当前位置:文档之家› 通用串行总线控制器出现叹号的解决方法

通用串行总线控制器出现叹号的解决方法

通用串行总线控制器出现叹号的解决方法

win7 通用串行总线控制器出现很多叹号的解决方法

1、运行注册表编辑器(开始-->运行-->regedit);

2、依次展开HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\

3、在这下面有很多用“{}”括起来的项,如

{36FC9E60-C465-11CF-8056-444553540000}(不同的机器可能不一样);

4、右边发现有个表项的值为“Universal Serial Bus controllers",找到并删除“upperfilters”项或“lowerfilters”项;

5、右键“我的电脑”,“属性”,“设备管理器”,把通用串行总线控制器下面的所有带叹号的设备都删除,扫描检测硬件改动,会一直安装,OK后重启。

XP系统

1、注册表打开 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\

2、在这下面“{}”括起来的项,查看“通用串行总线控制器”,在右面窗口找到并删除“upperfilter”项或“lowerfilter”项,然后进入设备管理器中把通用串行总线控制器下面的所有带叹号的设备都删除,扫描检测硬件安装即可。

SPIICUARTUSB串行总线协议的区别

S P I、I2C、U A R T、U S B串行总线协议的区别 SPI、I2C、UART三种串行总线协议的区别 第一个区别当然是名字: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS) UART(Universal Asynchronous Receiver Transmitter:通用 异步收发器) 第二,区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出( SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互 相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Mast er),其他设备为SPI从机或从设备(Slave)。主从设备间可以 实现全双工通信,当有多个从设备时,还可以增加一条从设备 选择线。 如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),

一 个输入口(SDI),另一个口则视实现的设备类型而定,如果 要 实现主从设备,则需输入输出口,若只实现主设备,则需输出 口即可,若只实现从设备,则只需输入口即可。 I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-mas ter)接口标准,具有总线仲裁机制,非常适合在器件之间 进 行近距离、非经常性的数据通信。在它的协议体系中,传输数 据时都会带上目的设备的设备地址,因此可以实现设备组网。如果用通用IO口模拟I2C总线,并实现双向传输,则需一 个输 入输出口(SDA),另外还需一个输出口(SCL)。(注:I2C资料了解得比较少,这里的描述可能很不完备) UART总线是异步串口,因此一般比前两种同步串口的结构要复 杂很多,一般由波特率产生器(产生的波特率等于传输波特 率 的16倍)、UART接收器、UART发送器组成,硬件上由两根线,

