当前位置:文档之家› MEMS技术在流动分离主动控制中的应用_邓进军

MEMS技术在流动分离主动控制中的应用_邓进军

MEMS技术在流动分离主动控制中的应用_邓进军
MEMS技术在流动分离主动控制中的应用_邓进军

北京航空航天大学五系流体力学实验染色液流动显示实验报告

研究生《流体力学实验》 ——飞机标模染色液流动显示 实验报告 班级 姓名 实验日期 指导教师 北京航空航天大学流体力学研究所

一、实验目的 1. 掌握染色流动显示技术的基本原理、应用方法和实验过程中应注意的技术问题。 2. 了解战斗机典型绕流现象和特性,包括机翼前缘涡(边条涡)、机头涡的形态、特征、涡 系间相互作用,以及攻角影响等,并分析这些流动现象对飞机气动性能的影响。 二、基本原理 流动显示技术是显示技术包括方法、设备、记录手段、图像处理和数据分析等方面,逐渐形成专门的实验技术。 水洞中常用的流动显示技术有氢气泡方法和染色方法等(属于示踪粒子方法),配以激光片光源等辅助手段可以得到很多有意义的细节结果。染色线流动显示是在在被观测的流场中设置若干个点,在这些点上不断释放某种颜色的液体,它随流过该点的流体微团一起往下游流去,流过该点的所有流体微团组成了可视的染色线。染料选取应注意:1.所选取的染料应使染色线扩散慢、稳定性好;2.染色液应与水流具有尽可能相同的密度(与酒精混合); 3. 染料颜色与流场背景形成强的反差(荧光染料)注入方式;4.在绕流物体表面开孔;5.直接注入流场中所需要观测的位置。 本实验选用飞机标模,利用染色液方法观察其绕流的典型流动现象,重点关注机头涡、边条涡及其对基本翼(主翼也称后翼)流动的影响。 三、实验装置及模型 1.实验模型 飞机标模由机身、机翼、尾翼构成,见图2。机身为尖拱型头部加圆柱形后体,机翼为大后掠边条加中度后略三角翼主翼,尾翼包括水平尾翼和垂直尾翼(单立尾)。各部分表面都布有染色液出孔。

2.实验风洞 北航1.2米多用途低速串联水平回流式水洞。该水洞实验段尺寸大、流场品质高,与同类设备比较,不但在国内领先,而且达到国际先进水平。设备主实验段1.2米×1米×16米(高×宽×长),流速范围0.1~1.0米/秒。主实验段主要流场品质:湍流度0.27%~0.45%,截面速度不均匀度:0.46%。 四、实验步骤 1.实验准备,将染色液注入系统; 2.开启水洞,水流速度稳定到10cm/s; 3.调整攻角; 4.待流场稳定后,调节染色液流量,得到清晰的流动结构显示形态; 5.待流动稳定后,观察稳定的流态,拍摄照片; 6. 将攻角分别调整到0 o,5o,10o,15o,20o,25o,30o,35o,40o,45o,50o,55o,60o,重复步骤5,直到所要求的攻角状态实验全部完成。 五、实验结果报告 1.实验条件: ①水温t=20o C; 水的运动粘性系数υ=0.878×10-6米2秒; 附:水的运动粘性系数随温度的变化: ②水流速度 U = 0.1 米/秒; ③特征长度C=0.115m (C为模型机翼平均弦长) 计算:雷诺数 Re = UC /υ= 1.310×104; 2.实验结果和分析

