现对聚合对象中成员的遍历,还可以根据需要很方便地增加新的遍历方式。

●迭代器模式的作用:

●迭代器模式能够遍历一组聚合对象,不需要了解其内部结构还能

提供不同的遍历方法。

●就是分离了集合对象的遍历行为,将遍历算法交给这个迭代器角

色来完成,可以很好的避免容器内部细节的暴露,而且也使得设计符合“单一职责原则”,另外迭代器模式抽象了具体迭代器角色,可以通过对一个抽象迭代器多个集成可来完成同一聚集对象的多种遍历。

五、迭代器模式示例性代码

首先有一个抽象的聚集,所谓的聚集就是就是数据的集合,可以循环去访问它。它只有一个方法GetIterator()让子类去实现,用来获得一个迭代器对象。

1///

2

3///抽象聚集

4

5///

6

7public interface IList

8

9 {

10 IIterator GetIterator();

11 }

抽象的迭代器,它是用来访问聚集的类,封装了一些方法,用来把聚集中的数据按顺序读取出来。通常会有MoveNext()、CurrentItem()、Fisrt()、Next()等几个方法让子类去实现。

1///

2

3///抽象迭代器

4

5///

6

7public interface IIterator

8 {

9bool MoveNext();

10

11 Object CurrentItem();

13void First();

14

15void Next();

16 }

具体的聚集,它实现了抽象聚集中的唯一的方法,同时在里面保存了一组数据,这里我们加上Length属性和GetElement()方法是为了便于访问聚集中的数据。

1///

2

3///具体聚集

4

5///

6

7public class ConcreteList : IList

8 {

9int[] list;

10

11public ConcreteList()

12

13 {

14 list = new int[] { 1,2,3,4,5};

15 }

17public IIterator GetIterator()

18

19 {

20return new ConcreteIterator(this);

21 }

22

23public int Length

24

25 {

26get { return list.Length; }

27 }

28

29public int GetElement(int index)

30

31 {

32return list[index];

33 }

34 }

具体迭代器,实现了抽象迭代器中的四个方法,在它的构造函数中需要接受一个具体聚集类型的参数,在这里面我们可以根据实际的情况去编写不同的迭代方式。

1/**////

2

3///具体迭代器

4

5///

6

7public class ConcreteIterator : IIterator

8

9 {

10private ConcreteList list;

11

12private int index;

13

14public ConcreteIterator(ConcreteList list) 15

16 {

17this.list = list;

18

19 index = 0;

20 }

21

22public bool MoveNext()

24 {

25if (index < list.Length)

26

27return true;

28

29else

30

31return false;

32 }

33

34public Object CurrentItem()

35

36 {

37return list.GetElement(index) ;

38 }

39

40public void First()

41

42 {

43 index = 0;

44 }

46public void Next()

47

48 {

49if (index < list.Length)

50

51 {

52 index++;

53 }

54 }

55 }

简单的客户端程序调用:

1/**////

2

3///客户端程序

4

5///

6

7class Program

8

9 {

10static void Main(string[] args)

12 {

13 IIterator iterator;

14

15 IList list = new ConcreteList();

16

17 iterator = list.GetIterator();

18

19while (iterator.MoveNext())

20

21 {

22int i = (int)iterator.CurrentItem();

23 Console.WriteLine(i.ToString()); 24

25 iterator.Next();

26 }

27

28 Console.Read();

29

30 }

31

32 }

Iterator实现要点:

1.迭代抽象:访问一个聚合对象的内容而无需暴露它的内部表示。

2.迭代多态:为遍历不同的集合结构提供一个统一的接口,从而支持同样的算法在不同的集合结构上进行操作。

3.迭代器的健壮性考虑:遍历的同时更改迭代器所在的集合结构,会导致问题。

题目:假设某软件公司Z为某超市开发了一套销售管理系统,在对该系统进行分析和设计时,Z公司开发人员发现经常需要对系统中的商品数据、客户数据等进行遍历,为了复用这些遍历代码,Z公司开发人员设计了一个抽象的数据聚合类AbstractObjectList,而将存储商品和客户登记的类作为其子类。AbstractObjectList类结构如下图所示。

在上图中,IList类型的对象objects用于存储数据,AbstractObjectList类的方法说明如下表所示:

AbstractObjectList类的子类ProductList和CustomerList分别用于存储商品数据和客户数据。请用迭代器模式编程实现。

代码:

import java.util.*;

//抽象聚合类

abstract class AbstractObjectList {

protected List objects = new ArrayList();

}

public void addObject(Object obj) {

this.objects.add(obj);

}

public void removeObject(Object obj) {

this.objects.remove(obj);

}

return this.objects;

}

//声明创建迭代器对象的抽象工厂方法

public abstract AbstractIterator createIterator(); }

//商品数据类:具体聚合类

class ProductList extends AbstractObjectList {

super(products);

}

//实现创建迭代器对象的具体工厂方法

public AbstractIterator createIterator() {

return new ProductIterator(this);

}

}

//客户数据类:具体聚合类

class CustomerList extends AbstractObjectList {

super(customers);

}

//实现创建迭代器对象的具体工厂方法

public AbstractIterator createIterator() {

return new CustomerIterator(this);

}

}

//抽象迭代器

interface AbstractIterator {

public void next(); //移至下一个元素

public boolean isLast(); //判断是否为最后一个元素public void previous(); //移至上一个元素

public boolean isFirst(); //判断是否为第一个元素

public Object getNextItem(); //获取下一个元素

public Object getPreviousItem(); //获取上一个元素}

//商品迭代器:具体迭代器

class ProductIterator implements AbstractIterator {

private int cursor1; //定义一个游标,用于记录正向遍历的位置private int cursor2; //定义一个游标,用于记录逆向遍历的位置public ProductIterator(ProductList list) {

this.productList = list;

this.products = list.getObjects(); //获取集合对象

cursor1 = 0; //设置正向遍历游标的初始值

cursor2 = products.size() -1; //设置逆向遍历游标的初始值}

public void next() {

if(cursor1 < products.size()) {

cursor1++;