通用串行总线接口——USB

通用串行总线接口——USB 我相信大家都对USB有一定的了解吧。但是也不能排除有不懂的,不过没关系,下面我就把这一计算机外设接口技术——USB来个全面介绍。我以几个章节来介绍USB的概念、基本特性以及它的应用,让大家对USB有个全面的认识。 概念篇 由于多媒体技术的发展对外设与主机之间的数据传输率有了更高的需求,因此,USB 总线技术应运而生。USB(Universal Serial Bus),翻译为中文就是通用串行总线,是由Conpaq,DEC,IBM,Inter,Microsoft,NEC和Northen Telecom等公司为简化PC与外设之间的互连而共同研究开发的一种免费的标准化连接器,它支持各种PC与外设之间的连接,还可实现数字多媒体集成。 USB接口的主要特点是:即插即用,可热插拔。USB连接器将各种各样的外设I/O端口合而为一,使之可热插拔,具有自动配置能力,用户只要简单地将外设插入到PC以外的总线中,PC就能自动识别和配置USB设备。而且带宽更大,增加外设时无需在PC内添加接口卡,多个USB集线器可相互传送数据,使PC可以用全新的方式控制外设。USB可以自动检测和安装外设,实现真正的即插即用。而USB的另一个显著特点是支持“热”插拔,即不需要关机断电,也可以在正运行的电脑上插入或拔除一个USB设备。随着时间的推移,USB将成为PC的标准配置。基于USB的外设将逐渐增多,现在满足USB要求的外设有:调制解调器,键盘,鼠标,光驱,游戏手柄,软驱,扫描仪等,而非独立性I/O连接的外设将逐渐减少。即主机控制式外设减少,智能控制控制外设增多。USB 总线标准由1.1版升级到2.0版后,传输率由12Mbps增加到了240Mbps,更换介质后连接距离由原来的5米增加到近百米。基于这点,USB也可以做生产ISDN以及基于视频的产品。如数据手套的数字化仪提供数据接口。USB总线结构简单,信号定义仅由2条电源线,2条信号线组成。 基本特性 https://www.doczj.com/doc/182950436.html,B的硬件结构 USB采用四线电缆,其中两根是用来传送数据的串行通道,另两根为下游(Downstream)设备提供电源,对于高速且需要高带宽的外设,USB以全速12Mbps的传输数据;对于低速外设,USB则以1.5Mbps的传输速率来传输数据。USB总线会根据外设情况在两种传输模式中自动地动态转换。USB是基于令牌的总线。类似于令牌环网络或FDDI基于令牌的总线。USB主控制器广播令牌,总线上设备检测令牌中的地址是否与自身相符,通过接收或发送数据给主机来响应。USB通过支持悬挂/恢复操作来管理USB总线电源。USB系统采用级联星型拓扑,该拓扑由三个基本部分组成:主机(Host),集线器(Hub)和功能设备。 主机,也称为根,根结或根Hub,它做在主板上或作为适配卡安装在计算机上,主机包含有主控制器和根集线器(Root Hub),控制着USB总线上的数据和控制信息的流动,每个USB系统只能有一个根集线器,它连接在主控制器上。 集线器是USB结构中的特定成分,它提供叫做端口(Port)的点将设备连接到USB总线上,同时检测连接在总线上的设备,并为这些设备提供电源管理,负责总线的故障检测和恢复。集线可为总线提供能源,亦可为自身提供能源(从外部得到电源),自身提供能源的设备可插入总线提供能源的集线器中,但总线提供能源的设备不能插入自身提供能源的集线器或支持超过四个的下游端口中,如总线提供能源设备的需要超过100mA电源时,不能同总线提供电源的集线器连接。 功能设备通过端口与总线连接。USB同时可做Hub使用。

几种通信总线详尽总结

微处理器中常用的集成串行总线是通用异步 接收器传输总线(UART)、串行通信接口(SCI) 和通用串行总线(USB)等,这些总线在速度、 物理接口要求和通信方法学上都有所不同。本文详细介绍了嵌入式系统设计的串行总线、驱动器和物理接口的特性,并为总线最优选择提供性能比较和选择建议。 由于在消费类电子产品、计算机外设、汽车和工业应用中增加了嵌入式功能,对低成本、高速和高可靠通信介质的要求也不断增长以满足这些应用,其结果是越来越多的处理器和控制器用不同类型的总线集成在一起,实现与PC软件、开发系统(如仿真器)或网络中的其它设备进行通信。目前流行的通信一般采用串行或并行模式,而串行模式应用更广泛。 微处理器中常用的集成串行总线是通用异步接收器传输总线、串行通信接口、同步外设接口(SPI)、内部集成电路(I2C) 和通用串行总线,以及车用串行总线,包括控制器区域网(CAN)和本地互连网(LIN)。这些总线在速度、物理接口要求和通信方法学上都有所不同。本文将对嵌入式系统设计的串行总线、驱动器和物理接口这些要求提供一个总体介绍,为选择最优总线提供指导并给出一个比较图表(表1)。为了说明方便起见,本文的阐述是基于微处理器的设计。 串行与并行相比 串行相比于并行的主要优点是要求的线数较少。例如,用在汽车工业中的LIN 串行总线只需要一根线来与从属器件进行通信,Dallas公司的1-Wire总线只使用一根线来输送信号和电源。较少的线意味着所需要的控制器引脚较少。集成在一个微控制器中的并行总线一般需要8条或更多的线,线数的多少取决于设计中地址和数据的宽度,所以集成一个并行总线的芯片至少需要8个引脚来与外部器件接口,这增加了芯片的总体尺寸。相反地,使用串行总线可以将同样的芯片集成在一个较小的封装中。 另外,在PCB板设计中并行总线需要更多的线来与其它外设接口,使PCB板面积更大、更复杂,从而增加了硬件成本。此外,工程师还可以很容易地将一个新器件加到一个串行网络中去,而且不会影响网络中的其它器件。例如,可以很容易地去掉总线上旧器件并用新的来替代。

