当前位置:文档之家› 正弦波无刷直流电机的新型转子位置检测方法

正弦波无刷直流电机的新型转子位置检测方法

正弦波无刷直流电机的新型转子位置检测方法
正弦波无刷直流电机的新型转子位置检测方法

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

脉冲注入法的无刷直流电机转子位置

基于脉冲注入法实现的无刷直流电机转子位置检测 摘要:本文提出了一种采用脉冲注入来检测无刷直流电机在静止状态时转子位置的方法。基于方法依次向定子绕组注入一系列的脉冲,通过脉冲电流的变化对转子位置进行估算。实验结果表明:该方法不但具有较高的位置检测准确性,同时对电机的参数依赖性低,可以省去电机内部的检测元件,又可以应用到其它电机。 关键词:无刷直流电机转子位置脉冲注入识别 Abstract This paper presents a method to detect the rotor position of Permanent Magnet motors at standstill by using a suitable sequence of voltage pulses. Based on this method, a suitable sequence of voltage pulses is applied to the stator windings. We can estimate the magnets position by the current variation of the pulses. The obtained results show that this method is not only efficient but also need bit of motor parameters,it can omit motor internal examination parts and may be used on other type of motors. Key words: BLDCM Rotor position Pulses injection Recognition 引言 近年来,由于无位置传感器无刷直流电机(BLDCM)具有调速特性好、无换向火花、无无线电干扰、效率高、寿命长、运行可靠、维护简便等优点,其应用越来越广泛。检测电机转子位置是无刷直流电机研究的一个重要课题。转子位置的不确定,将直接导致电机起动失败或短暂反转。目前,无刷直流电机的起动方法有硬件起动和软件起动。但是硬件起动方式的最大缺点就是附加的起动电路加大了电机的尺寸,而且对电机的可靠性也有所降低。软件起动方式中的预定位起动,需要先把转子驱动到某一特定位置,停止摆动后再对转子驱动【1】。由于转子的惯性,会使驱动时间变长。本文提出了一种在转子静止时检测电机的方法。 永磁电机中转子的位置不同,电机的磁场分布不同,对定子中各相电流的影响也不同【2】,作者就是利用定子中电流的变化,通过向定子中发送一系列的电流脉冲,根据测量得到的电流峰值来判断转子的位置。本文简要介绍了其工作原理,对在静止状态下检测转子位置进行了实验,验证了方法的可靠性和可行性。该方法不仅适用于无刷直流电机,对永磁同步电机以及其它永磁电机也有效,并且对电机的参数没有特殊要求。 1. 基本原理 永磁电机的示意图如图1所示: 图1 基本原理 以A相为例,其内部磁场( A ?)由永磁 体PM的磁场( AM ?)和定子电流磁场( A i ?) 两个效果叠加的。 A AM Ai ??? =+(1) 如果相电流再高一些,磁路将饱和,并且绕组的自感应系数变小。如果改变电流的方向,则总磁通就变为: A AM Ai ??? =-(2) 这样,磁通将退出饱和,绕组的自感应系数将变高。正电压脉冲作用,数字控制器通过电流传感器不断对电流进行A/D 变换,当检测脉冲结束时,得到一个峰值电流【3】。然后再发出一个负电压脉冲,检测得到负的相电流峰值。比较两个被放大后的电流值可以得到一个电流差 12 A A A i i i =- △(3) 图1状态下各相的测试电流示意图如下所示,由于B,C两相的位置相对与磁铁中心轴对称,所以它们的电流差应该大小相等。由于A相此时所产生的磁场与磁铁刚好一致正反电流所受到磁场的影响也是最大的,产生的电流差理论上也是最大的。

