当前位置:文档之家› 风力发电机组气动特性分析与载荷计算-1

风力发电机组气动特性分析与载荷计算-1

风力发电机组气动特性分析与载荷计算-1
风力发电机组气动特性分析与载荷计算-1

目录

1前言2

2风轮气动载荷 (2)

2.1 动量理论 (2)

2.1.1 不考虑风轮后尾流旋转 (2)

2.1.2 考虑风轮后尾流旋转 (3)

2.2 叶素理论 (4)

2.3 动量──叶素理论 (4)

2.4 叶片梢部损失和根部损失修正 (6)

2.5 塔影效果 (6)

2.6 偏斜气流修正 (6)

2.7 风剪切 (6)

3风轮气动载荷分析 (7)

3.1周期性气动负载................................................................................... 错误!未定义书签。

4.1载荷情况DLC1.3 (10)

4.2载荷情况DLC1.5 (10)

4.3载荷情况DLC1.6 (10)

4.4载荷情况DLC1.7 (11)

4.5载荷情况DLC1.8 (11)

4.6载荷情况DLC6.1 (11)

风力发电机组气动特性分析与载荷计算

1

前言

风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2

风轮气动载荷

目前计算风力发电机的气动载荷有动量—叶素理论、CFD 等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD 数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S 方程的CFD 方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD 求解N-S 方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论

动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1 不考虑风轮后尾流旋转

首先,假设一种简单的理想情况:

(1)风轮没有偏航角、倾斜角和锥度角,可简化成一个平面桨盘; (2)风轮叶片旋转时不受到摩擦阻力; (3)风轮流动模型可简化成一个单元流管;

(4)风轮前未受扰动的气流静压和风轮后的气流静压相等,即p 1 = p 2; (5)作用在风轮上的推力是均匀的; (6)不考虑风轮后的尾流旋转。

将一维动量方程用于风轮流管,可得到作用在风轮上的轴向力为

()21V V m

T -= (1) 式中 m 为流过风轮的空气流量

T AV m

ρ= (2) 于是

()21V V AV T T -=ρ (3)

而作用在风轮上的轴向力又可写成

()

-+-=p p A T (4)

由伯努利方程可得

++=+p V p V T 222121ρρ (5)

-+=+p V p V T 22222ρρ (6)

根据假设,p 1 = p 2,(5)式和(6)式相减可得

()

2221V V p p -=--+ρ (7)

由(3)式、(4)式和(7)式可得

()221V V V T += (8)

(8)式表明:通过风轮的风速是风轮前的风速和风轮后的尾流速度的平均值。设定轴向诱导因子11V u a a =,u a 为风轮处的轴向诱导速度,则

()111a V V T -= (9) ()11221a V V -= (10)

(9)式和(10)式代入(3)式得

2)1(42111AV a a T ρ?-= (11) )1(4)1121a a AV T C T -==ρ (12)

轴向诱导因子a 1又可写成

()121121U V V a +-= (13)

(13)式表示,如果风轮全部吸收风的能量,即V 2 = 0时,a 1有一个最大值1/2,但实际情况不可能这样,所以a 1 < 1/2。

根据能量方程,风轮吸收的能量(即风轮轴功率P )等于风轮前后气流动能之差

()()

22222212221V V AV V V m

P T -=-=ρ (14) 将(9)式、(10)式代入(14)式,可得

()2

113112a a AV P -=ρ (15)

当dP da /10=时,P 出现极值,则

()

03412211311=+-=a a AV da dP ρ (16)

a 1 = 1和a 1 = 1/3是(16)式的根。又因为a 1 < 1/2,故只考虑a 1 = 1/3的情况

()462131212-=a AV da P d ρ (17) 当a 1 = 1/3时,d P da 212

0/<,P 取极大值,由于P 的连续性,因此极大值就是最大值

??

?

??=

31max 212716AV P ρ (18) 相应地,功率系数C P 为最大值

()

593.027162/31max max ≈==AV P C P ρ (19)

这个值被称为贝兹极限,它表明在理想情况下,风轮最大能吸收593%

.的风的动能。 2.1.2 考虑风轮后尾流旋转

实际上,风轮尾流是旋转的,这时如果风轮处气流的角速度和风轮角速度相比是个小量的话,一维动量方程仍然可用,而且假设p 1 = p 2。风轮作用盘假设是由许多以风轮轴线为对称轴的小圆环(内半径r ,外半径r + dr )构成。这时

)(21V V m

d dT -= (20) 而

rdr V dA V m

d T T πρρ2== (21) 假设(11)式仍然成立,则有

11212V a V V =- (22)

将(21)式、(22)式与(9)式代入(20)式可得

dr a a V r dT )1(41121-=ρπ (23)

作用在整个风轮上的轴向力为

??-==R

rdr a a V dT T 0

1121)1(4πρ (24)

由动量矩方程,作用在该圆环上的转矩为

dM dm u r t = () (25) 式中u r t =?ω,为风轮叶片r 处的周向诱导速度,ω为风轮叶片r 处的周向诱导角速度。设定周向诱导因子a 22=ω/Ω,Ω为风轮转动角速度。将u a r t =22Ω,(20)式及(9)式代入(25)式可

dr a a V r dM Ω-=2113)1(4ρπ (26)

因此风轮轴功率为

???-Ω=Ω==R

dr r a a V dM dP P 0

31212

)1(4πρ (27)

设定风轮叶尖速比1/V R Ω=λ,2

R A π=,则

?-??=R

dr r a a R AV P 0

3124231)1(4λρ (28)

风能利用系数为

C R a a r dr P R

=?-?8124

2130

λ() (29)

2.2 叶素理论

叶素理论的基本出发点是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,将作用在每个叶素上的力和力矩沿展向积分,求得作用在风轮上的力和力矩。

从动量理论可知,当考虑风轮尾流旋转后,风轮处轴向速度)1(11a V V a -=,周向速度

)1(2a r V t +Ω=,实际流经风轮处的气流速度是t a V V W

+=。对每个叶素来说,α是迎角,?是入流角,θ是扭转角

])1()1([211r a V a arctg Ω+-=? (30) α?θ=- (31)

求出α后,查翼型手册得到作用在叶素上的升力系数C y 和阻力系数C x 。由于

dF dY dX n =+cos sin ?? (32) dF dY dX t =-sin cos ?? (33)

则法向力系数C n 和切向力系数C t 分别为

C C C n y x =+cos sin ?? (34) C C C t y x =-sin cos ?? (35)

作用在每个叶片上的叶素的轴向力为

dT cdr W C n ~

=??ρ22 (36)

式中c 为该叶素的弦长。因此对整个风轮面来说

dT N cdr W C b n =??ρ22 (37)

式中N b 为风轮叶片数。同理可求得转矩微元dM

dM N crdr W C b t =??ρ22 (38)