单片机常用名词解释

单片机常用名词解释 总线: 指能为多个部件服务的信息传送线,在微机系统中各个部件通过总线相互通信。 地址总线(AB):地址总线是单向的,用于传送地址信息。地址总线的宽度为16位,因此基外部存储器直接寻址64K,16位地址总线由P0口经地址锁存器提供低8位地址(A0~A7),P2口直接提供高8位地址(A8~A15)。 数据总线(DB):一般为双向,用于CPU与存储器,CPU与外设、或外设与外设之间传送数据信息(包括实际意义的数据和指令码)。数据总线宽度为8位,由P0口提供。 控制总线(CB):是计算机系统中所有控制信号的总称,在控制总线中传送的是控制信息。由P3口的第二功能状态和4根独立的控制总线,RESET、EA、ALE、PSEN组成。 存储器:用来存放计算机中的所有信息:包括程序、原始数据、运算的中间结果及最终结果等。 只读存储器(ROM):只读存储器在使用时,只能读出而不能写入,断电后ROM中的信息不会丢失。因此一般用来存放一些固定程序,如监控程序、子程序、字库及数据表等。ROM按存储信息的方法又可分为以下几种 1、掩膜ROM:掩膜ROM也称固定ROM,它是由厂家编好程序写入ROM(称固化)供用户使用,用户不能更改内部程序,其特点是价格便宜。 2、可编程的只读存储器(PROM):它的内容可由用户根据自已所编程序一次性写入,一旦写入,只能读出,而不能再进行更改,这类存储器现在也称为OTP(Only Time Programmable)。 3、可改写的只读存储器EPROM:前两种ROM只能进行一次性写入,因而用户较少使用,目前较为流行的ROM芯片为EPROM。因为它的内容可以通过紫外线照射而彻底擦除,擦除后又可重新写入新的程序。 4、可电改写只读存储器(EEPROM): EEPROM可用电的方法写入和清除其内容,其编程电压和清除电压均与微机CPU的5V工作电压相同,不需另加电压。它既有与RAM一样读写操作简便,又有数据不会因掉电而丢失的优点,因而使用极为方便。现在这种存储器的使用最为广泛。

SPI、I2C、UART三种串行总线的原理、区别及应用

简单描述: SPI 和I2C这两种通信方式都是短距离的,芯片和芯片之间或者其他元器件如传感器和芯片之间的通信。SPI和IIC是板上通信,IIC有时也会做板间通信,不过距离甚短,不过超过一米,例如一些触摸屏,手机液晶屏那些很薄膜排线很多用IIC,I2C能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C 是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存这两种线属于低速传输; 而UART是应用于两个设备之间的通信,如用单片机做好的设备和计算机的通信。这样的通信可以做长距离的。UART和,UART就是我们指的串口,速度比上面三者快,最高达100K左右,用与计算机与设备或者计算机和计算之间通信,但有效范围不会很长,约10米左右,UART优点是支持面广,程序设计结构很简单,随着USB的发展,UART也逐渐走向下坡; SmBus有点类似于USB设备跟计算机那样的短距离通信。 简单的狭义的说SPI和I2C是做在电路板上的。而UART和SMBUS是在机器外面连接两个机器的。 详细描述: 1、UART(TX,RX)就是两线,一根发送一根接收,可以全双工通信,线数也比较少。数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快。在多机通信上面用的最多。 2、SPI(CLK,I/O,O,CS)接口和上面UART相比,多了一条同步时钟线,上面UART 的缺点也就是它的优点了,对通信双方的时序要求不严格不同设备之间可以很容易结合,而且通信速度非常快。一般用在产品内部元件之间的高速数据通信上面,如大容量存储器等。 3、I2C(SCL,SDA)接口也是两线接口,它是两根线之间通过复杂的逻辑关系传输数据的,通信速度不高,程序写起来也比较复杂。一般单片机系统里主要用来和24C02等小容易存储器连接。 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 UART:通用异步串行口。按照标准波特率完成双向通讯,速度慢 SPI:一种串行传输方式,三线制,网上可找到其通信协议和用法的 3根线实现数据双向传输 串行外围接口 Serial peripheral interface UART:通用异步收发器 UART是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了