基于直流无刷电机霍尔信号的位置估算

基于直流无刷电机霍尔信号的位置估算 技术领域 本发明涉及一种利用低分辨率霍尔位置信号,通过一定算法,来比较精确地估计转子位置和转速。以便能够对直流无刷电机采用矢量控制。 背景技术 目前,直流无刷电机在电动车领域应用较广,一者该类型电机功率密度高、调速性能好,二者是其成本较低,有些配置较低成本的霍尔位置传感器。 一般情况下直流无刷电机采用方波驱动,控制简单。然其换向间的电流突变,会造成较大的转矩脉动,产生较大的噪声污染。采用正弦波驱动,即矢量控制,所产生的转矩脉动明显小于方波驱动。但是矢量控制需要连续的、高精度的位置信息,本文介绍的算法就是针对简单的霍尔信号来估算出较高精度的转子位置信号。 发明内容 本文针对的对象有霍尔位置传感器的直流无刷电机中,三个霍尔元件HA 、HB 、HC 在空间上依次间隔120°电角度。输出的信号也是依次间隔120°,脉宽180° 电角度的方波。如下图1所示。 PWM1 PWM2 PWM3 PWM4 PWM5 Hall A Hall B Hall C PWM6 图1 方波驱动霍尔信号与PWM 信号对应图

由上图可知,三相霍尔信号每60°跳变一次,分别对应一个电周期的六个状态(15°、45°、105°、165°、225°、285°、345°)。这里看出霍尔传感器的分辨率仅为60°。 为了获取高分辨率的转子位置,本文提出基于转子平均转速(60°间的平均转速)来估算转子位置。 设i θ为霍尔信号跳变时刻对应转子位置,1-i ω为转子在i θ和1-i θ之间的平均转速,1-i T 为转子在i θ和1-i θ之间的间隔时间,那么有: 113/--=i i T πω (1) 为得到当前某一位置时刻的转子转速,引入转子转速平均加速度a ,有 2/)(21211-----+-=i i i i i T T a ωω (2) 那么可算出转子当前某一位置的瞬时转速为: k i i i i ip kT a T a 11112/----++=ωω (3) 其中,k T 为采样周期,k 为当前时刻到i θ对应时刻的采样次数。 当前转子位置为 21111)(21 )2/(k i k i i i i ip i ip kT a kT T a dt ----+++=+=?ωθωθθ (4) 对转子位置每60°进行重新校正,引入转子平均加速度计算得到的转子位置,在转速动态调整时,转子位置计算偏差得到较好抑制。

直流无刷电机反电动势过零检测方法汇总

直流无刷电机反电动势过零检测方法汇总 Modified by JACK on the afternoon of December 26, 2020

直流无刷电机反电动势过零检测方法 一般的永磁无刷直流电机是由三相逆变桥来驱动的,根据转子位置的不同,为了产生最大的平均转矩,在一个电角度周期中,具有6个换相状态。在任意一个时间段中,电机三相中都只有两相导通,每相的导通时间间隔为120°电角度。例如,当A相和B相已经持续60°电角度时,C相不导通。这个换相状态将持续60°电角度,而从B相不导通,到C相开始导通的过程,称为换相。换相的时刻取决于转子的位置,也可以通过判断不导通相过零点的时刻来决定。通过判断不导通相反电动势过零点,是最为常用也最为适合的无位置传感器控制方法。 反电动势过零点的检测方法是,通过测量不导通相的端电压,与电机的绕组中点电压进行比较,以得到反电动势的过零点。但对于小电枢电感的永磁无刷直流电机,在许多情况下,绕组中点电压难以获取,并且需要使用电阻分压和进行低通滤波,这样会导致反电动势信号大幅地衰减,与电机的速度不成比例,信噪比太低,另外也会给过零点带来更大的相移。 与上面的方法相比,更为常用的是虚拟中点电压法。假设A相和B相导通,则A和B两相电流大小相等,方向相反,C相电流为零,则根据永磁无刷直流电机数学模型有

根据上述方程,将不导通相的端电压与所计算的虚拟中点电压进行比较,也可以获得反电动势的过零点。这种方法十分简单,实现也比较方便。但是,由于无刷直流电机按一定频率进行PWM斩波控制,其计算出的虚拟中点电压也会随着PWM的高低电平而发生相同频率的在电源和地电平之间的变化。这样,就会带来极大的共模电平和高频噪声,会影响反电动势过零点检测的精确性。同样,和中点比较法一样,这种方法也必须要对绕组端电压进行分压和低通滤波。 这样,在一个PWM周期中,电枢绕组相电流就必然存在断续状态。速度提高时,电枢绕组中会产生峰峰值极大、频率很高的反电动势。由于以上特点,一些普遍采用的BLDC无位置传感器的控制方法均不适合。现有的无位置传感器的控制方法,如端电压检测法和转子位置估计法等,将很难得到良好的控制效果,其理由如下所述: 首先,无刷直流电机要求在电机转速提高的过程中,采用现有的端电压与中点电压比较的方法,要对三相绕组进行分压阻容滤波,计算出不导通相反电动势的过零点,再延后一定时间进行换相。但是,这样得到的反电动势过零点会因为无刷直流电机转速提高而产生过大的相移,导致当检测到反电动势过零点后,真正的换相点已经过去,从而造成换相失误。另外,现有的转子位置估