}

}

public boolean isLast() {

return (cursor1 == products.size());

}

public void previous() {

if (cursor2 > -1) {

cursor2--;

}

}

public boolean isFirst() {

return (cursor2 == -1);

}

public Object getNextItem() {

return products.get(cursor1);

}

public Object getPreviousItem() {

return products.get(cursor2);

}

}

//客户迭代器:具体迭代器

class CustomerIterator implements AbstractIterator {

private int cursor1; //定义一个游标,用于记录正向遍历的位置private int cursor2; //定义一个游标,用于记录逆向遍历的位置public CustomerIterator(CustomerList list) {

this.customerList = list;

this.customers = list.getObjects(); //获取集合对象

cursor1 = 0; //设置正向遍历游标的初始值

cursor2 = customers.size() -1; //设置逆向遍历游标的初始值}

public void next() {

if(cursor1 < customers.size()) {

cursor1++;

}

}

public boolean isLast() {

return (cursor1 == customers.size());

}

public void previous() {

if (cursor2 > -1) {

cursor2--;

}

}

public boolean isFirst() {

return (cursor2 == -1);

}

public Object getNextItem() {

return customers.get(cursor1);

}

public Object getPreviousItem() {

return customers.get(cursor2);

}

}

public class Iterator {

public static void main(String args[]) {

List products = new ArrayList();

products.add("农夫山泉");

products.add("百岁山");

products.add("康师傅");

products.add("旺仔");

products.add("统一");

AbstractObjectList list;

AbstractIterator iterator;

list = new ProductList(products); //创建聚合对象

iterator = list.createIterator(); //创建迭代器对象

System.out.println("***************商品数据***************");

System.out.println("正向遍历:");

24种设计模式的定义和使用场合

一.创建型模式(Creational): 简单工厂模式(simpleFactory)发音:['simpl] ['f?kt(?)r?] 定义: 提供一个创建对象实例的功能,而无须关心其具体实现.被创建实例的类型可以是接口,抽象类,也可以是具体的类. 1.抽象工厂(AbstractFactory)发音: ['?bstr?kt] 定义: 提供一个创建一系列相关或相互依赖对象的接口,而无需指定他们具体的类. 使用场合: 1.如果希望一个系统独立于它的产品的创建,组合和表示的时候,换句话书,希望一个系统只是知道产品的接口,而不关心实现的时候. 2.如果一个系统要由多个产品系列中的一个来配置的时候.换句话说,就是可以,就是可以动态地切换产品簇的时候. 3.如果强调一系列相关产品的接口,以便联合使用他们的时候 2.建造者模式(Builder)发音: ['b?ld?] 定义: 将复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 使用场合: 1.如果创建对象的算法,应该独立于该对象的组成部分以及它们的装配方式时 2.如果同一个构建过程有着不同的表示时 3.工厂方法模式(Factory Method) 定义: 为创建对象定义一个接口,让子类决定实例化哪个类.工厂方法让一个类的实例化延迟到了子类. 使用场景: 1.客户类不关心使用哪个具体类,只关心该接口所提供的功能. 2.创建过程比较复杂,例如需要初始化其他关联的资源类,读取配置文件等. 3.接口有很多具体实现或者抽象类有很多具体子类时, 4.不希望给客户程序暴露过多的此类的内部结构,隐藏这些细节可以降低耦合度. 5.优化性能,比如缓存大对象或者初始化比较耗时的对象. 4.原型模式(Prototype Method)发音: ['pr??t?ta?p] 定义: 使用原形实例指定将要创建的对象类型,通过复制这个实例创建新的对象. 应用场合: 1.如果一个系统想要独立于它想要使用的对象时,可以使用原型模式,让系统只面向接口编程,在系统需要新的对象的时候,可以通过克隆原型来得到. 2.如果需要实例化的类是在运行时刻动态指定时,可以使用原型模式,通过克隆原型来得到需要的实例.

迭代器模式实验(含答案)

课程名称:软件体系结构与设计 迭代器(Iterator)模式实验 一、实验目的 1. 掌握迭代器模式的概念; 2. 掌握迭代器模式的功能; 3. 加深对迭代器模式的了解; 4. 提高对迭代器模式的运用; 5. 将该模式运用但实际的生活中。 二、实验内容 1. 阅读和查看资料了解迭代器模式的概念和功能; 2. 将有关代理模式的迭代器模式理解透彻并运行; 3. 举例说明生活中的一个可以使用迭代器模式的例子; 4. 熟悉迭代器模式的扩展,迭代器模式是比较有用途的一种模式, 而且变种较多,应用场合覆盖从小结构到整个系统的大结构。三、实验环境 Windows7 、Java虚拟机、MyEclipse 环境下运行代码。 四、实验设计原理 迭代器(Iterator)模式,又叫做游标(Cursor)模式。它提供一种方法顺序访问一个聚合对象(或容器对象:container)中各个元素, 而又不需暴露该对象的内部。 聚合:表示一组对象的组合结构,比如JAVA中的数组,集合等从定义可见,迭代器模式是为容器而生。很明显,对容器对象的访问必然

涉及到遍历算法。你可以一股脑的将遍历方法塞到容器对象中去;或者根本不去提供什么遍历算法,让使用容器的人自己去实现去吧。这两种情况好像都能够解决问题。 然而在前一种情况,容器承受了过多的功能,它不仅要负责自己“容器”内的元素维护(添加、删除等等),而且还要提供遍历自身的接口;而且由于遍历状态保存的问题,不能对同一个容器对象同时进行多个遍历。第二种方式倒是省事,却又将容器的内部细节暴露无遗。 而迭代器模式的出现,很好的解决了上面两种情况的弊端。 迭代器模式的类图如下图所示: 类图解读: 从结构上可以看出,迭代器模式在客户与容器之间加入了迭代器角色。迭代器角色的加入,就可以很好的避免容器内部细节的暴露,