2.3 动量──叶素理论

为了计算风力机性能,必须计算风轮旋转面中的轴向诱导因子a 1和周向诱导因子a 2,这就需要用到动量──叶素理论。由动量理论可得

dr a a V r dT )1(41121-=ρπ (39) dr a a V r dM Ω-=2113)1(4ρπ (40)

由叶素理论可得

dT N cdr W C b n =??ρ22 (41) dM N crdr W C b t =??ρ22 (42)

由(38)式和(41)式可得

n b C W cdr N dr a a V r ??=-2)1(421121ρρπ (43)

整理得

n C V W a a ??=-212114)1(σ (44)

式中

σπ=N c r b 2 (45)

由于W V a 11)1(sin -=?,?221212)1(a V W -=,代入(44)式

a a a C n 11122141()()sin -=?-?σ? (46)

整理得

a a C n 11214()sin -=σ? (47)

同理,由(40)式和(42)式

t b C W crdr N dr a a V r ??=Ω-2)1(422113ρρπ (48)

整理得

r W V W C a a t Ω???=-1124)1(σ (49)

由于W V a 11)1(sin -=?,cos ()?=+12a r W Ω,?sin )1(11a V W -=,W r a Ω=+()cos 12?,代入(49)式并整理得

a a C t 2214()(sin cos )+=σ?? (50)

这样,通过迭代方法可以求出轴向诱导因子a 1和周向诱导因子a 2: 第一步:假设a 1、a 2初值;

第二步:计算入流角?,])1()1([211r a V a arctg Ω+-=?; 第三步:计算攻角α,α?θ=-;

第四步:计算升力系数C y 和阻力系数C x ; 第五步:计算法向力系数C n 和切向力系数C t

C C C n y x =+cos sin ?? C C C t y x =-sin cos ??

第六步:计算新的a 1、a 2值 a a C n 11214()sin -=σ?

a a C t 2214()(sin cos )+=σ??

第七步:比较新的a 1、a 2值和原来的a 1、a 2值,如果误差小于设定误差值,则认为求出a 1、a 2值,停止迭代;否则用新的a 1、a 2值代替原来的a 1、a 2值,回到第二步继续迭代。

当风轮叶片部分进入湍流状态时,一维动量方程不再适用,C a a T ≠-4111(),这时需要用经验

公式对动量──叶素理论进行修正。本文用Wilson 经验公式来修正。Wilson 认为,在大诱导速度的情况下,推力系数可以由下式近似表示

~

..(.)C a a T =+>058709603811

(51) 则当a 1038>.后,对内半径r ,外半径r dr +的风轮小圆环,由动量理论

rdr C V dT T πρ2~

21??=

(52)

由叶素理论

dT N cdr W C b n =??ρ2

(53) 由(51)式、(52)式、(53)式及?2

21212)1(a V W -=,可得

(..))sin 058709611122+-=a a C n σ? (54)

在迭代求解a 1、a 2的过程中,如果a 1038>.,则将第六步中的a a C n 112

14()sin -=σ?式由(54)式替换;否则按原迭代进行。

2.4 叶片梢部损失和根部损失修正

当气流绕风轮叶片剖面流动时,剖面上下表面产生压力差,则在风轮叶片的梢部和根部处产生绕流。这就意味着在叶片的梢部和根部的环量减少,从而导致转矩减小,必然影响到风轮性能。所以要进行梢部和根部损失修正。本文采用Prandtl 修正方法,即

F F F t r =? (55)

F e t f t =?-2πarccos() (56) f N R r R t b =?-2()sin ? (57)

F e r f r =?-2πarccos() (58) f N r r r r b n n =?-2()sin ? (59)

式中F 为梢部根部损失修正因子,F t 为梢部损失修正因子,F r 为根部损失修正因子,r n 为桨毂半

径。这时(39)式、(40)式分别可写成

Fdr a a V r dT )1(41121-=ρπ (60)

Fdr a a V r dM Ω-=2113)1(4ρπ (61)

(41)式、(42)式不变,迭代过程第六步的两关系式变为

a a C F n 11214()sin -=σ?

(62) a a C F t 2214()(sin cos )+=σ??

(63)

2.5 塔影效果

筒形塔架比衍架式塔架塔影效果更严重,气流在塔架处分离,造成速度损失,下风向机组尤其严重,采用位流理论模拟筒形塔架气流效果,得到气流表达式:

()(

)(

)

?

??

? ?

?+--

=∝2222

222/1y x y x D U U

其中:D 为塔架直径,x 和y 表示轴向和侧向相对于塔架中心的坐标,括号中的第二项为气流减少量,把塔影效果引起的流速减少量化到风速诱导因子中去,()a U -∝1,然后应用叶素-动量理论。

2.6 偏斜气流修正 最初的动量理论设计依据是轴向流,而风机经常运行在偏斜流情况下,这样,风轮后尾涡产生偏斜,为此须对动量理论做修正。

)]cos()2

tan(32151[ψχ

πR r a a s +

= γχ)16.0(+=a

s a 是修正后的轴向诱导因子,r 是当地叶素半径,R 是风轮半径,χ是尾涡偏斜角,γ是气流偏斜角,ψ是风轮偏航角(相对于下风向气流方向为0度)。

2.7 风剪切

风吹过地面时,由于地面上各种粗糙元(草、庄稼、森林、建筑物等)的摩擦作用,使风的能量减少而使风速减小,风速减小的程度随离地面的高度增加而降低。这样风速随高度变化而变化,这个现象称为风剪切。风速沿高度的变化规律称为风速廓线。本文用指数律表示风速廓线

γ)(11h h V V = (64)

式中V 为高度为h 处的风速,1V 为高度为h 1处的风速,γ为风速廓线指数,它与地面粗糙度有关。在我国规范中将地面粗糙度分为A ,B ,C 三类。按IEC 标准,取20.0=γ。

由于考虑风剪切后,风轮作用盘内不同高度处的来流风速是不同的,这时将风轮叶片叶素作用环用等圆心角d η分成一定数量n 的小区域,对于某个小区域,认为其来流风速是一定的,等于该小区域内某高度的风速,利用此风速作来流风速代替动量理论、叶素理论、动量──叶素理论中的来流风速U 1,计算dT 、dM 、dP 等;将风轮叶片叶素作用环内所有小区域计算得到的dT 、dM 、dP 等分别叠加起来除以小区域数量n ,得到此叶素对风轮推力T 、转距M 、功率P 等的贡献dT 、

dM 、dP 等;然后再按此方法计算别的叶素对风轮推力T 、转距M 、功率P 等的贡献,最后得到风轮推力T 、转距M 、功率P 等。在这些过程中,同时计算出作用在叶片上的气动载荷。

3

风轮气动载荷分析

(1) 垂直叶轮盘面,稳定均匀流情况下:

根据叶素-动量理论,忽略掉一些小的平方项后,叶片单位长度上的力可以表示为叶轮平面外和平面内力:

平面外力:

()r N f a af U c W C F x

X -==∝

14212

2πρρ (65) 平面外力:

()22'1421r N

f

a af U c W C F y

Y -Ω==-∝πρρ (66) 其中:f 为叶尖损失因子,N 为叶片数目。y x ,的方向如图3-1定义。

图3-1:叶片负载旋转坐标系定义

(z 从轮毂中心沿叶片轴外指;x 下风向方向垂直于叶片轴;y 垂直与主轴和z 轴)

叶片平面外力和平面内力随半径的变化如图3-2所示,可以看出,平面外力近乎线性增长,这种变化趋势对任意机组来说都是一样的。由叶片平面外力和平面内力可计算出叶片气动弯矩负载,它随半径的变化如图3-3所示,随半径的增加线性减小。

图3-2:叶片平面外和平面内力随半径的变化

图3-3:叶片气动弯矩负载随半径的变化

(2)偏斜气流下

应用叶素-动量理论,可以得到如图3-4的叶根平面外弯矩和平面内弯矩变化,偏航角度+300。叶片方位角的定义为叶尖朝上为叶片00方位,随着叶片旋转不断变化,正偏航的定义为侧风吹向叶轮转盘的方向与叶尖朝上(类似时钟指向12点)时的叶片运动方向一致。

从图中两个风速的比较可知,20m/s风速时叶片弯矩接近正弦变化,方位角1800时达到最大。10m/s风速时叶片平面外弯矩在方位角2400时达到最大。

图3-4:叶根平面外弯矩和平面内弯矩,偏航角度+300,随叶片方位角的变化。

(3)轴仰角下

为了避免叶片与塔架碰撞,采用主轴与水平方向有一定夹角办法,增加叶尖与塔架间隙,这种情况下的叶片气动负载变化类似偏斜气流下情况。

(4)风切变

由于风切变的存在,风速随高度的增加而增加,呈幂指数变化关系,叶根弯矩由于风切变随叶片方位角的变化关系如图3-5所示。可以看出风速10m/s时,变化呈正弦关系,15m/s风速时由于叶片失速,叶根弯矩几乎恒定不变。

图3-5:由于风切变,叶根弯矩随叶片方位角的变化关系

(5)塔影效果

筒形塔架比衍架式塔架塔影效果更严重,气流在塔架处分离,造成速度损失,下风向型机组尤其严重。应用叶素-动量理论,得图3-6,由图中可以看出,当叶片塔筒间隙等于塔架半径时,

D

x,会改善x,低风速段(风速10m/s),叶根平面外弯矩下降厉害;如果增大间隙5.1

/= D

1

/=

一些。高风速段时(风速20m/s),情况会好一些。

图3-6:塔影效果引起的叶根弯矩随叶片方位角的变化关系

4.1 载荷情况DLC1.3

初始风速为额定风速,在极端连续阵风基础上同时伴随极端风向变化情况下正常功率输出。 (1) 极端相关阵风

应假定极端相关阵风的幅值为:V CG =15m/s ,用下式确定风速:

其中T=10s 为阵风增强时间,采用式(64)确定风速。

(2) 方向变化的极端相关阵风

应假定风速增大与风向变化θcg 同时出现,其中θcg 由下式确定:

风向同时变化角由下式确定:

其中T=10s 为阵风增强时间,采用式(64)确定风速。 4.2 载荷情况DLC1.5

初始风速为额定风速或停机风速时,在1年极端工作阵风(EOG1)情况下掉网。 极端运行阵风(EOG )

(5)

式中:

σ1—标准差;

Λ1—湍流尺度参数; D —风轮直径 β=4.8,对N=1;

当重复周期为N 年时,由下列方程式确定风速:

(6)

式中: V(z)—由式(64)确定;T=10.5s ,N=1; 4.3 载荷情况DLC1.6

初始风速为额定风速或停机风速时,在50年极端工作阵风(EOG 50)情况下正常功率输出。 极端运行阵风(EOG )

(7) 式中:

σ1—标准差;

???><≤≤--=T及t对tT

t对0 ),(0 )),/2cos(1)(/3sin(37.0)(),(z V T t T t V z V t z V gustN ππ[])/1.01/(11Λ+=D V gustN σβ[]

)/1.01/(11Λ+=D V gustN σβ??

?

??>+≤≤-+<=T t V (z)T

t 0 )),/cos(1(0.5V(z)0t (z)),(cg cg 对对对V T t V V t z V π(2)

??

?

??>±≤≤-±<=0t T

t 0 )),/cos(1(0.50

t 0)(cg cg 对对对θπθθT t t (4)

()??

?

??≤≤<=ref

hub hub cg V s m V

s

m s m V hub hub V /4 /720/4V 180对对 θ(3)

Λ1—湍流尺度参数; D —风轮直径 β=6.4,对N=50;

当重复周期为N 年时,由下列方程式确定风速:

(8)

式中:

V(z)—由式(64)确定;T=14.0s ,对N=50; 4.4 载荷情况DLC1.7

初始风速为额定风速或停机风速时,在50年极端风剪切(EWS )情况下正常功率输出。 极端风切变(EWS )

应用下列两个瞬时风速来计算重复周期为50年的极端风切变:

(1) 瞬时垂直切变(EVS):

()[]???><≤≤-Λ+-+=T t 0 t

)/(T

t 0 )))/2cos(1()/(2.05.2(/)/(),(4/111及α

απβσhub hub hub hub hub z z V T t D D z z z z V t z V

(9)

(2) 瞬时水平切变(EHS):

[]???><≤≤-Λ++=T t 0 t

)/(T

t 0 )))/2cos(1()/(2.05.2(/)/(),(4/111及α

απβσhub hub hub hub z z V T t D D y z z V t z V (10)

其中,α=0.2,β=6.4,T=12s ,

Λ1—湍流尺度参数, D —风轮直径。

4.5 载荷情况DLC1.8

初始风速为额定风速或停机风速时,在50年极端风向变化(EDC50)情况下正常功率输出。 用下列关系式计算重复周期为N 年的极端风向变化幅值θeN :

(11) 式中:

θeN —限定于范围±180°;

Λ1—湍流尺度参数; D —风轮直径 β=6.4,N=50。

当重复周期为N 年时,由下列方程式确定风向:

(12)

其中T=6s 为极端风向瞬时变化的持续时间。以产生最严重加载来选择θN (t)的符号。在风向瞬时变化结束时,假定风向保持不变,并采用式(6)确定风速。 4.6 载荷情况DLC6.1

初始风速为风力发电机组生存风速时,在极端风速模型(EWM )情况下静态停车。 极端风速模型(EWM )

()(

)[]11/1.01/arctan Λ+±=D V hub eN σβθ???

??

>≤≤-<=0t T

t 0 )),/cos(1(0.50t 0)(eN eN 对对对θπθθT t t N ?

?

?><≤≤--=T及t对tTt对0 ),(0 )),/2cos(1)(/3sin(37.0)(),(z V T t T t V z V t z V gustN ππ

(13)

(14)

应假定短时偏离平均风向±15°。

假定风向变化

??

?