几大通信协议区别

I2C和SPI,UART的区别 2009-12-07 21:55 SPI--Serial Peripheral Interface,(Serial Peripheral Interface:串行外设接口)串行外围设备接口,是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 I2C--INTER-IC(INTER IC BUS:意为IC之间总线)串行总线的缩写,是PHILIPS 公司推出的芯片间串行传输总线。它以1根串行数据线(SDA)和1根串行时钟线(SCL)实现了双工的同步数据传输。具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。 能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存。 最主要的优点是其简单性和有效性。它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。 UART(Universal Asynchronous Receiver Transmitter:通用异步收发器):单端,远距离传输。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。----------------------------------------------------------------------------------------------------------------------------------- 区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。 如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。

单片机常用总线讲解

第8章单片机常用总线讲解 8.1 C总线接口 80C51单片机本身不具有总线接口,但是通过软件进行模拟,可以挂接具有C接口的芯片。 8.1.1 C总线的介绍 串行扩展总线在单片机系统中的应用是目前单片机技术发展的一种趋势。在目前比较流行的几种串行扩展总线中,总线以其严格的规范和众多带接口的外围器件而获得广泛应用。总线是PHILIPS公司推出的芯片间串行传输总线,它由两根线组成,一根是串行时钟线(SCL),一根是串行数据线(SDA)。主控器利用串行时钟线发出时钟信号,利用串行数据线发送或接收数据。总线由主控器电路引出,凡具有接口的电路(受控器)都可以挂接在总线上,主控器通过总线对受控器进行控制。 随着总线研究的深入,总线已经广泛应用于视/音频领域、IC卡行业和一些家电产品中,在智能仪器、仪表和工业测控领域也越来越多地得到应用。 8.1.2 总线的特点 总线的广泛应用是同它卓越的性能和简便的操作方法分不开的。总线的特点主要表现在以下几个方面: 硬件结构上具有相同的硬件接口界面。总线系统中,任何一个总线接口的外围器件,不论其功能差别有多大,都是通过串行数据线(SDA)和串行时钟线(SCL)连接到总线上。这一特点给用户在设计用用系统中带来了极大的便利性。用户不必理解每个总线接口器件的功能如何,只需将器件的SDA和SCL引脚连到总线上,然后对该器件模块进行独立的电路设计,从而简化了系统设计的复杂性,提高了系统抗干扰的能力。 线接口器件地址具有根大的独立性。每个接口芯片具有唯一的器件地址,由于不能发出串行时钟信号而只能作为从器件使用。各器件之间互不干扰,相互之间不能进行通信,各个器件可以单独供电。单片机与器件之间的通信是通过独一无二的器件地址来实现的。 软件操作的一致性。由于任何器件通过总线与单片机进行数据传送的方式是基本一样的, .v .. ..

SPI、I2C、UART三种串行总线的区别

SPI、I2C、UART三种串行总线的区别 第一个区别当然是名字: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS:意为IC之间总线) UART(Universal Asynchronous Receiver Transmitter:通用异步收发器) 第二,区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI 设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。 如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。 I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。 如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。(注:I2C资料了解得比较少,这里的描述可能很不完备) UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。 显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。 第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行; 第四,看看牛人们的意见吧! wudanyu:I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且I2C使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。SPI实现要简单一些,UART需要固定的波特率,就是说两位数据的间隔要相等,而SPI 则无所谓,因为它是有时钟的协议。 quickmouse:I2C的速度比SPI慢一点,协议比SPI复杂一点,但是连线也比标准的SPI要少。

单片机的引脚原理图及说明完整版

单片机的引脚原理图及 说明 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、P0端口的结构及工作原理 P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。 下面,我们先就组成P0口的每个单元部份跟大家介绍一下: 先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D 锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为‘读锁存器’端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为‘读引脚’的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。

D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。大家看上图中的D锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。 对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。 多路开关:在51单片机中,当内部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机或者编写的程序超过了单片机内部的存储器容量,需要外扩存储器时,P0口就作为‘地址/数据’总线使用。那么这个多路选择开关就是用于选择是做为普通I/O口使用还是作为‘数据/地址’总线使用的选择开关了。大家看上图,当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为‘地址/数据’总线使用的。 输出驱动部份:从上图中我们已看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。