无刷直流电机结构

1. 磁回路分析法 图1-4 (摘自Freescale PZ104文档) 在图1-4中,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己部的磁力线方向与外磁力线方向保持一致,以形成一个最短闭合磁力线回路,这样转子就会按顺时针方向旋转了。 “当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大”。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,见图1-5所示: 图1-5 (摘自Freescale PZ104文档) 如此不断改变两头螺线管的电流方向,转子就会不停转起来了。改变电流方向的这一动作,就叫做换相(commutation)。注意:何时换相只与转子的位置有关,而与转速无关。 以上是两相两级无刷电机的工作原理,,下面我们来看三相两极无刷电机的构造。 2. 三相二极转子电机结构 定子三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最常用。

图1-6 (修改自Freescale PZ104文档) 图1-6显示了定子绕组的联结方式(转子未画出),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB,图1-7(a)~(f)分别描述了这6种情况下每个通电线圈产生的磁感应强度的方向(红、兰色表示)和两个线圈的合成磁感应强度方向(绿色表示)。 在图(a)中,AB相通电,中间的转子(图中未画出)会尽量往绿色箭头方向对齐,当转子到达图(a)中绿色箭头位置时,外线圈换相,改成AC相通电,这时转子会继续运动,并尽量往图(b)中的绿色箭头处对齐,当转子到达图(b)中箭头位置时,外线圈再次换相,改成BC相通电,再往后以此类推。当外线圈完成6次换相后,转子正好旋转一周(即360°)。再次重申一下:何时换相只与转子位置有关,而与转速无关。 图1-8中画出了换相前和换相后合成磁场方向的比较与转子位置的变化。一般来说,换相时,转子应该处于,比与新的合成磁力线方向垂直的位置不到一点的钝角位置,这样可以使产生最大的转矩的垂直位置正好处于本次通电的中间时刻。 (a) AB相通电情形(b) AC相通电情形 (c) BC相通电情形(d) BA 相通电情形 (e) CA 相通电情形(f) CB相通电情形

一种永磁同步电机转子初始位置的判断方法

说明书摘要 本发明公开一种永磁同步电机转子初始位置的判断方法,步骤是:首先利用脉振高频电压注入法得到初次估计的转子位置,然后在初次估计的交轴上注入一个正方向扰动信号,再估计转子位置,根据估计得到的转速方向判断磁极极性,得到电机转子初始位置。此种方法可解决脉振高频电压信号注入法检测转子初始位置时磁极极性的收敛问题,无需在直轴上注入正负方向的脉冲电流,可以有效地实现转子初始位置估算。

摘要附图

1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤: (1)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,给定?q 轴电压?0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到??d q -估计同步旋转坐标系的?q 轴电流?q i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的?q 轴电流?q i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到?q 轴电流?q i 的幅值信号()f θ?;最后,对该幅值信号()f θ?进行PI 调节,得到估计转速?ω ,对估计转速?ω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估计 的转子位置?first θ; (4)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,在?q 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>; (5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时,收 敛的磁极极性为N 极,转子初始位置??=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置??=initial first θθπ+。 2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特 征在于:所述步骤(1)中,采用转子的估计位置?θ进行Park 逆变换,获得实际两相静止坐标系下电压的给定值?u α和?u β。

无刷直流电机的工作原理精选文档

无刷直流电机的工作原 理精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

无刷直流电机原理 无刷直流电动机的工作原理 普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 ●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷直流电动机的原理简图如图一所示:

主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电度角,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

无刷直流电机的工作原理

无刷直流电机原理 无刷直流电动机的工作原理 普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。 ???? 无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 ●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷直流电动机的原理简图如图一所示: 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