??<<≤≤-<<=41t 9 09

t 5 ))5(5.0sin(155t 0

0t πθ11.050)/(4.1)(hub ref e Z Z V Z V =)

(75.0)(501Z V Z V e e =

风力发电机组载荷计算

北京鉴衡认证中心 风力发电机组载荷计算 北京鉴衡认证中心 发言人:韩炜 2008-4-14 w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 内容概要 1. 风力发电机组载荷计算目的 2. 风力发电机组载荷特点 3. 风力发电机组载荷计算 w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 风力发电机组载荷计算目的 ? 对于设计:提供强度分析载荷依据,确保各部 件承载在设计极限内;优化运行载荷,提高机 组可靠性。 ? 对于认证:确保载荷计算应用了适当的方法, 工况假定全面且符合标准要求,结果真实可靠。w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 风力发电机组载荷特点 ? 风 ? 空气动力学 ? 叶片动力学 ? 控制 ? 传动系统动力学 ? 电力系统 ? 塔架动力学 ? 基础 w w w .s i m o s o l a r .c o m

风力发电机组载荷计算标准 ? 陆上风机:GB18451.1(2001);IEC61400-1(1999, 2005);GL Guideline2003;… ? 海上风机:IEC61400-3;GL Guideline (Offshore) 2005? DNV- OS-J101 … 风力发电机组载荷计算 w w w. s i m o s o l a r.c o m 北京鉴衡认证中心

北京鉴衡认证中心 风力发电机组设计等级 (IEC61400-1:1999) 级别 Ⅰ Ⅱ Ⅲ Ⅳ S V ref [m/s] 50 42.5 37.5 30 V ave [m/s] 10 8.5 7.5 6 A I 15 [-] 0.18 0.18 0.18 0.18 a [-] 2 2 2 2 B I 15 [-] 0.16 0.16 0.16 0.16 a [-] 3 3 3 3 由设计 者规定 各参数 注: V ref :轮毂处参考风速 V ave :轮毂处平均风速 I 15:风速15m/s时的湍流强度 a: 斜度参数 风力发电机组载荷计算 w w w .s i m o s o l a r .c o m

我国大型风电机组技术发展情况

截至2013年底,国内约30家大型风电机组整机制造企业已向国内外风电市场提供了合格的大型风电机组整机产品。2013年在我国风电场建设中,国产风电机组的市场占有率达到94%,大幅超过外资企业。其中,在国内新增总装机占比中,金风科技的份额最大,占23.31%;联合动力第二,占9.25%;广东明阳第三,占7.99%。通过对我国大型风电机组发展情况的分析,归纳出我国大型风电机组技术主要呈现如下特点。 1 水平轴风电机组是主流 水平轴风电机组的应用已近100年。由于水平轴风电机组的风轮具有风能转换效率高、传动轴较短、控制和制动技术成熟、制造成本较低、并网技术可靠等优点,近年来大型并网水平轴风电机组得到快速发展,使大型双馈式和直驱永磁式等水平轴风电机组成为国内大型风电场建设所需的主流机型,并在国内风电场建设中占到100%的市场份额。 2 垂直轴风电机组有所发展 大型垂直轴风电机组因具有全风向对风、变速装置及发电机可置于风轮下方或地面等优点。近年来相关研究和开发也在不断进行并取得一定进展,单机试验示范正在进行,在美国已有大型垂直轴风电机组在风电场运行,但在我国还无垂直轴风电机组产品在风电场成功应用的先例。 3 风电机组单机容量持续增大 近年来,国内风电市场中风电机组的单机容 我国大型风电机组技术发展情况 中国农业机械化科学研究院 ■ 沈德昌 量持续增大,2012年新安装机组的平均单机容量达1.65 MW , 2013年为1.73 MW 。2013年我国风电场安装的最大风电机组为6 MW 。 随着单机容量不断增大和利用效率的提高,国内主流机型已从2005年的750~850 kW 增加到2014年的1.5~2.5 MW 。 近年来,海上风电场的开发进一步加快了大容量风电机组的发展。我国华锐风电的3 MW 海上风电机组已在海上风电场批量应用。3.6、4、5、5.5、6和6.5 MW 的海上风电机组已陆续下线或投入试运行。目前,华锐、金风、联合动力、湖南湘电、重庆海装、东方汽轮机、广东明阳和太原重工等公司都已研制出5~6.5 MW 的大容量海上风电机组产品。 4 变桨变速功率调节技术得到全面应用 由于变桨距功率调节方式具有载荷控制平稳、安全高效等优点,近年在大型风电机组上得到广泛应用。结合变桨距技术的应用及电力电子技术的发展,大多数风电机组制造厂商采用了变速恒频技术,并开发出变桨变速风电机组,在风能转换效率上有了进一步完善和提高。从2012年起,国内定桨距并网风电机组已停止生产,在全国安装的风电机组全部采用了变桨变速恒频技术。2 MW 以上的风电机组大多采用3个独立的电控调桨机构,通过3组变速电机和减速箱对桨叶分别进行闭环控制。 5 双馈异步发电技术仍占主导地位 外资企业如丹麦V estas 公司、西班牙Gamesa 收稿日期:2014-11-27 通信作者:沈德昌 ,男,研究员,中国农业机械化科学研究院。shendc06@https://www.doczj.com/doc/112091651.html,

风力机组气动特性分析与载荷计算-1

目录 1前言错误!未定义书签。 2风轮气动载荷............................................... 错误!未定义书签。 2.1动量理论.................................................................................................. 错误!未定义书签。 2.1.1不考虑风轮后尾流旋转 .................................................................. 错误!未定义书签。 2.1.2考虑风轮后尾流旋转...................................................................... 错误!未定义书签。 2.2叶素理论.................................................................................................. 错误!未定义书签。 2.3动量──叶素理论.................................................................................. 错误!未定义书签。 2.4叶片梢部损失和根部损失修正 .............................................................. 错误!未定义书签。 2.5塔影效果.................................................................................................. 错误!未定义书签。 2.6偏斜气流修正.......................................................................................... 错误!未定义书签。 2.7风剪切...................................................................................................... 错误!未定义书签。3风轮气动载荷分析........................................... 错误!未定义书签。 3.1周期性气动负载...................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3..................................................................................... 错误!未定义书签。 4.2载荷情况DLC1. 5..................................................................................... 错误!未定义书签。 4.3载荷情况DLC1.6..................................................................................... 错误!未定义书签。 4.4载荷情况DLC1.7..................................................................................... 错误!未定义书签。 4.5载荷情况DLC1.8..................................................................................... 错误!未定义书签。 4.6载荷情况DLC6.1..................................................................................... 错误!未定义书签。 风力发电机组气动特性分析与载荷计算 1前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S方程的CFD方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD求解N-S方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1不考虑风轮后尾流旋转 首先,假设一种简单的理想情况:

气动特性分析

飞行器总体设计课程设计 150座客机气动特性分析 计算全机升力线斜率C L : 为机翼升力线斜率:CL -_^ = 2 AR 2 d h 2C L :._W S gross 该公式适用于d h /b < 0.2的机型 Z 为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度;b 为机翼的展长; S net 为外露机翼的平面面积;S gross 为全部机翼平 面面积。 由于展弦比A R =90 算出C La_w =514( 1/rad ) 又因为Z 为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度,等于3.95m ; b 为机翼的展长,等于34.86m; C L: C La_W 1 dh b 丿 S gpss

S net为外露机翼的平面面积,估算等于119.65m2;S gross为全部机翼平面面积,等于134.9 m2;算出E为因子等于1.244. 所以可以算出全机升力线斜率缶等于6.349 二.计算最大升力系数C Lmax C Lmax =14 1'0-064regs C L? ①regs为适航修正参数,按适航取证时参考的不同失速速度取值。 由于设计的客机接近于A320,所以取①regs等于1 所以代入上面公式得到C Lmax等于1.662 三.计算增升装置对升力的影响 前面选择了前缘开缝襟翼 c LE /c为前缘缝翼打开后机翼的弦长与原弦长 的比例,它与机翼外露段的相对展长有一定对应关系。

70 20 30 40 SO 60 70 &0 100 Wing ¥Ngwl span 所以先计算机翼外露段的相对展长 等于(1-机身宽/展长)% 机身宽为3.95m ,展长为34.86m, 代入公式,算出机翼外露段的相对展长 等于88.67%,对应到上图,纵坐标 C 'LE lc 等于 1.088 。 絲翌娄型 克鲁格標資 0.3 前缘 前缘缝翼 0.4 c 中缝 1.3 后缘 < 无面积延伸〉 L6 二缝 1.9 单繼 1.3 / e 后缘(何而积絃仲) 蚁缝 1,6 c 三缝 1 9強々 1.0&

大型风力发电机组控制系统的安全保护功能(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 大型风力发电机组控制系统的安全保护功能(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

大型风力发电机组控制系统的安全保护功 能(新编版) 1制动功能 制动系统是风力发电机组安全保障的重要环节,在硬件上主要由叶尖气动刹车和盘式高速刹车构成,由液压系统来支持工作。制动功能的设计一般按照失效保护的原则进行,即失电时处于制动保护状态。在风力发电机组发生故障或由于其他原因需要停机时,控制器根据机组发生的故障种类判断,分别发出控制指令进行正常停机、安全停机以及紧急停机等处理,叶尖气动刹车和盘式高速刹车先后投入使用,达到保护机组安全运行的目的。 2独立安全链 系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链采用反逻辑

设计,将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后,将引起紧急停机,执行机构失电,机组瞬间脱网,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、看门狗、扭缆、24V电源失电、振动和紧急停机按钮动作。 3防雷保护 多数风机都安装在山谷的风口处或海岛的山顶上,易受雷击,安装在多雷雨区的风力发电机组受雷击的可能性更大,其控制系统最容易因雷电感应造成过电压损害,因此在600kW风力发电机组控制系统的设计中专门做了防雷处理。使用避雷器吸收雷电波时,各相避雷器的吸收差异容易被忽视,雷电的侵入波一般是同时加在各相上的,如果各相的吸收特性差异较大,在相间形成的突波会经过电源变压器对控制系统产生危害。因此,为了保障各相间平衡,我们在一级防雷的设计中使用了3个吸收容量相同的避雷器,二、三级防雷的处理方法与此类同。控制系统的主要防雷击保护:①主电路三相690V输入端(即供给偏航电机、液压泵等执行机构的前段)

风力发电机组气动特性分析与载荷计算

风力发电机组气动特性分析与载荷计算 目录 1前言 (2) 2风轮气动载荷 (2) 2.1 动量理论 (2) 2.1.1 不考虑风轮后尾流旋转 (2) 2.1.2 考虑风轮后尾流旋转 (3) 2.2 叶素理论 (4) 2.3 动量──叶素理论 (4) 2.4 叶片梢部损失和根部损失修正 (6) 2.5 塔影效果 (6) 2.6 偏斜气流修正 (6) 2.7 风剪切 (6) 3风轮气动载荷分析 (7) 3.1周期性气动负载................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3 (10) 4.2载荷情况DLC1.5 (10) 4.3载荷情况DLC1.6 (10) 4.4载荷情况DLC1.7 (11) 4.5载荷情况DLC1.8 (11) 4.6载荷情况DLC6.1 (11)

1 前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2 风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD 等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD 数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S 方程的CFD 方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD 求解N-S 方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1 不考虑风轮后尾流旋转 首先,假设一种简单的理想情况: (1)风轮没有偏航角、倾斜角和锥度角,可简化成一个平面桨盘; (2)风轮叶片旋转时不受到摩擦阻力; (3)风轮流动模型可简化成一个单元流管; (4)风轮前未受扰动的气流静压和风轮后的气流静压相等,即p 1 = p 2; (5)作用在风轮上的推力是均匀的; (6)不考虑风轮后的尾流旋转。 将一维动量方程用于风轮流管,可得到作用在风轮上的轴向力为 ()21V V m T -= (1) 式中 m 为流过风轮的空气流量 T AV m ρ= (2) 于是 ()21V V AV T T -=ρ (3) 而作用在风轮上的轴向力又可写成 () -+-=p p A T (4) 由伯努利方程可得 ++=+p V p V T 222121ρρ (5) -+=+p V p V T 22222ρρ (6) 根据假设,p 1 = p 2,(5)式和(6)式相减可得