软件体系结构与设计模式笔记

第1章软件体系结构概述 ?SEI软件体系结构讨论群定义如下:一个程序/系统构件的结构,它们之间的相互关系,以及在设计和交付的整个过程中的原则和指导方针。 ?Mary Shaw和David Garlan认为软件体系结构包括构成系统的设计元素的描述,设计元素的交互,设计元素组合的模式,以及在这些模式中的约束。 ?软件体系结构包括构件(Component)、连接件(Connector)和约束(Constrain)或配置(Configuration)三大要素。 ?国内普遍接受的定义:软件体系结构包括构件、连接件和约束,它是可预制和可重构的软件框架结构。 ?构件是可预制和可重用的软件部件,是组成体系结构的基本计算单 元或数据存储单元 ?连接件也是可预制和可重用的软件部件,是构件之间的连接单元 ?构件和连接件之间的关系用约束来描述 ?软件体系结构= 构件+ 连接件+ 约束 软件体系结构的优势容易理解、重用、控制成本、可分析性 第2章软件体系结构风格 ?软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。 ?体系结构风格定义了一个系统家族,即一个体系结构定义一个词汇表和一组约束。 词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件和连接件组合起来的。 ?体系结构风格反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。 ?数据流风格: 批处理序列; 管道/过滤器。 ?调用/返回风格:主程序/子程序;面向对象风格;层次结构。 ?独立构件风格:进程通讯;事件系统。 ?虚拟机风格:解释器;基于规则的系统。 ?仓库风格:数据库系统;超文本系统;黑板系统。 ?过程控制环路 ?C/S风格体系结构有三个主要组成部分:数据库服务器、客户应用程序和网络。 ?B/S风格浏览器/Web服务器/数据库服务器。 优点:C/S体系结构具有强大的数据操作和事务处理能力,模型思想简单,易于人们理解和接受。将大的应用处理任务分布到许多通过网络连接的低成本计算机上,以节约大量费用。缺点:开发成本较高、客户端程序设计复杂、信息内容和形式单一、用户界面风格不一,使用繁杂不利于推广使用、软件移植困难、软件维护和升级困难、新技术不能轻易应用 优点:基于B/S体系结构的软件,系统安装、修改和维护全在服务器端解决。 缺点:B/S体系结构缺乏对动态页面的支持能力,没有集成有效的数据库处理功能。 B/S体系结构的系统扩展能力差,安全性难以控制。 采用B/S体系结构的应用系统,在数据查询等响应速度上,要远远低于C/S体系结构。 B/S体系结构的数据提交一般以页面为单位,数据的动态交互性不强,不利于在线事务处理(OLTP)应用。 第3章软件需求与架构 ?需求的基本概念 ?IEEE (1997) ?(1) 用户解决问题或达到目标所需的条件或能力

迭代器模式

迭代器模式(Iterator Pattern) 动机(Motivate): 在软件构建过程中,集合对象内部结构常常变化各异。但对于这些集合对象,我们希望在不暴露其内部结构的同时,可以让外部客户代码透明地访问其中包含的元素;同时这种“透明遍历”也为“ 同一种算法在多种集合对象上进行操作”提供了可能。 使用面向对象技术将这种遍历机制抽象为“迭代器对象”为“应对变化中的集合对象”提供了一种优雅的方法。 意图(Intent): 提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。 -------《设计模式》GOF 结构图(Struct): 适用性: 1.访问一个聚合对象的内容而无需暴露它的内部表示。 2.支持对聚合对象的多种遍历。 3.为遍历不同的聚合结构提供一个统一的接口(即, 支持多态迭代)。 生活中的例子: 迭代器提供一种方法顺序访问一个集合对象中各个元素,而又不需要暴露该对象的内部表示。在早期的电视机中,一个拨盘用来改变频道。当改变频道时,需要手工转动拨盘移过每一个频道,而不论这个频道是否有信号。现在的电视机,使用[后一个]和[前一个]按钮。当按下[后一个]按钮时,将切换到下一个预置的频道。想象一下在陌生的城市中的旅店中看电视。当改变频道时,重要的不是几频道,而是节目内容。如果对一个频道的节目不感兴趣,那么可以换下一

个频道,而不需要知道它是几频道。 代码实现: 在面向对象的软件设计中,我们经常会遇到一类集合对象,这类集合对象的内部结构可能有着各种各样的实现,但是归结起来,无非有两点是需要我们去关心的:一是集合内部的数据存储结构,二是遍历集合内部的数据。面向对象设计原则中有一条是类的单一职责原则,所以我们要尽可能的去分解这些职责,用不同的类去承担不同的职责。Iterator模式就是分离了集合对象的遍历行为,抽象出一个迭代器类来负责,这样既可以做到不暴露集合的内部结构,又可让外部代码透明的访问集合内部的数据。下面看一个简单的示意性例子,类结构图如下: 首先有一个抽象的聚集,所谓的聚集就是就是数据的集合,可以循环去访问它。它只有一个方法GetIterator()让子类去实现,用来获得一个迭代器对象。

