当前位置:文档之家› 2.肺功能仪器与检测原理

2.肺功能仪器与检测原理

第二章肺功能仪器与检测原理

广州呼吸疾病研究所

郑劲平

一.肺功能试验的临床意义

肺功能检查是临床上胸肺疾病及呼吸生理的重要检查内容,对于早期检出肺、气道病变,鉴别呼吸困难的原因,诊断病变部位,评估疾病的病情严重度及其预后,评定药物或其它治疗方法的疗效,评估肺功能对手术的耐受力或劳动强度耐受力及对危重病人的监护等,肺功能检查均是必不可少的内容[1,2]。其结果判断参考同种人群肺功能正常值[3,4]。

肺功能检查通常包括通气功能、换气功能、呼吸调节功能及肺循环功能[2],检查项目繁多、临床上最为常用的是通气功能检查,可对大多数胸肺疾病作出诊断,其它检查如弥散功能测定、闭合气量测定、气道阻力测定、膈肌功能测定、运动心肺功能试验、气道反应性测定等可对通气功能检查作不同程度的补充,血气分析亦是肺功能检查的一部分,将在另章叙述。

二.肺功能仪的组成部分[6,7]:

肺功能的试验仪器主要由肺量计、气体分析仪及压力计组成,通过它们的组合,可对肺功能的大多数指标,如肺容量、通气、弥散、呼吸肌肉力量、氧耗量、二氧化碳产生量等作出测定,其中肺量计在肺功能检测中最为常用。了解肺功能仪的结构组成及其工作原理,可对肺功能仪的技术故障有相应的了解,对检查的伪差作出准确的判断,使对病人的肺功能评价更为准确。因此,这对一个优秀的肺功能检测者尤为必要。

(一)肺量计:

肺量计是指用于测定肺的气体容量或流量的仪器。依物理学定律,设某一瞬间的体积流量为Q,一定时间t内流过的流体的体积为V,则有V= Qdt 或Q=dV/dt,而体积流量是流体流速为 v与流经截面积为A的乘积,即Q=A·v,可见流速与容量可相应转换,通过测定吸/呼气体的流速及吸/呼气体时间可求出吸/呼气容量。反之亦然。

1.容量测定型肺量计

容量测定型肺量计先测定流体的体积,而后得出流量。

(1)水封式肺量计(water-sealed spirometer):

其结构简单、测量准确,但测量指标较少,不易于自动转换为流速参数,其容量所测为室温容量(ATPS状态),应将之矫正为体温容积(BTPS状态)。目前已较少使用,仅在一些基层医院或生理学实验室中尚有使用,如Collins肺量计。其构造如图1,钠石灰是CO2吸收剂,鼓风机为了减少机器的阻力,容量的变化记录于记纹鼓,这种设备的死腔量较大,一般为6~8L。

由水将浮筒内外分隔,

2

密封闭回路方式相连。浮筒经一滑轮悬拉,连至另一端与记录笔相连,记录笔可将浮筒位置的改变记录于记纹鼓上。当病人从浮筒中吸气或呼气记录笔垂直上下移动,移动的幅度取决于吸/呼气的容量大小。

记纹鼓与一电机相连,电机转动时记纹鼓动转动的速度恒定,并可选择不同速度,在描记笔水平记录。是为描记图的时间轴,而描记笔的垂直运动为插记图的容量轴,测试中描记出时间-容量曲线,从中可求出多个容量及流速参数。

(2)干式滚桶式肺量计(dry-rolling seal spirometer):

见图2。病人呼出的气体使活塞移动,

活塞由滚桶隔样的密封器与园桶密封。电压

计检测活塞的移动,活塞移动时产生的电压

信号可反映移动量的大小,间接反映呼吸气

体容量。活塞面常较大,以减少活塞运动时

的机械阻力。Gould 9000 , FUDAC 50,

ERS-1000, Ohio 800系列等肺量计属此类

型。此类型肺功能仪的病人呼吸为密封式,

易发生交叉感染。

2.流速测定型肺量计

测量式流量计。

(1)压差式流量计(pressure differential flowmeter):

利用在一定形状的流通管道中气流的压力降落与流速的依从关系测定流量。压差式传感器包括两部分:流量传感器:实现气体流速与压差的一次变换,根据流经该变换器的气流速度大小不同,在变换器两端敏感出相应的压力差,即压差信号。压差传感器:将与流量成一定比例关系的压差信号转换成一定的电信号,经处理后以数字或曲线图形显示。

的压差式流量计(图3)。此流量计的流速传

感器上有一筛状隔网或毛细管网,气流通过该

网时受网的阻力而流速下降,结果使网眼的另

一端的压力轻微下降。网眼两端形成压降差。

压差传感器可将此压差感应,产生电信号。流

速通过越快,压降越大,则产生压差电信号越

强。气流应尽可能是层流,锥形体的保护网及

毛细网可提供此种气流方式,流量计上的加热

器可使毛细网加温,避免呼出的饱和水蒸汽在

筛状隔网上冷凝沉积,阻塞网眼。

压差式流量计准确度高、敏感度较高、漂移少、与气体导热性无关而与气体粘滞度有关。因受隔网影响气流阻力稍大,在高流量测定时误差偏大,常需电脑作矫正。

一次性丢弃式传感器(如美国麦加菲公司,Medgraphicsy产品)为一次性使用,减少交叉感染,但增加了消耗成本。网眼式传感器(如德国耶格,Jaeger公司及美国森迪斯,Sensormedics公司产品)的网眼部分还能起到滤过细菌的作用,以减少细菌污染和空气传播,但清洗略显繁琐。