风速对大型海上风力机的气动弹性影响研究

风速对大型海上风力机的气动弹性影响研究 发表时间:2017-10-25T17:58:34.210Z 来源:《基层建设》2017年第17期作者:张婷婷 [导读] 摘要:海上风力机是未来风电技术发展的重要方向。通常海上风力机风轮尺度较大、叶片弹性特征明显,这给风力机的气动弹性分析带来了极大挑战。 西南科技大学城市学院土木工程系四川绵阳 621000 摘要:海上风力机是未来风电技术发展的重要方向。通常海上风力机风轮尺度较大、叶片弹性特征明显,这给风力机的气动弹性分析带来了极大挑战。利用BEM气动力计算模型及模态叠加结构动力计算模型构建了大型海上风力机气动弹性分析模型,该模型具有计算效率高、计算结果准确的特征。利用该模型对不同风速条件下NREL 5MW海上风力机的气动弹性特征进行了计算和分析。结果显示,风力机的叶尖位移与风速条件直接相关,呈周期性特征。风速越高风力机功率波动频率越低。 关键词:大型海上风力机;气动弹性;BEM;模态叠加模型 0 研究背景 海上风力机为海上风能利用提供了有效的手段。根据“十三五”规划,海上风能资源的开发,将成为未来风能利用的重要发展方向。目前海上风力机技术仍处于发展过程中,部分海上风电强国已拥有部分示范工程,如挪威Hywind项目、葡萄牙WindFloat项目等。此外,近年来日本在海上风电技术领域投入较大,且已逐步形成海上风力机设计能力[1]。 海上风力机具有单机高功率等特点,通常设计为5MW-20MW[2],相应的风力机的风轮半径将大幅增加。在海上复杂的环境下,气动力、波浪作用力、结构作用力等将形成复杂的耦合作用力体系,给海上风力机的结构响应分析带来了极大的困难。 本文通过动量叶素理论(BEM)计算风力机的气动力,采用模态叠加理论对NREL 5MW海上风力机进行了计算。对风力机的气动力特征及气弹耦合特性进行了系统地讨论。 1气动力计算BEM模型 复杂条件下风力机气动性能的求解是分析风力机气动弹性特征的关键。BEM理论模型将风力机叶片沿展向划分为多个独立的控制单元,假设相互单元之间的流场并不存在气动干扰,从而将三维问题化简为二维问题。极大地提高了计算效率,为风力机的气动弹性响应分析提供了条件。 通过将动量理论与叶素理论耦合并迭代求解,可获得当前翼型条件下的轴向及周向诱导因子和的量值,进而确定当前翼型的作用力。在此基础上将各控制单元的受力沿展向积分即可获得叶片的整体气动特性。 2结构动力学计算模态叠加模型 风力机结构动力学计算模型整体上可以分为模态叠加法、多体动力学计算方法及有限元分析方法。其中模态叠加法通过将叶片的各阶振型乘以响应系数后叠加起来计算其动力学响应,具有快速、高效等特征,是目前风力机气动弹性分析使用的主要方法。本文基于广义作用力方程,利用Duhamel积分可以求得叶片运动数值解,再将各阶模态对应的广义位移转换到物理空间可以得到以下位移结果:

风力发电机组载荷计算

风力发电机组载荷计算 北京鉴衡认证中心 发言人:韩炜 2008-4-14 北京鉴衡认证中心

内容概要 1. 风力发电机组载荷计算目的 2. 风力发电机组载荷特点 3. 风力发电机组载荷计算 北京鉴衡认证中心

风力发电机组载荷计算目的 ? 对于设计:提供强度分析载荷依据,确保各部 件承载在设计极限内;优化运行载荷,提高机 组可靠性。 ? 对于认证:确保载荷计算应用了适当的方法, 工况假定全面且符合标准要求,结果真实可靠。北京鉴衡认证中心

风力发电机组载荷特点 ? 风 ? 空气动力学 ? 叶片动力学 ? 控制 ? 传动系统动力学 ? 电力系统 ? 塔架动力学 ? 基础 北京鉴衡认证中心

风力发电机组载荷计算 风力发电机组载荷计算标准 ? 陆上风机:GB18451.1(2001);IEC61400-1(1999, 2005);GL Guideline2003;… ? 海上风机:IEC61400-3;GL Guideline (Offshore) 2005? DNV- OS-J101 … 北京鉴衡认证中心

北京鉴衡认证中心 风力发电机组设计等级 (IEC61400-1:1999) 级别 Ⅰ Ⅱ Ⅲ Ⅳ S V ref [m/s] 50 42.5 37.5 30 V ave [m/s] 10 8.5 7.5 6 A I 15 [-] 0.18 0.18 0.18 0.18 a [-] 2 2 2 2 B I 15 [-] 0.16 0.16 0.16 0.16 a [-] 3 3 3 3 由设计 者规定 各参数 注: V ref :轮毂处参考风速 V ave :轮毂处平均风速 I 15:风速15m/s时的湍流强度 a: 斜度参数 风力发电机组载荷计算

风力发电机组标准

风力发电机组标准(外部条件) 作者:中国船级…内容来源:中国船级社点击数:167 更新时 间:2009/4/16 风力发电机组标准(外部条件) 、 中国船级社 一般要求 在风力发电机组的设计中,至少应考虑本节所述的外部条件。 风力发电机组承受环境和电网的影响,其主要体现在载荷、使用寿命和正常运行等方面。为保证安全和可靠性,在设计中应考虑到环境、电网和土壤参数,并在设计文件中明确规定。环境条件可划分为风况和其它外部条件。土壤特性关系到风力发电机组的基础设计。 各类外部条件可分为正常外部条件和极端外部条件。正常外部条件通常涉及结构长期承载和运行状态。极端外部条件是潜在的临界外部设计条件。设计载荷系由这些外部条件和风力发电机组的运行状态组合而成。 对结构整体而言,风况是最基本的外部条件。其它环境条件对设计特性,诸如控制系统功能、耐久性、锈蚀等均有影响。 根据风力发电机组安全等级的要求,设计中要考虑本节所述的正常外部条件和极端外部条件。

风力发电机组分级 风力发电机组的设计中,外部条件应由其安装场地和场地类型决定。风力发电机组的安全等级及相应的风速和风湍流参数应符合表2.2.2.1 的规定。 对需要特殊设计(如特殊风况或其它特殊外部条件)的风力发电机组,规定了特殊安全等级——S 级。S 级风力发电机组的设计值由设计者确定,并应在设计文件中详细说明。对这样的特殊设计,选取的设计值所反映的外部条件比预期使用的外部条件更为恶劣。近海安装为特殊外部条件,要求风力发电机组按S 级设计。 各等级风力发电机组的基本参数①表2.2.2.1 注:表中数据为轮毂高度处值,其中: A 表示较高湍流特性级;参考风速Vref 为10min 平均风速; B 表示中等湍流特性级;I 15 风速为15m/s 时的湍流强度

风力发电机组的分类及各自特点

风力发电机组的分类及各自特点 风力发电机组的分类及各自特点 风力发电机组主要由两大部分组成: 风力机部分――它将风能转换为机械能; 发电机部分――它将机械能转换为电能。 根据风机这两大部分采用的不同结构类型、以及它们分别采用的技术方案的不同特征,再加上它们的不同组 合,风力发电机组可以有多种多样的分类。 (1) 如依风机旋转主轴的方向(即主轴与地面相对位置)分类,可分为: “水平轴式风机”――转动轴与地面平行,叶轮需随风向变化而调整位置; “垂直轴式风机”――转动轴与地面垂直,设计较简单,叶轮不必随风向改变而调整方向。 (2) 按照桨叶受力方式可分成“升力型风机”或“阻力型风机”。 (3) 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机;叶片的数目由很 多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。 大型风力发电机可由1、2 或者3 片叶片构成。 叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。而如果叶片太多,它们之 间会相互作用而降低系统效率。目前3 叶片风电机是主流。从美学角度上看,3 叶片的风电机看上去较为平衡和美观。 (4) 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向(即在塔架的前面迎风旋转)和 “下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 (5) 按照功率传递的机械连接方式的不同,可分为“有齿轮箱型风机”和无齿轮箱的“直驱型风机”。 有齿轮箱型风机的桨叶通过齿轮箱及其高速轴及万能弹性联轴节将转矩传递到发电机的传动轴,联轴节具有很 好的吸收阻尼和震动的特性,可吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。 而直驱型风机则另辟蹊径,配合采用了多项先进技术,桨叶的转矩可以不通过齿轮箱增速而直接传递到发电 机的传动轴,使风机发出的电能同样能并网输出。这样的设计简化了装置的结构,减少了故障几率,优点很多,现多用于大型机组上。 (6) 根据按桨叶接受风能的功率调节方式可分为: “定桨距(失速型)机组”――桨叶与轮毂的连接是固定的。当风速变化时,桨叶的迎风角度不能随之变化 。由于定桨距(失速型)机组结构简单、性能可靠,在20 年来的风能开发利用中一直占据主导地位。 “变桨距机组”――叶片可以绕叶片中心轴旋转,使叶片攻角可在一定范围内(一般0-90度)调节变化,其