几种常用的设计模式介绍

几种常用的设计模式介绍 1. 设计模式的起源 最早提出“设计模式”概念的是建筑设计大师亚力山大Alexander。在1970年他的《建筑的永恒之道》里描述了投计模式的发现,因为它已经存在了千百年之久,而现代才被通过大量的研究而被发现。 在《建筑的永恒之道》里这样描述:模式是一条由三个部分组成的通用规则:它表示了一个特定环境、一类问题和一个解决方案之间的关系。每一个模式描述了一个不断重复发生的问题,以及该问题解决方案的核心设计。 在他的另一本书《建筑模式语言》中提到了现在已经定义了253种模式。比如: 说明城市主要的结构:亚文化区的镶嵌、分散的工作点、城市的魅力、地方交通区 住宅团组:户型混合、公共性的程度、住宅团组、联排式住宅、丘状住宅、老人天地室内环境和室外环境、阴和阳总是一气呵成 针对住宅:夫妻的领域、儿童的领域、朝东的卧室、农家的厨房、私家的沿街露台、个人居室、起居空间的序列、多床卧室、浴室、大储藏室 针对办公室、车间和公共建筑物:灵活办公空间、共同进餐、共同小组、宾至如归、等候场所、小会议室、半私密办公室 尽管亚力山大的著作是针对建筑领域的,但他的观点实际上适用于所有的工程设计领域,其中也包括软件设计领域。“软件设计模式”,这个术语是在1990年代由Erich Gamma等人从建筑设计领域引入到计算机科学中来的。目前主要有23种。 2. 软件设计模式的分类 2.1. 创建型 创建对象时,不再由我们直接实例化对象;而是根据特定场景,由程序来确定创建对象的方式,从而保证更大的性能、更好的架构优势。创建型模式主要有简单工厂模式(并不是23种设计模式之一)、工厂方法、抽象工厂模式、单例模式、生成器模式和原型模式。 2.2. 结构型 用于帮助将多个对象组织成更大的结构。结构型模式主要有适配器模式、桥接模式、组合器模式、装饰器模式、门面模式、亨元模式和代理模式。 2.3. 行为型 用于帮助系统间各对象的通信,以及如何控制复杂系统中流程。行为型模式主要有命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观察者模式、状态模式、策略模式、模板模式和访问者模式。

迭代器与组合模式(含源码)

软件构造第4次实验 实验报告 班级: 学号: 姓名: 2016年4月13日

一.设计 1.本次实验内容是用迭代器与组合模式来管理一个大公司。在迭代 器与组合模式中,迭代器提供一个方式来遍历集合而无需暴露集合的实现(实验中通过printPerson()方法打印公司的全部员工);通过组合,客户可以将对象的集合以及个别的对象一视同仁(实验中通过printMale()方法来打印所有的男工作者)。 2.迭代器将遍历聚合的工作封装进一个对象中,当使用迭代器的时 候,我们依赖聚合提供遍历;迭代器提供了一个通用的接口Iterator,使得我们在遍历聚合的项时可以实现多态。 3.组合模式提供了一个可以同时包容个别对象和组合对象的结构, 允许客户对个别对象以及组合对象一视同仁;在组合结构内的任意对象称为组件,组件可以是组合,也可以是叶节点。

二.实现 https://www.doczj.com/doc/127554745.html,pany import java.util.ArrayList; import java.util.Iterator; /** * 对应Menu * @author Yilia * */ public class Company extends Component{ ArrayList components = new ArrayList(); String name; // Iterator iterator = null; public Company(String name){ https://www.doczj.com/doc/127554745.html, = name; } public void add(Component menuComponent){ components.add(menuComponent); } public void remove(Component menuComponent){ components.remove(menuComponent); } public Component getChild(int i){ return (Component)components.get(i); } public String getName(){ return name; } public void print(){ for(int i = 0; i < deepth; i++){ System.out.print("---"); } System.out.println(getName()); Iterator iterator = components.iterator(); deepth++;

《软件设计模式》教学大纲

《软件设计模式》教学大纲 一、课程说明 1、课程编号: 2、课程名称(中/英文):软件设计模式/Software Design Patterns 3、课程类别:专业课/限选 4、学时/学分:32/2.0 5、先修课程:Java面向对象程序设计、软件工程 6、适用专业:软件工程,计算机科学与技术,信息管理与信息系统 7、教材、教学参考书: [1]刘伟.Java设计模式.北京:清华大学出版社,2018. [2]刘伟.设计模式实验及习题解析.北京:清华大学出版社,2018. [3]ErichGamma,RichardHelm,RalphJohnson,JohnVlissides.DesignPatte rns:ElementsofReusableObject-OrientedSoftware.Addison-Wesley,199 5. [4]结城浩.图解设计模式.北京:人民邮电出版社,2016. [5]秦小波.设计模式之禅(第2版).北京:机械工业出版社,2014. [6]陈臣,王斌.研磨设计模式.北京:清华大学出版社,2010. 二、课程性质和教学目的 《软件设计模式》是软件工程、计算机科学与技术、信息管理与信息系统等专业本科生的一门专业课,本课程是一门具有较强理论性和实践性的软件设计和开发类课程。 本课程主要学习软件设计模式基础知识、UML类图、面向对象设计原则、常用的创建型设计模式、结构型设计模式和行为型设计模式。本课程要求学生掌握常用软件设计模式的动机、定义、结构、实现、使用效果以及应用实例,能够将所学知识应用到实际软件项目设计与开发中,进一步培养学生的工程实践能力和专业技术水平,为今后从事相关工作奠定基础。 本课程首先学习软件设计模式的基本知识和UML类图;接着介绍常见的七个面向对象设计原则;然后重点介绍使用频率较高的软件设计模式,包括五种创建型设计模式(简单工厂模式、工厂方法模式、抽象工厂模式、原型模式、单例模式)、六种结构型设计模式(适配器模式、桥接模式、组合模式、装饰模式、外观模式、代理模式)和七种行为型设计模式(职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式、模板方法模式)。此外,为了帮助学生深入理解所学知识,提高实践动手能力并将所学知识应用于解决实际问题,本课程设置了相应的实践环节,针对具体问题合理选择设计模式,绘制相应的模式结构图并使用代码实现