Fleish pneumotachograph 可用于测量气体流速,容量及呼吸频率,与其它分析仪结合可作诸如残气量、气体分布等测定。

Grould 2800, Sensormedics 6200, Medgraphs FUKUDA ST-350,ST-90 Multispiro -SX 系列,Vitalograph等肺功能仪属此类压差流量计测定。

(2)热敏式流量计(Thermal flowmeter):

依据热量传导与气体流量相关的原理而设计(图4)。核心部分为温度依赖性电阻元件,热线(hot wire)或热珠(thermistor bead)接通电源时该元件加温,当气流通过热敏件时可使其温度下降,并改变电阻,(热珠温度下降时电阻增加,热线温度下降时电阻减少)。维持热线温度的电流的改变与气体流速成正比。热线式传感器灵敏度较高,准确性较好,气流阻力小,不受气体粘滞度变化的干扰,缺点是易损耗,污物沾染后不易清洗,有时漂移,与气体导热性有关。易受外环境因素影响,如气压的改变,海拔高度,气体密度(如呼出气氧浓度不同)等。,在环境温度、压力与标定温度、压力相差较多时其流速(或容量)测定值可发生偏差,应对测量值进行应作标化补偿,温度、压力修正。此外该传感器在低流量测定时线性

反应稍差。

Minato AS系列肺功能机,Gould 218X系列,

Sensormedics Vmax229等属热线式肺量计。

(3)叶轮式和涡轮式流量计(Vortex shedding)。

依据转动部件(叶轮或涡轮)的转动速度与流体速度成正比的特性而测量。气流通过时引起叶轮或涡轮推动其转动,叶轮式采用光电调制原理,通过光电效应,涡轮式采用磁电调制原理,通过磁电效应,把叶(涡)轮的机械转动信号转换成电信号输出。由于叶轮的运动惯性和转轴与轴承间摩擦力矩等因素的存在,会影响传感器的精度。此种误差部分可通过电子线路予以补偿。但气流停止通过时涡轮仍可有惯性转动而发生误差,且不能内定标,是其缺点。如Chest Hi-298,498等肺功能机,

(二)气体分析仪

气体分析仪主要用作测定气体成分(定性)和气体浓度或压力(定量)。有收集呼出气体于气体收集袋(Douglars’bag)然后作平衡气体分析及气体实时分析(breath by breath)两种常用的方法。由于分析仪器的精度不断提高和分析反应速度的加快,实时分析目前应用较为普遍。气体分析仪可用于肺弥散功能、运动心肺功能、心排出量、氧耗量、二氧化碳产生量等肺功能测定。

常用的气体分析仪依其分析原理可分以下数种:

1. 物理气体分析仪:当气体分子通过一磁场时,在磁场力的作用下,顺磁性气体向磁力强区聚集,而非磁性气体则聚向弱磁区,从而达到分离和分析气体的目的。该法常用于氧测定,应用广泛,但响应时间较慢,常需20秒以上,故实时测定效果稍差。

2. 电子分析仪,依热导性原理测量及惠-斯电桥以比较不同气体通过两线的电流阻力。

3. 电化学分析仪:利用电极-介质介面上进行的电化学反应,将被测介质(如O2)的化学量转变成电量。基本测量系统包括电解质溶液、电极、及测量电路。此传感器一旦启用,由于不断进行的化学反应消耗电解质溶液和电极,使用寿命较短(一般半年至一年)。该仪价格较为便宜,但属消耗性用品,常用于便携式仪器中。

4.质谱仪:中性的气体原子在电子被俘获后形成离子,在磁场力的作用下发生偏转,不同的气体偏转角度各异。利用此原理可将各气体组分分开并定量测定。此法测定精度极高,反应迅速,可对各种各样的气体进行分析。由于需要较高的真空条件,仪器构造复杂,故价

格昂贵。

5. 气相色谱仪:利用混合气体中各组分在互不相溶的二相之间分配的差异而使各气体成分分离,此法测量精度高。

6.红外线气体分析仪。利用气体对红外线的吸收原理检测。常用的是CO2分析仪、麻醉气体如笑气(N2O2)分析仪等。该法测定准确、响应迅速,用于实时测定。

(三)压力计:是指测量流体压力的仪器。临床医学中主要作呼吸肌肉力量测定和肺顺应性测定,压力与流量计组合还被应用于体积描记仪,测定气道阻力和肺容量。

1. U型管压力计:以水或水银作工作介质。多用作测量压力的标准器,但读数和记录不方便,且动态响应差,敏感性低。

2.膜片偏位式压力计:通过相应于被测压力的感应元件的膜片位移,把位移信号转换成电信号输出、显示和记录。

三.肺功能仪的技术要求[8-10]

(一)容量测定:

肺量计容量测定能力应>8L 任何容量测定的误差<2%, 或±50ml (取二者中最大者);

分辨率25ml

最低驱动压0.03kpa

定标筒容量应>1L

(二)时间测定:

误差<2%

FVC测定记录时间>14sec

(三)流量计:

测定范围:0~15L/sec

误差<4%, 或±0.07L/sec (取二者中最大者)

*. 压差式流量计:

阻力< 0.1kpa/L/sec

应有预热,以预防水蒸汽沉积

(四)气道阻力测定:

范围 0~2 kpa/L/sec

误差±0.01kpa/l/sec

(五)气体分析:

肺容量测定时CO2<0.5%

He测定范围0~10%,误差应<1%

CO测定范围0~0.3%,误差应<1%

气体循环量最少180L/min

相关主题
文本预览
相关文档 最新文档