论不同风况对风电机组疲劳载荷的影响

论不同风况对风电机组疲劳载荷的影响 发表时间:2018-04-11T15:37:41.073Z 来源:《电力设备》2017年第32期作者:王青磊[导读] 摘要:风力发电机组总体载荷计算评估是风力机设计以及风电场风机选型中的一项重要工作,特别是对于大型MW级风机,其意义更为重大。 (国家电投集团湖北绿动新能源有限公司湖北武汉 430071) 摘要:风力发电机组总体载荷计算评估是风力机设计以及风电场风机选型中的一项重要工作,特别是对于大型MW级风机,其意义更为重大。风机载荷计算评估包括极限载荷评估和疲劳载荷评估。从计算角度分析,影响风机疲劳载荷的主要因素包括风电场的湍流强度,空气密度以及年平均风速等相关风况气象参数。本文通过总体载荷计算,对影响风机疲劳载荷的主要工况进行载荷计算以及疲劳分析,给 出规律性的结论,为以后的风机设计,风机选型等相关问题提供理论基础以及经验总结。关键词:不同风况,疲劳载荷,动量-叶素理论风电场的开发是一个资金庞大,周期较长的项目,而整个风电场的主要设备是风力发电机组。所以,我们必须对风力发电机组的安全性和可靠性做一个科学规范的计算校核。需要对特殊地形造成的特殊风况进行疲劳载荷分析和总结,做成自己的数据库,对不同风电场进行载荷评估。 一、风机总体载荷计算理论基础 1.1、风机气动载荷 目前计算风力发电机的气动载荷有动量-叶素理论、CFD等方法。动量-叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的升力和功率。动量-叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。为此在计算中应用动量-叶素理论方法来计算风机的气动载荷。 1.2、动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 1.3、叶素理论 叶素理论的基本出发点是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,将作用在每个叶素上的力和力矩沿展向积分,求得作用在风轮上的力和力矩。 1.4、动量─叶素理论 为了计算风力机性能,必须计算风轮旋转面中的轴向诱导因子和周向诱导因子,这就需要用到动量─叶素理论。由动量理论和叶素理论通过迭代方法可以求出轴向诱导因子和周向诱导因子。 1.5、雨流技术基本计数规则 1)雨流依次从载荷时间历程的峰值位置的内侧沿着斜坡往下流;(2)雨流从某一个峰值点开始流动,当遇到比其起始峰值更大的峰值时要停止流动;(3)雨流遇到上面流下的雨流时,必须停止流动;(4)取出所有的全循环,记下每个循环的幅度;(5)将第一阶段计数后剩下的发散收敛载荷时间历程等效为一个收敛发散型的载荷时间历程,进行第二阶段的雨流计数。计数循环的总数等于两个计数阶段的计数循环之和。 二、疲劳载荷评估 风机的疲劳载荷主要是由于外部风电场的气象风况条件决定的,主要由湍流强度,风场的空气密度,以及风电场的年平均风速决定的。我们通过叶素动量理论进行工程分析以及和模拟软件相结合,对疲劳工况进行分析。我们模拟所使用的模拟软件为GH Bladed软件,主要是用于水平轴风机载荷计算以及风机性能分析。主要包括风机的初步设计,风机的详细设计以及零部件设计,风机型式认证。在风机输入参数中,有风机的气动和结构参数,传动链和电气系统,传感器系统和制动系统,控制和安全系统等;外部条件输入包括风况输入,波浪和洋流,地震,风机故障,电气和电网扰动等;风机的稳态特性,主要包括气动信息,系数性能,稳态功率曲线,稳态运行载荷以及稳态停机载荷等;动态模拟风机的特性,包括正常运行,启动,紧急停机,正常停机,空转,静止等。 GH Bladed软件的主要通过水平轴空气动力学动量理论,叶素理论,叶素-动量理论等基本理论,结合风机的气动特性,以及叶尖轮毂损失,塔影模型,动态失速,尾流等修正,迭代计算出风轮的轴向和周向的入流因子,从而计算出风机的各位置载荷。通过测试,GH Bladed软件计算结果和在风电场实际运行的数据相当吻合。选用某公司117-2000-85型的风机为研究对象,风机模型不变,控制系统不更改的情况下,分别从风电场不同的湍流强度,不同的空气密度以及不同的年平均风速的情况下,分别对风机关键截面的等效疲劳载荷进行对比分析,试图找到规律,为以后设计风机以及风机的快速选型打好良好的理论基础. 2.1不同湍流强度下疲劳载荷分析 选用某公司117-2000-85型的风机,空气密度为标准的空气密度1.225kg/m3,年平均风为6.5m/s,湍流强度选取位0.1,0.14,,0.18的情况进行载荷计算以及雨流技术统计,选取叶根处载荷(m=10)以及塔筒底部载荷(m=4)进行比较。计算结果详见下图表:表2.1 叶根不同湍流强度的疲劳载荷以及对比

大型风力发电机组安装

大型风力发电机组安装 摘要:《可再生能源法》的正式实施,为我国风力发电创造了良好的发展环境,依据现有政策,中国风电装机容量到2020年底可达到5000万千瓦。目前风力发电机组趋向大型化,目前全国安装风力发电机组平均功率达到1.5mw以上。大型机组的吊装给风机安装带来新的课题。本文结合工程实例介绍了风力发电机组安装过程。关键词:风力发电机组;安装;塔架基础;接地系统 1 风力发电机组组成 一套完整的大型风力发电机组由塔架基础、接地系统、塔架、机舱、轮毂、叶片、箱式变压器、及电气等部分组成。 风机基础为整台风力发电机组提供各种受力支撑,将风力所受力均匀合理的传递到大地,是整个风力发电机组的根本。基础一般采用八边型或圆形钢筋混凝土设计,部分采用退台。接地系统一般与基础施工同时进行,根据设备型号不同,接地电阻值为2~8ω不等。风机塔架现在全部采用圆筒钢材式,分节安装组合,而塔筒的高度一般是随风力高度分布情况而确定。风机机舱是整个风力发电机组的大脑,除直驱型机组外,其他型号风机机舱内集成了发电机系统、齿轮变速系统、制动系统、偏航系统、冷却系统等。直驱式发电机组机舱里面取消了发电机、齿轮变速系统,将发电机直接外置至与轮毂连接部分。风机轮毂是叶片与机舱或发电机的连接部件,采用椭圆或平顶型。叶片是机组吸收风能的部件,采用特殊材料制作。机组常见的采用两叶和三叶式,有一叶或多叶式。