设计模式及优点总结

桥接模式——Bridge 将抽象部分与它的实现部分分离,使它们都可以独立地变化。 什么叫抽象与它的实现分离,这并不是说,让抽象类与其派生类分离,因为这没有任何 意义。实现指的是抽象类和它的派生类用来实现自己的对象。由于实现的方式有多种,桥接模式的核心意图就是把这些实现独立出来,让它们独自地变化。这就使得每种实现的变化不会影响其他实现,从而达到应对变化的目的。 桥接模式的结构图如下: 将抽象部分与它的实现部分分离,这不是很好理解,我的理解就是实现系统可能有很多角度分类,每一种分类都有可能变化,那么就把这种多角度分离出来让它们独立变化,减少它们之间的耦合。也就是说,在发现我们需要多角度去分类实现对象,而只用继承会造成大量的类增加,不能满足开放—封闭原则时,就应该要考虑桥接模式。 单例模式——Singleton 单例模式,保证一个类仅有一个实例,并提供一个访问它的全局访问点。 通常我们可以让一个全局变量使得一个对象被访问,但它不能防止你实例化多个对象,一个最好的办法就是,让类自身负责保存它的唯一实例。这个类可以保证没有其他实例可以被创建,并且他可以提供一个访问该实例的方法。 单例模式的结构图如下:

单例模式因为Singletion类封装它的唯一实例,这样它可以严格控制客户怎样访问它以及何时访问它。简单地说就是对唯一实例的受控访问。 当在多线程情景下使用时,需要对GetInstance全局访问点加锁。适配器模式(Adapter) 将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼 容而不能一起工作的哪些类可以一起工作。 也就是说系统的数据和行为都是正确的但接口不符时,我们应该考虑用适配器模式,目的是使控制范围之外的一个原有对象与某个接口匹配。适配器模式主要应用于希望复用一些现存的类,但是接口又与复用环境要求不一致的情况,比如说需要对早期代码复用一些功能等应用上很有实际价值。 适配器又两种类型,类适配器模式和对象适配器模式。但由于类适配器通常是通过多重继承实现的,而C#、https://www.doczj.com/doc/127554745.html,、JAVA等语言都不支持多重继承,也就是一个类只有一个父类,所以,我们这里主要讲对象适配器。 适配器模式的结构图如下:

Java23种设计模式6大原则总结

设计模式概念:一套被反复使用、多数人知晓、经过分类编目的优秀代码设计经验的总结。设计模式要素:模式名称、问题、举例、末态环境、推理、其他有关模式、已知的应用。设计模式分类:创建型、结构型、行为型。 创建型模式功能:1.统所使用的具体类的信息封装起来; 2.类的实例是如何被创建和组织的。 创建型模式作用:1.封装创建逻辑,不仅仅是new一个对象那么简单。 2.封装创建逻辑变化,客户代码尽量不修改,或尽量少修改。 常见的创建型模式:单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。常见的结构型模式:代理模式、装饰模式、适配器模式、组合模式、桥梁模式、外观模式、享元模式。 常见行为型模式:模板方法模式、命令模式、责任链模式、策略模式、迭代器模式、中介者模式、观察者模式、备忘录模式、访问者模式、状态模式、解释器模式。单一职责原则:一个类应该只有一个职责。 优点:降低类的复杂性;提高类的可读性;提高代码的可维护性和复用性;降低因变更引起的风险。 里氏替换原则: 优点:代码共享,减少创建类的工作量,每个子类都拥有父类的方法和属性;提高代码的可重用性;提高代码的可扩展性;提高产品或项目的开放性。 缺点:1.继承是入侵式的。只要继承,就必须拥有父类所有属性和方法。 2.降低代码的灵活性。子类必须拥有父类的属性和方法,使子类收到限制。 3.增强了耦合性。当父类的常量、变量和方法修改时,必须考虑子类的修改,这种 修改可能造成大片的代码需要重构。 依赖倒置原则:高层模块不应该依赖低层模块,两者都依赖其抽象;抽象不依赖细节;细节应该依赖于抽象。 在Java中的表现:模块间的依赖通过抽象发生,实现类之间不发生直接的依赖关系,其依赖关系是通过接口或抽象类产生的;接口或抽象类不依赖于是实现类; 实现类依赖于接口或抽象类。 接口隔离原则:1.一个类对另外一个类的依赖性应当是建立在最小的接口上的 2.一个接口代表一个角色,不应当将不同的角色交给一个接口。 3.不应该强迫客户使用它们的不同方法。 如图所示的电子商务系统在三个地方会使用到订单类:一个是门户,只能有查询方法;一个是外部系统,有添加订单的方法;一个是管理后台,添加、删除、修改、查询都要用到。“原子”在实践中的衡量规则: 1.一个接口只对一个子模块或者业务逻辑进行分类。 2.只保留接口中业务逻辑需要的public方法。 3.尽量修改污染了的接口,若修改的风险较大,则可采用适配器模式进行转化处理。 4.接口设计应因项目而异,因环境而异,不能照搬教条。 迪米特法则:(表述)只与你直接的朋友们通信;不要跟“陌生人”说话;每一个软件单位 对其他的单位都只有最少的了解,这些了解仅局限于那些与本单位密 切相关的软件单位。 对迪米特法则进行模式设计有两个:外观模式、中介者模式。 开闭原则:一个软件实体应当对扩展开放,对修改关闭。 重要性体现:提高复用性;提高维护性;提高灵活性;易于测试