无刷直流电机中霍尔传感器空间安放位置研究

无刷直流电机中霍尔传感器空间安放位置研究 0 引言 霍尔位置传感器在无刷直流电机中起着检测转子磁极位置的作用,为逻辑开关电路提供的换向信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组的换向导通[1]。初步实验结果表明,电枢反应和位置传感器的改变对霍尔检测信号影响较大,直接影响了电机绕组的换流,引起电机力矩波动从而带来噪音。文中针对引起霍尔传感器位置检测误差的主要因素进行了分析,并且通过对样机电机的三维有限元仿真计算,得到了霍尔传感器检测漏磁场的分布,为霍尔传感器的安放位置提供了依据。 1 霍尔安放位置问题 1.1 产生霍尔传感器位置检测误差的因素 产生霍尔传感器位置检测误差的因素主要有以下两方面:①霍尔传感器的参数;②传感器安装位置处的磁场变化[2]。 ①磁密滞环宽度 开关型霍尔元件只有在检测到磁场到达某一数值时,霍尔开关接通;而磁感应强度降低到某一数值以下,霍尔开关断开,因此输出信号的过零点与磁密过零点并不重合。而这些事件的触法点叫吸合点和释放点。开关型产品一般都给出吸合点和释放点的最大和最小磁感应强度,保证在最大吸合点和最小释放点所有开关接通或断开,但某一开关可能在这两个极限值之内吸合或释放。虽然某些产品不给出某一元件在两极限值之内的具体切换点,但保证有最小滞环,这一特性使得输出信号不会因为输入信号的微小波动而发生错误的跳变,以防抖动。实际应用中霍尔传感器的输出信号与绕组反电势之间期望的相位关系只能在一个方向上实现[3]。在另一个方向上将出现位置检测误差,如位置误差值为磁密滞环宽度,等于二倍的磁密门槛值;式中s 是从0 到D 值之间磁密随转子转角的平均变化率。如果传感器敏感的磁密按幅值为0.3T 的正弦函数变化,霍尔传感器的门槛值为0.01mT,则在一个电周期内位置误差为θ = arcsin(2*0.01/0.3)=3.85° 。 由式(1)可知,霍尔检测位置误差值可以通过选择滞环宽度小的霍尔传感器或者通过合理的计算安装位置处的磁密来选择合适的安装位置以获得高的磁密的变化率来进行抑制。 ②霍尔传感器的磁密敏感区 永磁电机中的磁铁在霍尔传感器正面产生磁场,且随着所产生磁场大小的变化,霍尔传感器接通或断开。当磁感应强度B 与霍尔传感器的平面法线成一角度θ 时,实际上作用于霍尔传感器的有效磁场是其法线方向的分量,即Bcosθ 。因此,当霍尔传感器的安装有角度偏差时,传感器的有效磁场将发生变化,此时的偏差角为θ ,由此产生的误差值既取决于这个夹角θ ,又取决于敏感区法线方向上磁密的变化程度[4]。因此,可以通过尽可能的减小传感器的装配误差以起到抑制这种误差的效果。 1.2 转子磁钢所产生的磁场变化对霍尔检测误差的影响转子磁钢产生霍尔传感器检测位置所需的磁密,永磁体所产生磁场的不均匀或转子的不同心会造成一周内磁场变化的不一致;此外,传感器通常安装在永磁体电机的端部,直接用电机的转子作为自己的转子,感应出所需要的磁场,但是当绕组通电流后,强的端部电枢反应会使位置检测处的磁场严重畸变,造成位置检测误差[5]。 2 对永磁电机端部磁场进行三维有限元分析 2.1 永磁电机的三维有限元模型 对永磁电机中传感器安装区域内的磁场分析时不能忽略永磁体的边缘效应与铁磁材料的弥散效应,因此二维有限元法不适于在此进行磁场的定量计算。使用三维有限元法可以实现对整个电机端部磁场的定性和定量分析,进行不同位置处的磁场分析,以确定传感器的安装位置[6]。文中在定子