2风力发电机组安装 2.1安装场地要求 目前国内风电场施工及设备存放场地主要有两种类型,一种是在现场设立临时存放场地,风机设备到货后集中存放在临时仓库,安装时再二次运输到吊装点。另一种是直接将风机设备运输到吊装现场存放不再二次运输。为了节约运输的成本,越来越多的风电场采用风机设备一次到位的方式,在设备到达现场前须要对进行场地策划,让场地符合风机设备安装的要求。 2.2 设备卸车 风电场设备卸车主要是指塔筒、机舱等大件设备的卸车。机舱是风机最重要的部件,也是最重的设备。根据设备的技术参数以及现场机械的实际情况,可以采用单机卸车或双机卸车。 2.3 风机设备吊装 风机设备吊装主要指塔筒、机舱、叶轮等大件设备吊装,其中最重要的环节是吊装机舱、叶轮或发电机(直驱式)。机舱或发电机最重则吊机受力也最大;叶片的受风面积最大,因此对风速要求严格,一般要求风速不大于8m/s。为了考虑叶片吊装的方便和容易操作,机舱或发电机吊装时吊机的位置既要考虑满足机舱的要求也要满足叶轮的吊装要求。 叶轮吊装时,要求随时注意风速的变化,上面2个叶片溜绳按技术要求绑扎。每条溜绳需要5~6人,配合指挥人员进行松紧调整。叶轮与机舱对接时,需要2~4根尺寸适当的定位销进行定位,然

风力发电机设计与制造课程设计

风力发电机设计与制造 课程设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一.总体参数设计总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1.额定功率、设计寿命 =;一般风力机组设计寿命至少为20根据《设计任务书》选定额定功率P r 年,这里选20年设计寿命。 2.切出风速、切入风速、额定风速 = 3m/s 切入风速取 V in 切出风速取 V = 25m/s out = 12m/s(对于一般变桨距风力发电机组(选)的额定风速与平额定风速 V r ==×≈12m/s) 均风速之比为左右,V r 3.重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: 其中: ——风力发电机组额定输出功率,取; P r ——空气密度(一般取标准大气状态),取m3; ——额定风速,取12m/s; V r D——风轮直径; η——传动系统效率,取; 1 η——发电机效率,取; 2 η——变流器效率,取; 3

C p ——额定功率下风能利用系数,取。 由直径计算可得扫掠面积: 综上可得风轮直径D=104m ,扫掠面积A=84822 m 4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段内V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 1η——传动系统效率,取; 2η——发电机效率,取; 3η——变流器效率,取; ——空气密度(一般取标准大气状态),取m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取。 由以上公式,使用excel 计算出不同风速对应的功率值,见表1

风力机翼型的气动模型及数值计算

文章编号:167325196(2010)0320065204 风力机翼型的气动模型及数值计算 李仁年,李银然,王秀勇,绕帅波 (兰州理工大学能源与动力工程学院,甘肃兰州 730050) 摘要:考虑到不同湍流模型和边界层网格对风力机翼型气动性能有着不同的影响,采用4种边界层网格和4种湍流模型,对DU932W2210翼型的气动性能进行数值计算,将计算结果与实验值进行比较.研究结果表明:在合适的边界层网格下,DES模型的计算结果最接近实验值,而且该模型对翼型尾流中的旋涡有很强的捕捉能力. 关键词:风力机;翼型;湍流模型;边界层;网格划分 中图分类号:T K83 文献标识码:A Aerodynamic model of airfoil for wind turbine and its numeric computation L I Ren2nian,L I Y in2ran,WAN G Xiu2yong,RAO Shuai2bo (College of Energy and Power Engineering,Lanzhou Univ.of Tech.,Lanzhou 730050,China) Abstract:Taking into account of t he effect of different t urbulence modes,and mesh division in boundary layer on t he aerodynamic characteristics of t he airfoils for wind t urbine,4boundary layers,4modes were employed for numeric evaluation of aerodynamic characteristics of wind t urbine airfoils DU932W2210.The calculation result s were compared wit h experimental ones.It was shown by t he investigation result t hat t he result of calculation wit h D ES mode was t he clo sest to t he experimental one for an approp riate bounda2 ry layer grid,and it has a st rong ability to capt ure t he vortex in t he wake behind t he airfoil. K ey w ords:wind t urbine;airfoil;t urbulence mode;boundary layer;mesh division 由于风力机叶片前缘半径较大,叶片表面边界层容易发生分离,分离会形成旋涡,而旋涡的运动、发展和破裂反过来又影响着分离流场[1].因此深刻认识叶片边界层的流态与准确计算边界层的分离,对于正确预估叶片升阻力、控制并减小流动分离以及叶片的优化设计有着重要的意义. 目前,对湍流的数值模拟分为直接数值模拟(DNS)、大涡数值模拟(L ES)和雷诺时均方法(RANS)3类.其中DNS从流体控制方程出发,可以模拟湍流流场中各种尺度的脉动,但受计算机条件所限,目前只用于研究低雷诺数简单湍流物理机制.L ES将湍流流场中大尺度脉动用数值模拟方法计算,小尺度脉动对大尺度运动的作用做亚格子模型假设,在以下方面具有其他模型无可比拟的优势: 1)从层流到湍流转捩的预测;2)非定常湍流的预测;3)高速湍流的预测[2].但实际的工程问题往往 收稿日期:2009211216 基金项目:国家重点基础研究发展973计划项目(2007C B714600) 作者简介:李仁年(19632),男,甘肃民勤人,教授,博导.具有很高的雷诺数和很薄的边界层,边界层内小涡的尺度往往比边界层的厚度小很多,这使得要完全采用L ES模拟薄边界层内的流动仍然需要很大的计算机资源,到现在为止还是不太现实[3].RANS在工程中应用最为广泛,它完全采用湍流模型模拟湍流流动,只给出湍流流场的统计平均量,可以有效地模拟附体边界层流动,但对短暂的旋涡脱落和失速后的流场难以模拟[4].而脱体涡模拟(D ES)方法通过结合RANS和L ES各自的优点,可以比较快速而有效地模拟工程应用中常见的非定常的流动特征和边界层的分离运动[426]. 模拟气流分离的关键是能够准确模拟边界层分离,这需要布置合理的边界层网格.理论上壁面底层网格尺寸越小,网格的渐变率越接近于1;网格数越多,计算精度越高[7],但覃文洁等人提出网格的渐变率与网格数对计算精度的影响有限,它们的影响是基于底层网格尺寸的[8].齐学义等人提出采用结构和非结构化网格相结合的划分方式,可以提高网格质量和计算精度[9].本文选用Fluent软件,研究适 第36卷第3期2010年6月 兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.36No.3 J un.2010

相关主题
文本预览
相关文档 最新文档