设计模式主要分三个类型

设计模式主要分三个类型:创建型、结构型和行为型。 其中创建型有: 一、Singleton,单例模式:保证一个类只有一个实例,并提供一个访问它的全局访问点 二、Abstract Factory,抽象工厂:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们的具体类。 三、Factory Method,工厂方法:定义一个用于创建对象的接口,让子类决定实例化哪一个类,Factory Method使一个类的实例化延迟到了子类。 四、Builder,建造模式:将一个复杂对象的构建与他的表示相分离,使得同样的构建过程可以创建不同的表示。 五、Prototype,原型模式:用原型实例指定创建对象的种类,并且通过拷贝这些原型来创建新的对象。 行为型有: 六、Iterator,迭代器模式:提供一个方法顺序访问一个聚合对象的各个元素,而又不需要暴露该对象的内部表示。 七、Observer,观察者模式:定义对象间一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知自动更新。 八、Template Method,模板方法:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,TemplateMethod使得子类可以不改变一个算法的结构即可以重定义该算法得某些特定步骤。 九、Command,命令模式:将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队和记录请求日志,以及支持可撤销的操作。 十、State,状态模式:允许对象在其内部状态改变时改变他的行为。对象看起来似乎改变了他的类。 十一、Strategy,策略模式:定义一系列的算法,把他们一个个封装起来,并使他们可以互相替换,本模式使得算法可以独立于使用它们的客户。 十二、China of Responsibility,职责链模式:使多个对象都有机会处理请求,从而避免请求的送发者和接收者之间的耦合关系 十三、Mediator,中介者模式:用一个中介对象封装一些列的对象交互。 十四、Visitor,访问者模式:表示一个作用于某对象结构中的各元素的操作,它使你可以在不改变各元素类的前提下定义作用于这个元素的新操作。 十五、Interpreter,解释器模式:给定一个语言,定义他的文法的一个表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。 十六、Memento,备忘录模式:在不破坏对象的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。 结构型有: 十七、Composite,组合模式:将对象组合成树形结构以表示部分整体的关系,Composite使得用户对单个对象和组合对象的使用具有一致性。 十八、Facade,外观模式:为子系统中的一组接口提供一致的界面,fa?ade 提供了一高层接口,这个接口使得子系统更容易使用。 十九、Proxy,代理模式:为其他对象提供一种代理以控制对这个对象的访问

常用设计模式

使用设计模式来提高程序库的重复利用性是大型程序项目开发必须的。但是在“四人帮”的设计模式概述中提到了23种标准设计模式,不但难以记住,而且有些设计模式更多的适用于应用程序开发,对游戏项目引擎设计并没有很多的利用价值。根据经验,精挑细选后,笃志在这里记录一些自认为有利用价值的设计模式,以便之后自己设计时使用。 一:观察者Observer 观察者的设计意图和作用是:它将对象与对象之间创建一种依赖关系,当其中一个对象发生变化时,它会将这个变化通知给与其创建关系的对象中,实现自动化的通知更新。 游戏中观察者的适用环境有: 1:UI控件管理类。当我们的GUI控件都使用观察者模式后,那么用户的任何界面相关操作和改变都将会通知其关联对象——我们的UI事件机。 2:动画管理器。很多时候我们在播放一个动画桢的时候,对其Frame有很大兴趣,此时我们设置一个FrameLister对象对其进行监视,获得我们关心的事件进行处理是必须的。 观察者伪代码: //—— // 被观察对象目标类 Class Subject { // 对本目标绑定一个观察者 Attach( Observer ); // 解除一个观察者的绑定 DeleteAttach( Observer ); // 本目标发生改变了,通知所有的观察者,但没有传递改动了什么 Notity() { For (…遍历整个ObserverList …) { pObserver ->Update(); }

} // 对观察者暴露的接口,让观察者可获得本类有什么变动GetState(); } //—— // 观察者/监听者类 Class Observer { // 暴露给对象目标类的函数,当监听的对象发生了变动,则它会调用本函数通知观察者 Void Update () { pSubject ->GetState(); // 获取监听对象发生了什么变化 TODO:DisposeFun(); // 根据状态不同,给予不同的处理 } } //—— 非程序语言描述: A是B的好朋友,对B的行为非常关心。B要出门,此时A给了B一个警报器,告诉B说:“如果你有事,立刻按这个警报器告诉我。”。结果B在外面遇上了麻烦,按下警报器(Update()),B就知道A出了事,于是就调查一下B到底遇到了什么麻烦(GetState()),当知道B原来是因为被人打了,于是立刻进行处理DisposeFun(),派了一群手下帮B打架。 当然关心A的人可以不止一个,C,D可能也对A很关心,于是A这里保存一个所有关心它的人的链表,当遇到麻烦的时候,轮流给每个人一份通知。 二:单件模式Singleton单件模式的设计意图和作用是:保证一个类仅有一个实例,并且,仅提供一个访问它的全局访问点。 游戏中适用于单件模式的有: 1:所有的Manger.在大部分的流行引擎中都存在着它的影子,例如SoundManager,

jee中最常用设计模式

j e e中最常用设计模式文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

创建型模式:1.FactoryPattern工厂模式 概述:定义一个用于创建对象的接口,让子类决定实例化哪一个类。FactoryMethod使一个类的实例化延迟到其子类。 适用性: 1.当一个类不知道它所必须创建的对象的类的时候。 2.当一个类希望由它的子类来指定它所创建的对象的时候。 3.当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。 类图: 2.SingletonPattern单例模式 概述:保证一个类仅有一个实例,并提供一个访问它的全局访问点。 适用性: 1.当类只能有一个实例而且客户可以从一个众所周知的访问点访问它时。 2.当这个唯一实例应该是通过子类化可扩展的,并且客户应该无需更改代码就能使用一个扩展的实例时。 类图: 结构型模式: 3.Fa?adePattern外观模式 概述:为子系统中的一组接口提供一个一致的界面,Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。 适用性:

1.当你要为一个复杂子系统提供一个简单接口时。子系统往往因为不断演化而变得越来越复杂。大多数模式使用时都会产生更多更小的类。这使得子系统更具可重用性,也更容易对子系统进行定制,但这也给那些不需要定制子系统的用户带来一些使用上的困难。Facade可以提供一个简单的缺省视图,这一视图对大多数用户来说已经足够,而那些需要更多的可定制性的用户可以越过facade层。 2.客户程序与抽象类的实现部分之间存在着很大的依赖性。引入facade将这个子系统与客户以及其他的子系统分离,可以提高子系统的独立性和可移植性。 3.当你需要构建一个层次结构的子系统时,使用facade模式定义子系统中每层的入口点。如果子系统之间是相互依赖的,你可以让它们仅通过facade进行通讯,从而简化了它们之间的依赖关系。 类图: 4.AdapterPattern适配器模式 概述:将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 适用性: 1.你想使用一个已经存在的类,而它的接口不符合你的需求。 2.你想创建一个可以复用的类,该类可以与其他不相关的类或不可预见的类(即那些接口可能不一定兼容的类)协同工作。 3.(仅适用于对象Adapter)你想使用一些已经存在的子类,但是不可能对每一个都进行子类化以匹配它们的接口。对象适配器可以适配它的父类接口。 类图: 5.BridgePattern桥接模式 概述:将抽象部分与它的实现部分分离,使它们都可以独立地变化。