圆柱绕流数值模拟

圆柱绕流的数值模拟研究 摘要:选取直径为D=10mm的圆柱及6D×3D的计算区域,利用GAMBIT进行模型的创建模型,对计算区域采用分块网格划分与结构化网格划分相结合的技术进行网格划分。对0.03m/s~1.0m/s的低流速情况下的圆柱绕流进行模拟研究,结果发现在速度达到0.1m/s前圆柱后侧没有出现明显的漩涡,在速度大于0.1m/s后漩涡开始出现,当速度达到0.5m/s时漩涡的范围最大。最后利用FLUENT的网格自适应技术对入口速度为0.5m/s的情况进行了网格加密,发现网格自动加密可以改进网格分布情况,但对计算结果的影响程度有限。 关键词:网格划分;圆柱绕流;涡量;网格自适应 钝体绕流中尤其以圆柱体的绕流问题最为经典和引起人们的注意。圆柱绕流属于非定常分离流动问题,在工业工程中的应用非常广泛。圆柱绕流同时也是一个经典的流体力学问题,流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。而由于圆柱的存在,会在圆柱迎水面产生壅水现象,同时也增加了圆柱的受力,使得圆柱绕流问题变得十分复杂。 研究圆柱绕流问题在工程实际中也具有很重要的意义。如在水流对桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等的作用中,风对塔建筑、化工塔设备、高空电缆等的作用中,都有重要的工程应用背景。因此,对圆柱绕流进行深入研究,了解其流动机理和水动力学规律,不仅具有理论意义,还具有明显的社会经济效益。 1数学模型与计算方法 1.1几何模型 结合本文研究目标,取圆柱直径D=10mm,计算区域为6D×3D的矩形区域,如图1所示。上游尺寸1.5D,下游尺寸4.5D。使用GAMBIT建模软件按照图1所示的计算域建立了二维的计算模型。 图1计算区域 1.2网格划分及边界条件设置 为提高模拟精度,计算区域采用分块网格划分与结构化网格划分相结合的技术。计算区域共分两块,尺寸见图1所示。在圆柱区域采用O型结构化网格(图2),尾流区域采用四边形结构化网格分别划分(图3),使用GAMBIT对两块计算区域进行了网格划分,划分的结果是网格总数为42946个。 对计算区域进行边界条件定义,考虑到流入介质的为空气,同时流速较低,就把介质假定为不可压缩的流体。进而把左侧的入口定义为速度入口即:Velocity-inlet,右侧的出口假定为充分发展的出流,即定义为:Outflow。其余的边界保持默认的壁面边界条件,同时定义为绝热条件,即热流密度为0。

MEMS技术发展综述

MEMS技术发展综述 施奕帆04209720 (东南大学信息科学与工程学院) 摘要:对于MEMS技术进行简要的介绍,了解其诞生与发展,所涉及的学科领域,目前的研究成果以及在生活、军事、医学等方面的应用。目前MEMS在我国的发展已取得一定成果,在21世纪可以有更大的突破,其未来在材料、工艺、微器件、微系统方面也具有巨大的发展空间。 关键词:MEMS、传感器、微制造技术 一、MEMS简介 微机电系统(micro electro mechanical system,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域,其起源可以追溯到20世纪50~60年代,最初贝尔实验室发现了硅和锗的压阻效应,从而导致了硅基MEMS传感器的诞生和发展。在随后的几十年里,MEMS得到了飞速发展,1987年美国加州大学伯克利分校研制出转子直径为60~120/μm的硅微型静电电机;1987~1988年,一系列关于微机械和微动力学的学术会议召开,所以20世纪80年代后期微机电系统一词就渐渐成为一个世界性的学术用语,MEMS技术的研究开发也成为一个热点,引起了世界各国科学界、产业界和政府部门的高度重视,经过几十年的发展,它已

成为世界瞩目的重大科技领域之一。 二、MEMS涉及领域及作用 MEMS技术涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等学科。MEMS开辟了一个新的技术领域,它的研究不仅涉及元件和系统的设计、材料、制造、测试、控制、集成、能源以及与外界的联接等许多方面,还涉及微电子学、微机构学、微动力学、微流体学、微热力学、微摩擦学、微光学、材料学、物理学、化学、生物学等基础理论 三、MEMS器件的分类及功能 目前,MEMS技术几乎可以应用于所有的行业领域,而它与不同的技术结合,往往会产生一种新型的MEMS器件。根据目前的研究情况,除了进行信号处理的集成电路部件以外,MEMS内部包含的单元主要有以下几大类: (1)微传感器: 主要包括机械类、磁学类、热学类、化学类、生物学类等。其主要功能是检测应变、加速度、速度、角速度(陀螺)、压力、流量、气体成分、湿度、pH值和离子浓度等数值,可应用于汽车、航天和石油勘探等行业。

哈工大能源学院韩万金课件-工程分离流动力学(上篇)

分离流动广泛存在于各种物体的绕流中: 分离对流动有着十分严重的影响研究分离线附近的流动性状,建立分离模式和判别 分离的准则 研究三维分离流动的分类及其特性 研究分离的形成及其发展规律 、无分离情况下,平板绕流的物理图象: 、分离情况下,分离流动的物理图象及分离的必要条件分离发生的必要条件:u ?? ?? ??意图。圆圈的大小示意地表示壁面上涡量的大小,正负号表示的是涡量的方向。

速度型在壁面处的曲率仅取决于主流中的压力梯度。 1、 、 )速度型必存在拐点 逆压梯度下边界层速度分布示意图 由于存在逆压梯度 ??在分离点前 , τ>0w τ?<