无刷直流电机转子位置检测的新方法

无刷直流电机转子位置检测的新方法 作者:山东大学陈瑜黄玉王兴华 要 摘要:介绍了无刷直流电机无位置传感器转子位置检测的一种新方法。该方法利用非导通相反电势逻辑电平经逻辑处理后得到一脉冲列,采用PLL锁相技术将脉冲列倍频,通过倍频电路计数器的计数值可以精确检测转子位置。利用数字比较技术将计数值与锁存器中的预置数值比较,可以精确控制绕组电流的最佳换向时刻。通过调节锁存器中的预置值可以方便地调节换向角,非常适用于无刷直流电机的各种控制算法。同时该方法克服了外同步起动过程中易产生的振荡和失步现象。通过实验证明该方法是正确的、有效的。 关键词:无刷电机;无位置传感器;检测 1引言 无刷直流电机运行时需要采用位置传感器检测转子磁场位置信号,以控制逆变器功率管的换流,实现电机的自同步运行。传统的位置传感器是采用电子式或机电式传感器件直接测量,如霍尔效应器件(HED)、光学编码器、旋转变压器等。然而,这些传感器有以下缺点: ①分辨率低或运行特性不好,有的对环境条件很敏感,如振动、潮湿和温度变化都会使性能下降。 ②增加了电气连接数目,给抗干扰设计带来一定困难。 ③占用电机结构空间,限制了电机的小型化。 因此,无刷直流电机的无位置传感器化技术近年来日益受到人们的关注,国内外研究人员在这方面进行了积极的研究,提出了诸多方法,主要可分为反电势法、电感法、磁链法、旋转坐标系法、观测器法、卡尔曼滤波器法等[1~4]。反电势法简单、可靠,得到了广泛应用,其它方法由于计算复杂、对参数的鲁棒性差等原因应用较少。但反电势法的缺点是: ①低速时反电势小,难以得到有效转子位置信号,系统低速性能差。 ②需用低通滤波器去掉端电压中高频噪声并移相30°以满足换流要求,对滤波器要求较高,同时滤波器容易产生移相误差,而且移相误差大小与速度有关,难以补偿[5]。 ③对换相角调节困难,无法控制换相角γ(超前或滞后)的大小。 ④若采用外同步脉冲起动,当驱动信号由外同步脉冲驱动向内同步脉冲驱动切换时,由于切换点的相位误差易产生振荡甚至失步[6]。 针对以上问题,本文提出了一种新型转子位置检测的方法,以三相6拍运行的无刷直

伺服转子初始位置的检测

采用增量式光电编码器作为位置检测元件的PMSM伺服电机,必须要在系统刚上电时就测得电机精确的初始位置。因为在永磁伺服驱动系统中,电机转子的位置检测与初始定位是系统构成与运行的基本条件,也是矢量控制解耦的必要条件。只有永磁同步电机的转子位置能够准确知道,才可以按照矢量控制的一系列方程,将永磁同步电机等效变换成dq坐标系上的等效模型,系统才能按照类似他励直流电机的控制方法对永磁同步电机进行控制,从而可以达到他励直流电机构成的伺服传动系统的性能指标要求。使用增量式光电编码器测量电机位置的伺服系统中, 系统上电后需要先检测出电机的初始位置。电机的初始位置不仅影响伺服系统的定位精度, 而且会对电机的快速启动性能造成一定的影响。 在系统刚刚上电,电机尚未运行时,系统开始测量转子的初始位置,此过程只需要电流环工作,根据伺服系统运行要求,在寻找初始位置的过程中,只允许有很微小的抖动,并且要求很快回归原位。 假设,采用H45-8-2500-WL型光电编码器,电机转动过程中,编码器输出的信号:A(/A)、B(/B)、Z(/Z)、U(/U)、V(/V)和W(/W),如图1(b)所示。其中A(/A)、B(/B)两组信号为相差相位角的同频率信号,分辨率为2500PPR,通过判断两组脉冲的相位可以判断出电机的旋转方向,这两组信号经4倍频之后,电机空间位置的分辨率变为10000PPR。脉冲Z (/Z)是同步信号,电机每旋转一周产生一个信号,其产生的位置固定,即电机转子转到该位置时发出信号(零位信号)。 如图1所示为伺服电机混合式光电编码器的码盘结构及输出信号波形。码盘的中间码道为刻有高密度的增量式透光缝隙(2000,2500,3000PPR等),两边分布两组互成的三个缝隙,受光元件(Photo-Diode Array)接收到发光元件(LED)通过缝隙的光线而产生互差的三相信号,经过放大整形后输出矩形波信号U(/U)、V(/V)和W(/W)。利用这些信号的组合状态来分别代表磁极在空间的不同位置。U(/U)、V(/V)和W(/W)三相脉冲信号每转的脉冲个数与电机的极对数相一致。根据U(/U)、V(/V)和W (/W)三相脉冲的高低电平关系可以判断电机磁极的当前位置。其过程是:电机启动前,通过U(/U)、V(/V)和W(/W)三相脉冲的状态估算出电机磁极位置,即当前的角度,一旦电机旋转起来,光电编码器的增量式部分可以精确地检测出位置值。这里,伺服电机极对数为4对极,则每相输出信号U(/U)、V(/V)和W(/W)的周期为空间,在每个周期中可以组合成6种状态,每种状态代表空间角度范围为。