深入浅出学习Java设计模式之迭代器模式

深入浅出学习Java设计模式之迭代器模式 迭代这个名词对于熟悉Java的人来说绝对不陌生。我们常常使用JDK提供的迭代接口进行java collection的遍历: Iterator it = list.iterator(); while(it.hasNext()){ //using “it.next();”do some businesss logic } 而这就是关于迭代器模式应用很好的例子。 二、定义与结构 迭代器(Iterator)模式,又叫做游标(Cursor)模式。GOF 给出的定义为:提供一种方法访问一个容器(container)对象中各个元素,而又不需暴露该对象的内部细节。 从定义可见,迭代器模式是为容器而生。很明显,对容器对象的访问必然涉及到遍历算法。你可以一股脑的将遍历方法塞到容器对象中去;或者根本不去提供什么遍历算法,让使用容器的

人自己去实现去吧。这两种情况好像都能够解决问题。 然而在前一种情况,容器承受了过多的功能,它不仅要负责自己“容器”内的元素维护(添加、删除等等),而且还要提供遍历自身的接口;而且由于遍历状态保存的问题,不能对同一个容器对象同时进行多个遍历。第二种方式倒是省事,却又将容器的内部细节暴露无遗。 而迭代器模式的出现,很好的解决了上面两种情况的弊端。先来看下迭代器模式的真面目吧。 迭代器模式由以下角色组成: 1) 迭代器角色(Iterator):迭代器角色负责定义访问和遍历元素的接口。 2) 具体迭代器角色(Concrete Iterator):具体迭代器角色要实现迭代器接口,并要记录遍历中的当前位置。 3) 容器角色(Container):容器角色负责提供创建具体迭代器角色的接口。

设计模式实验一

设计模式实验一 1.单例模式 使用单例模式设计一个多文档窗口(注:在Java AWT/Swing 开发中可使用JDesktopPane和JInternalFrame来实现),要求在主窗体中某个内部子窗体只能实例化一次,即只能弹出一个相同的子窗体,如图1所示。 图1 多文档窗口示意图 2.适配器模式 现有一个接口DataOperation定义了排序方法sort(int[]) 和查找方法search(int[], int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法,类BinarySearch 的binarySearch(int[], int)方法实现了二分查找算法。现使用适配器模式设计一个系统,在不修改源代码的情况下将类QuickSort和类BinarySearch 的方法适配到DataOperation接口中。绘制类图并编程实现。 3.模板方法模式

对数据库的操作一般包括连接、打开、使用、关闭等步骤,在数据库操作模板类中我们定义了connDB()、openDB()、useDB()、closeDB()四个方法分别对应这四个步骤。对于不同类型的数据库(如SQL Server和Oracle),其操作步骤都一致,只是连接数据库的步骤connDB()方法有所区别,现使用模板方法模式对其进行设计。 4.迭代器模式 某商品管理系统的商品名称存储在一个字符串数组中,现需要自定义一个双向迭代器(MyIterator)实现对该商品名称数组的双向(前向和后向)遍历。绘制类图并编程实现。 5.工厂方法模式 某系统日志记录器要求支持多种日志记录方式,如文件记录(FileLog)、数据库记录(DatabaseLog)等,且用户可以根据要求动态选择日志记录方式,现使用工厂方法模式设计该系统。 6.原型模式 在某OA系统中,用户可以创建工作周报,由于某些岗位每周工作存在重复性,因此可以通过复制原有工作周报并进行局部修改来快速新建工作周报。现在使用原型模式来实现该功能,绘制类图并编程实现。 7.建造者模式 某游戏软件中人物角色包括多种类型,不同类型的人物角色,其性别、脸型、服装、发型等外部特性有所差异,使用建造者模式创建人物角色对象,要求绘制类图并编程实现。 8.抽象工厂模式 某系统为了改进数据库操作的性能,自定义数据库连接对象Connection和语

C++ iterator用法(迭代器)

迭代器(iterator)是一中检查容器内元素并遍历元素的数据类型。 (1) 每种容器类型都定义了自己的迭代器类型,如vector: vector::iterator iter;这条语句定义了一个名为iter的变量,它的数据类型是由vector定义的iterator 类型。 (2) 使用迭代器读取vector中的每一个元素: vector ivec(10,1); for(vector::iterator iter=ivec.begin();iter!=ivec.end();++iter) { *iter=2; //使用* 访问迭代器所指向的元素 } const_iterator: 只能读取容器中的元素,而不能修改。 for(vector::const_iterator citer=ivec.begin();citer!=ivec.end();citer++) { cout<<*citer; //*citer=3; error } vector::const_iterator 和const vector::iterator的区别 const vector::iterator newiter=ivec.begin(); *newiter=11; //可以修改指向容器的元素 //newiter++; //迭代器本身不能被修改 (3) iterator的算术操作: iterator除了进行++,--操作,可以将iter+n,iter-n赋给一个新的iteraor对象。还可以使用一个iterator减去另外一个iterator. const vector::iterator newiter=ivec.begin(); vector::iterator newiter2=ivec.end(); cout<<"\n"< 2 #include 3 4 using namespace std; 5 6 int main() { 7 vector ivec; 8 ivec.push_back(1); 9 ivec.push_back(2); 10 ivec.push_back(3); 11 ivec.push_back(4); 12 13 for(vector::iterator iter = ivec.begin();1. iter != ivec.end(); ++iter) 14 cout << *iter << endl; 15 }