串行和并行通信的区别

串行通信和并行通信图文解释: 并行通信传输中有多个数据位,同时在两个设备之间传输。发送设备将这些数据位通过 对应的数据线传送给接收设备,还可附加一位数据校验位。接收设备可同时接收到这些数据,不需要做任何变换就可直接使用。并行方式主要用于近距离通信。计算 机内的总线结构就是并行通信的例子。这种方法的优点是传输速度快,处理简单。 串行数据传输时,数据是一位一位地在通信线上传输的,先由具有几位总线的计算机内的发送设备,将几位并行数据经并--串转换硬件转换成串行方式,再逐位经 传输线到达接收站的设备中,并在接收端将数据从串行方式重新转换成并行方式,以供接收方使用。串行数据传输的速度要比并行传输慢得多,但对于覆盖面极其广 阔的公用电话系统来说具有更大的现实意义。 串行数据通信的方向性结构有三种,即单工、半双工和全双工。

串行传输和并行传输的区别: 从技术发展的情况来看,串行传输方式大有彻底取代并行传输方式的势头,USB 取代IEEE 1284,SATA取代PATA,PCI Express取代PCI……从原理来看,并行传输方式其实优于串行传输方式。通俗地讲,并行传输的通路犹如一条多车道的宽阔大道,而串行传输则是仅能允 许一辆汽车通过的乡间公路。以古老而又典型的标准并行口(Standard Parallel Port)和串行口(俗称COM口)为例,并行接口有8根数据线,数据传输率高;而串行接口只有1根数据线,数据传输速度低。在串行口传送1位的时间内, 并行口可以传送一个字节。当并行口完成单词“advanced”的传送任务时,串行口中仅传送了这个单词的首字母“a”。 根据组成字符的各个二进制位是否同时传输,字符编码在信源/信宿之间的传输分为并行传输和串行传输两种方式。 1、并行传输: 字符编码的各位(比特)同时传输。 特点: (1)传输速度快:一位(比特)时间内可传输一个字符; (2)通信成本高:每位传输要求一个单独的信道支持;因此如果一个字符包含8个二进制位,则并行传输要求8个独立的信道的支持; (3)不支持长距离传输:由于信道之间的电容感应,远距离传输时,可靠性较低。 2、串行传输: 将组成字符的各位串行地发往线路。 特点: (1)传输速度较低,一次一位; (2)通信成本也较低,只需一个信道。 (3)支持长距离传输,目前计算机网络中所用的传输方式均为串行传输。 方式: 串行传输有两种传输方式: 1、同步传输 2、异步传输 硬盘接口模式的区别,SATA的优点 PATA(IDE), SATA接口的区别以及SATA的优势

SPI、I2C、UART三种串行总线协议的区别

第一个区别当然是名字: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS) UART(Universal Asynchronous Receiver Transmitter:通用异步收发器) 第二,区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输 入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以 实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。如果用通用IO 口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现 的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输 出口即可,若只实现从设备,则只需输入口即可。 I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。 在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现 设备组网。如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入 输出口(SDA),另外还需一个输出口(SCL)。(注:I2C资料了解得比较少,这 里的描述可能很不完备) UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般 由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、 UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。显然, 如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。 第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行; 第四,看看牛人们的意见吧! 1、I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。SPI实现要简单 一些,UART需要固定的波特率,就是说两位数据的间隔要相等,而SPI则无 所谓,因为它是有时钟的协议。 2、I2C的速度比SPI慢一点,协议比SPI复杂一点,但是连线也比标准的SPI要少。