图文讲解无刷直流电机的工作原理

图文讲解无刷直流电机的工作原理 导读:无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。它的应用非常广泛,在很多机电一体化设备上都有它的身影。 什么是无刷电机? 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。由于无刷直流电动机是以自控式运行的,所以不会像变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。中小容量的无刷直流电动机的永磁体,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)材料。因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。

无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有可靠性高、无换向火花、机械噪声低等优点,广泛应用于高档录音座、录像机、电子仪器及自动化办公设备中。 无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。位置传感按转子位置的变化,沿着一定次序对定子绕组的电流进行换流(即检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定的逻辑关系进行绕组电流切换)。定子绕组的工作电压由位置传感器输出控制的电子开关电路提供。 位置传感器有磁敏式、光电式和电磁式三种类型。 采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。 采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。 采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件(例如耦合变压器、接近开关、LC谐振电路等),当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。 看看这个工程师怎么说?

无刷电机工作及控制原理(图解)

无刷电机工作及控制原理(图解) 左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。 让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。

让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。不信可以试试。 三相线分开,电机可以轻松转动 三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。

状态1 当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩是力与力臂的乘积。其中一个为零,乘积就为零了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,

直流无刷电机驱动原理

直流无刷电机的工作原理 直流无刷电机的优越性 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电 枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会 产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及 整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技 术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处 理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制 交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。 此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(Analog-to-digital converter,ADC)、脉冲宽度调制(pulse wide modulator,PWM)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。 直流无刷电机的控制结构 直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转 子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直 流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子 的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电 机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 直流无刷驱动器包括电源部及控制部如图(1) :电源部提供三相电源给电机,控制部则依需 求转换输入电源频率。

图文讲解无刷直流电机的工作原理

图文讲解无刷直流电机的工作原理电动无刷直流电机由电动机主体和驱动器组成导读:,是一种典型的机电一体化产品。同三相异步电动机十分相似。它的应用非常广泛,,机的定子绕组多做成三相对称星形接法在很多机电一体化设备上都有它的身影。 什么是无刷电机?无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。由于无刷所以不会像变频调速下重载启动的同步电机那样在转子上另直流电动机是以自控式运 行的,加启动绕组,也不会在负载突变时产生振荡和失步。中小容量的无刷直流电动机的永磁体,稀土永磁无刷电动机的体积比材料。因此,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)同容量三相异步电动机缩小了一个机座 号。 . . . 无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传无换向火花、机械噪声低等优点,广泛应用于统的接触式换向器和电刷。它具有可靠性高、高档录音座、录像机、电子仪器及自动化办公设备中。无刷直流电动机由永磁体转子、多极绕组定子、位置传感

器等组成。位置传感按转子(即检测转子磁极相对定子绕组的位位置的变化,沿着一定次序对定子绕组的电流进行换流按并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,置,定子绕组的工作电压由位置传感器输出控制的电子开。一定的逻辑关系进行绕组电流切换)关电路提供。位置传感器有磁敏式、光电式和电磁式三种类型。采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。(例是在定子组件上安装有电磁传感器部件采用电磁式位置传感器的无刷直流电动机,谐振电路等),当永磁体转子位置发生变化时,电磁效应将如耦合变压器、接近开关、LC 使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。看看这个工程师怎么 说? . . . 首先给大家复习几个基础定则:左手定则、右手定则、右手螺旋定则。别懵逼,我下面会给大家解释。简单说就是磁场中的载流导体,会受到这个是电机转动受力分析的基础,左手定则,力的作用。

相关主题
文本预览
相关文档 最新文档