设计模式图解附代码

Java设计模式-图解-附代码

目录 1. 设计模式 (3) 1.1 创建型模式 (4) 1.1.1 工厂方法 (4) 1.1.2 抽象工厂 (6) 1.1.3 建造者模式 (10) 1.1.4 单态模式 (13) 1.1.5 原型模式 (15) 1.2 结构型模式 (17) 1.2.1 适配器模式 (17) 1.2.2 桥接模式 (19) 1.2.3 组合模式 (23) 1.2.4 装饰模式 (26) 1.2.5 外观模式 (29) 1.2.6 享元模式 (32) 1.2.7 代理模式 (34) 1.3 行为型模式 (37) 1.3.1 责任链模式 (37) 1.3.2 命令模式 (40) 1.3.3 解释器模式 (43) 1.3.4 迭代器模式 (45) 1.3.5 中介者模式 (49) 1.3.6 备忘录模式 (52) 1.3.7 观察者模式 (54) 1.3.8 状态模式 (58) 1.3.9 策略模式 (61) 1.3.10 模板方法 (63) 1.3.11 访问者模式 (65)

1. 设计模式 内容简介 有感于设计模式在日常开发中的重要性,同时笔者也自觉对设计模式小有心得,故笔者*写二十三种设计模式的简单例子、 并整理二十三种设计模式的理论部分,综合汇总成这份Java设计模式(疯狂J*va 联盟版),希望对大家有所帮助。 本份帮助文档主要是为了向读者介绍二十三种设计模式,包括模式的描述,适用性,模*的组成部分,并附带有简单的例 子和类*,目的是为了让读*了解二十三种*计模式,并能方便的查阅各种设计模*的用法及注意点。 所附的例子非常简单,慢慢的引导读者从浅到深了解设计模式,并能从中享受设计的乐趣。 由于每个人对设计*式的理解都不尽一致,因此,可能本文档的例子*有不恰当的地方,还望各位读者指出不恰当的地方。 欢迎登录疯狂J*va联盟进行技术交流,疯狂Java联盟的论坛宗旨是:所有的技术发帖,均有回复。 疯狂Java联盟网址: 笔者简介 笔者曾师从李刚老师学习Java,现居广州。对Java软件开发、各种Java开源技术都非常感兴趣,曾参与开发、主持*发过大 量Java、Java EE项目,对Java、Java *E项目有一定认识*见解。欢迎大家与笔者就Java、Java EE相*方面进行技术交流。 笔者现为疯狂Jav*联盟的总版主(论坛ID:杨恩雄),也希望通过该平台与大家分享Java、Java EE技术、*得。 本人邮箱: 声明 本文档编写、制作过程中得到了疯狂Java联盟、以及笔者学习工作过程大量朋友的支持,大家都抱着一个目的:为国内软件 软件开发事业作出绵薄贡献。 我们在此郑重宣布,本*档遵循Apache 2.0协议。在完整保留全部文本(包括本版权页),并且不违反Apache 2.0协议的前提 下,允许和鼓励任何人进行全文转载及推广,我们放弃除署名权外的一切权利。

仲恺软件设计模式实验指导书

设计模式实验指导 一、实验目的 使用合理的UML建模工具(ROSE或者Visio)和任意一种面向对象编程语言实现几种常用的设计模式,加深对这些模式的理解,包括简单工厂模式、工厂方法 模式、抽象工厂模式、单例模式、适配器模式、组合模式、装饰模式、外观模式、、命令模式、迭代器模式、观察者模式、策略模式等12种模式。 二、实验容 根据以下的文档描述要求,使用合理的UML建模工具(ROSE或者Visio)和任意一种面向对象编程语言实现以下设计模式,包括根据实例绘制相应的模式结构 图、编写模式实现代码,运行并测试模式实例代码。 (1)、简单工厂模式 使用简单工厂模式模拟女娲(Nvwa)造人(Person),如果传入参数M,则返回一个Man对象,如果传入参数W,则返回一个Woman对象,请实现该场景。 现需要增加一个新的Robot类,如果传入参数R,则返回一个Robot对象,对代码进行修改并注意女娲的变化。 (2)、工厂方法模式 海尔工厂(Haier)生产海尔空调(HaierAirCondition),美的工厂(Midea)生产美的空调(MideaAirCondition) 。使用工厂方法模式描述该场景,绘制类图并编程实现。 (3)、抽象工程模式 电脑配件生产工厂生产存、CPU等硬件设备,这些存、CPU的品牌、型号并不一定相同,根据下面的“产品等级结构-产品族”示意图,使用抽象工厂模式实现电脑配件生产过程并绘制相应的类图,绘制类图并编程实现。

(4)、单例模式 用懒汉式单例实现在某系统运行时,其登录界面类LoginForm只能够弹出一个,如果第二次实例化该类则提示“程序已运行”。绘制类图并编程实现。 提示:不要求做界面,用类模拟界面就可以了。 (5)、组合模式 使用组合模式设计一个杀毒软件(AntiVirus)的框架,该软件既可以对某个文件夹(Folder)杀毒,也可以对某个指定的文件(File)进行杀毒,文件种类包括文本文件TextFile、图片文件ImageFile、音频视频文件MediaFile。绘制类图并编程实现。 (6)、适配器模式 现有一个接口DataOperation定义了排序方法sort(int[]) 和查找方法 search(int[], int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法,类BinarySearch 的binarySearch(int[], int)方法实现了二分查找算法。现使用适配器模式设计一个系统,在不修改源代码的情况下将类QuickSort和类BinarySearch的方法适配到DataOperation接口中。绘制类图并编程实现。(要现快速排序和二分查找) (7)、装饰模式 某图书管理系统中,书籍类(Book)具有借书方法borrowBook()和还书方法returnBook() 。现需要动态给书籍对象添加冻结方法freeze()和遗失方法lose()。使用装饰模式设计该系统,绘制类图并编程实现。 (8)、外观模式

相关主题
文本预览