通用串行总线(USB)原理及接口设计

通用串行总线(USB)原理及接口设计 类别:接口电路阅读:1964 作者:广州五山华南理工大学电子与通信工程系98级硕士研究生(510641)刘炎冯穗力叶梧来源:《电子技术应用》 通用串行总线(USB)原理及接口设计摘要:以USB1.1为基础讨论了USB的基本原理、工作流程、通信协议和相应的关键技术,并介绍了一种USB接口的10M以太网卡的设计方案。已经发布的USB2.0支持480Mbps的高速数据传输,这将使PC可以通过USB接口传输更高速更大量的数据。还论述了USB2.0的改进和优点。关键词:通用串行总线(USB) 设备驱动程序WDM 通用串行总线USB(UniversalSerialBus)是Intel、Microsoft等大厂商为解决计算机外设种类的日益增加与有限的主板插槽和端口之间的矛盾而于1995年提出制定的。它是一种用于将适用USB的外围设备连接到主机的外部总线结构,主要用在中速和低速的外设。USB同时又是一种通信协议,支持主机和USB的外围设备之间的数据传输。目前较多设备支持的是USB1.1 1 ,最新的USB2.0 3 已于2000年4月正式发布。 USB设备具有较高的数据传输率、使用灵活、易扩展等优点。 USB1.1有全速和低速两种方式,低速方式的速率为1.5Mbps,支持一些不需要很大数据吞吐量和很高实时性的设备,如鼠标等;全速模式为12Mbps,可以外接速率更高的外设。在刚刚发布的USB2.0中,增加了一种高速方式,数据传输率达到480Mbps,可以满足更加高速的外设的需要。 安装USB设备不必打开主机箱,它支持即插即用(PlugandPlay) 和热插拔(HotPlug)。当插入USB设备的时候,主机检测该外设并且通过自动加载相关的驱动程序来对该设备进行配置,并使其正常工作。 1USB的结构与工作原理 1.1物理结构 USB的物理拓扑结构如图1所示。在USB2.0中,高速方式下Hub使全速和低速方式的信令环境独立出来,图2中显示了高速方式下Hub的作用。 通过使用集线器(Hub)扩展可外接多达127个外设。USB的电缆有四根线,两根传送的是5V的电源,另外的两根是数据线。功率不大的外围设备可以直接通过USB总线供电,而不必外接电源。USB总线最大可以提供5V500mA电流,并支持节约能源的挂机和唤醒模式。 1.2USB设备逻辑结构 USB的设备可以分成多个不同类型,同类型的设备可以拥有一些共同的行为特征和工作协议,这样可以

USB设备的识别以及驱动安装问题

USB设备的识别以及驱动安装问题 问题描述 USB设备的硬件ID简介以故障判断和驱动安装方法 解决方案 通用串行总线(Universal Serial Bus,USB)是我们目前经常使用的计算机接口,可以连接的设备也是多种多样的,在日常咨询中难免遇到产品相关或其他第三方USB设备安装驱动的问题,对于此类问题,我们应该如何处理呢? 硬件ID是电脑中每个硬件的一个编号,固化在硬件的芯片里,所有设备都有此类编号。所有测试软件都有可能会出错,只有硬件ID是最可靠的,只要确认好INF文件中包含需要的硬件ID,就可以保证驱动是可以用的。 对于USB相关ID的简介 常见的USB硬件ID格式:USB\Vid_xxxx&Pid_yyyy&Rev_zzzz其中Vid表示硬件厂商信息,Pid表示产品编号,对于一般驱动安装我们需要核实Vid,Pid信息,其中Vid的厂商对照表已经更新到《驱动下载&软件安装汇总》(知识库编号:30118)中以便于查询。 比如ThinkPad鼠标设备ID如上图通过VID_04B3,在《驱动下载&软件安装汇总》中查询,结果IBM Corp.表示是IBM授权的设备。 另外,其中的HID表示的是人体学接口设备(Human Interface Device, HID),目前USB设备常见的的有人体学接口设备(Human Interface Device,HID)、通信设备类(Communication Device Class,CDC)和大容量存储设备(Mass Storage Device,MSD)等几类设备,也可以从兼容ID中的Class字段来判断是什么类型的设备,如下图: 比如上图中的Class_03表示的就是HID设备,一般情况下典型代码为1,2,3,6,7,8,

IIC总线协议最佳理解

IIC总线协议 1)IIC总线的概念 IIC总线是一种串行总线,用于连接微控制器及其外围设备,具有以下特点: ①两条总线线路:一条串行数据线(SDA),一条串行时钟线(SCL) ②每个连接到总线的器件都可以使用软件更具它的唯一的地址来识别 ③传输数据的设备间是简单的主从关系 ④主机可以用作主机发送器或主机接收器 ⑤它是一个多主机总线,两个或多个主机同时发起数据传输时,可以通过冲突检测和仲裁来方式数据被破坏 ⑥串行的8位双向数据传输,位速率在标准模式下可达100kbit/s,在快速模式下可达400kbit/s,在高速模式下可达3.4Mbit/s ⑦片上的滤波器可以增加干扰功能,保证数据的完整 ⑧连接到同一总线上的IC数量受到总线最大电容的限制 发送器:发送数据到总线的器件 接收器:从总线接收数据的器件 主机:发起/停止数据传输、提供时钟信号的器件 从机:被主机寻址的器件 多主机:可以有多个主机试图去控制总线,但是不会破坏数据 仲裁:当多个主机试图去控制总线时,通过仲裁可以使得只有一个主机获得总线控制权,并且它传输的信息不会被破坏 同步:多个器件同步时钟信号的过程

I2C总线通过上拉电阻接正电源。当总线空闲时,两根线均为高电平。连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL 都是线“与”关系。 每个接到I2C总线上的器件都有唯一的地址。主机与其它器件间的数据传送可以是由主机发送数据到其它器件,这时主机即为发送器。由总线上接收数据的器件则为接收器。 在多主机系统中,可能同时有几个主机企图启动总线传送数据。为了避免混乱, I2C总线要通过总线仲裁,以决定由哪一台主机控制总线。 在80C51单片机应用系统的串行总线扩展中,我们经常遇到的是以80C51单片机为主机,其它接口器件为从机的单主机情况。 数据位的有效性规定: I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态

几种通信总线详尽总结

微处理器中常用的集成串行总线就是通用异步接收器传输总线(UART)、串行通 信接口(SCI)与通用串行总线(USB)等,这些总 线在速度、物理接口要求与通信方法学上都 有所不同。本文详细介绍了嵌入式系统设计 的串行总线、驱动器与物理接口的特性,并为 总线最优选择提供性能比较与选择建议。 由于在消费类电子产品、计算机外设、汽车与工业应用中增加了嵌入式功能,对低成本、高速与高可靠通信介质的要求也不断增长以满足这些应用,其结果就是越来越多的处理器与控制器用不同类型的总线集成在一起,实现与PC软件、开发系统(如仿真器)或网络中的其它设备进行通信。目前流行的通信一般采用串行或并行模式,而串行模式应用更广泛。 微处理器中常用的集成串行总线就是通用异步接收器传输总线、串行通信接口、同步外设接口(SPI)、内部集成电路(I2C) 与通用串行总线,以及车用串行总线,包括控制器区域网(CAN)与本地互连网(LIN)。这些总线在速度、物理接口要求与通信方法学上都有所不同。本文将对嵌入式系统设计的串行总线、驱动器与物理接口这些要求提供一个总体介绍,为选择最优总线提供指导并给出一个比较图表(表1)。为了说明方便起见,本文的阐述就是基于微处理器的设计。 串行与并行相比

串行相比于并行的主要优点就是要求的线数较 少。例如,用在汽车工业中的LIN串行总线只需要一根线来与从属器件进行通信,Dallas公司的1-Wire总线只使用一根线来输送信号与电源。较少的线意味着所需要的控制器引脚较少。集成在一个微控制器中的并行总线一般需要8条或更多的线,线数的多少取决于设计中地址与数据的宽度,所以集成一个并行总线的芯片至少需要8个引脚来与外部器件接口,这增加了芯片的总体尺寸。相反地,使用串行总线可以将同样的芯片集成在一个较小的封装中。 另外,在PCB板设计中并行总线需要更多的线来与其它外设接口,使PCB板面积更大、更复杂,从而增加了硬件成本。此外,工程师还可以很容易地将一个新器件加到一个串行网络中去,而且不会影响网络中的其它器件。例如,可以很容易地去掉总线上旧器件并用新的来替代。 串行总线的故障自诊断与调试也非常简单,可以很容易地跟踪网络中一个有故障的器件并用新器件替换而不会干扰网络。但另一方面,并行总线比串行速度快。例如,Rambus公司的“Redwood”总线速度可高达6、4GHz,而最高的串行速度不会超过几个兆赫。 在工业与汽车应用中常用的串行协议 1、UART

汽车总线系统通信协议分析与比较

河南机电高等专科学校 《汽车单片机与局域网技术》 大作业 专业班级:汽电112 姓名:史帅峰 学号:111606240 成绩: 指导老师:袁霞 2013年4月16日 汽车总线系统通信协议分析与比较 摘要:本文主要针对汽车总线系统通讯协议,探讨汽车总线通讯协议的种类、发展趋势以及技术特点。在对诸多组织和汽车制造商研发的各类汽车总线进行比较和探讨的基础上,对其现状进行了分析;并综合汽车工业的特点对这两大类汽车总线协议的发展前景作了分析。关键词:汽车总线技术通讯协议车载网络 引言:汽车电子技术是汽车技术和电子技术结合发展的产物。从20世纪60年代开始,随着电子技术的飞速发展,汽车的电子化已经成为公认的汽车技术发展方向。在汽车的发展过程中,为了提高汽车的性能而增加汽车电器,电器的增加导致线缆的增加,而线束的增加又使整车质量增加、布线更加复杂、可维护性变差,从而又影响了汽车经济性能的提高。因此,一种新的技术就被研发出来,那就是汽车总线技术。总线技术在汽车中的成功应用,标志着汽车电子逐步迈向网络化。 一、车载网络的发展历程 20世纪80年代初,各大汽车公司开始研制使用汽车内部信息交互的通信方式。博世公司与英特尔公司推出的CAN总线具有突出的可靠性、实时性和灵活性,因而得到了业界的广泛认同,并在1993年正式成为国际标准和行业标准。TTCAN对CAN协议进行了扩展,提供时间触发机制以提高通讯实时性。TTCAN的研究始于2000年,现已成为CAN标准的第4部分ISO11898-4,该标准目前处于CD(委员会草案)阶段。 1994年美国汽车工业协会提出了1850通信协议规范。从1998年开始,由宝马、奥迪等七家公司和IC公司共同开发能满足车身电子要求的低成本串行总线技术,该技术在2000年2月2日完成开发,它就是LIN。 FlexRay联盟推进了FlexRay的标准化,使之成为新一代汽车内部网络通信协议。FlexRay车载网络标准已经成为同类产品的基准,将在未来很多年内,引导整个汽车电子产品控制结构的发展方向。FlexRay是继CAN和LIN之后的最新研发成果。 车载网络的分类及其网络协议 从20世纪80年代以来不断有新的网络产生,为了方便研究和应用,美国汽车工业协会(SAE)的车辆委员会将汽车数据传输网络划分为A、B、C三类。 A类网络 A类网络是面向传感器/执行器控制的低速网络,数据传输速度通常小于10kb/s,主要用于后视镜调整、电动车窗、灯光照明等控制。 A类网络大都采用通用异步收发器(UART,Universal Asynchronous Receiver/Trsmitter)标准,使用起来既简单又经济。但随着技术水平的发展,将会逐步被其他标准所代替。 A类网络目前首选的标准是LIN总线,是一种基于UART数据格式、主从结构的单线12V总线通信系统,主要用于智能传感器和执行器的串行通信。

单片机电路图详解

单片机:交通灯课程设计(一)(2007-04-21 13:28:54) 目录 摘要--------------------------------------------------------- 1 1.概述 -------------------------------------------------------- 2 2.硬件设计----------------------------------------------------- 3 2.1单片机及其外围--------------------------------------------3 2.1.1单片机的选择-----------------------------------------3 2.1.2单片机的特点及其应用范围----------------------------- 3 2.1.3存储器的扩展----------------------------------------- 4 2.1.4内存的扩展------------------------------------------- 6 2.1.5MCS-52的I/O接口扩展--------------------------------- 8 2.2电路部分--------------------------------------------------11 2.2.1元器件选用-------------------------------------------11 2.2.2电路完成功能-----------------------------------------13 3.软件设计------------------------------------------------------15 3.1软件概述-------------------------------------------------15 3.2汇编语言指令说明-----------------------------------------16 3.3定时/计数器的原理----------------------------------------16 3.3.1定时/计数器的概述-----------------------------------16 3.3.2 8255A片选及各端口地址-------------------------------18 3.3.3信号控制码------------------------------------------18 3.3.4工作方式寄存器--------------------------------------19 3.3.5定时/计数器初值及定时器T0的工作方式----------------20

SPI同步串行总线原理

三、SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI概述 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB 的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI 和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO 线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。 SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。 [编辑本段] SPI协议举例

相关主题
相关文档 最新文档