二维绕流流线方程的一般表达式为 经推导,可得到邻近壁面处的流线中的流线方程为 可以看到,当x,y均趋于零时,只要在原点处流动不发生 也趋于零,即流线平行于物面。只要原点不置于分离点处,其壁面流线总 第14页 3、通过分离点的流线 当流动在壁面上某点处发生分离时,将坐标原点置于分离点,此时流线方程中,邻近分离点的流线方程为: x,y趋近于零,取极限 即 解此方程得: tan0 θ=0 3 tan x p x τ θ ? ?? ?? ? ?? =? ??? ?? ? ?? 通过分离点的流线有两条:一条为物 面,另一条与壁面成一定角度。该角 度的大小取决于在分离点处沿壁面的 压力梯度和壁面摩擦应力梯度。 线斜率的方程 τ??? 在分离流场中的零 斜为角。 注意:零线OB不是流线,在其上u=0,但仍然存在把坐标原点置于分离点,并且,则得到 ?= 趋于零,取极限τ? 形象地讲所谓三维流动分离就是在三维流动中的边界层流到物面的某个地方,靠近物面的流体微团很 流线 切线方向与该点的流体微团的流动速度方向相同。 极限流线 距离接近于零,但不等于零。 极限流线实际反映了无限接近物面的流体团的运 动。极限流线在那里很快离开了物面,流动就在那

MEMS技术研究

MEMS技术的研究 一、MEMS技术概述 MEMS技术是采用微制造技术,在一个公共硅片基础上整合了传感器、机械元件、致动器(actuator)与电子元件。MEMS通常会被看作是一种系统单晶片(SoC),它让智能型产品得以开发,并得以进入很多的次级市场,为包括汽车、保健、手机、生物技术、消费性产品等各领域提供解决方案。 1.1、微机电系统(MEMS)概念 虚微机电系统(Micro-Electronic Mechanical System-MEMS),是在微电子技术基础上结合精密机械技术发展起来的一个新的科学技术领域,微机电系统是一个独立的智能系统。 一般来说,MEMS是指可以采用微电子批量加工工艺制造的,集微型机构、微型传感器、微型致动器(执行器)以及信号处理和控制电路,直至接口、通讯和电源等部件於一体的微型系统。其基本组成见图1.1所示。 图1.1 MEMS的组成 通常,MEMS主要包含微型传感器、执行器和相应的处理电路三部分。 微机电系统的制造工艺主要有集成电路工艺、微米/纳米制造工艺、小机械

工艺和其他特种加工工种。 在微小尺寸范围内,机械依其特徵尺寸可以划分为1-10毫米的小型(Mini-)机械,1微米-1毫米的微型机械以及1纳米-1微米的机械。 所谓微型机械从广义上包含了微小型和纳米机械,但并非单纯微小化,而是指可批量制作的集微型机构,微型感测器,微型执行器以及接口信号处理和控制电路、通讯和电源等于一体的微电子机械系统。 1.2、微机电系统(MEMS)发展简史 微机电的概念最早可追溯到1959年R.Fe ym.在加州理工大学的演讲。 1982年,K.E .Pe terson发表了一篇题为“Silicon as a Mechanical Material”的综述文章,对硅微机械加工技术的发展起到了奠基的作用。 微机电研究的真正兴起则始于1987年,其标志是直径为10um的硅微马达(转子直径120微米,电容间隙2 微米)在加州大学伯克利分校的研制成功,其引起了世界的轰动。自此以后,微电子机械系统技术开始引起世界各国科学家的极大兴趣。专家预言,它的意义可与当年晶体管的发明相比。 为了进一步完善这一学科,使其更多更快地为人类服务,除探索新技术,新工艺以外,各国科学家们还在积极努力从事MEMS基础理论研究,包括对微流体力学,微机械磨擦和其他相关理论的研究,并建立一套方便,快捷的分析与设计系统。 相信在不久的将来,MEMS将广泛渗透到医疗、生物技术、空间技术等领域。 1.3、微机电系统(MEMS)的特点及前景 微机电系统(MEMS)具有以下六种特点: 1.微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。 2.以硅为主要材料,机械电器性能优良。硅的强度、硬度及杨氏模量与铁相当,密度类似铝,热传导率接近相和钨。 3.大量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS,批量生产可大大降低生产成本。 4.集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集

激光微细加工技术及其在MEMS微制造中的应用

激光微细加工技术及其在M EMS微制造中的应用La ser Micromachining and I ts Application in the Microfabrication of MEMS 潘开林①② 陈子辰② 傅建中① (①浙江大学生产工程研究所 ②桂林电子工业学院) 摘 要:文章综述了当前MEMS各类微制造技术,阐述了各种激光微细加工技术的原理、特点,主要包括准分子激光微细加工技术、激光LIGA技术、激光微细立体光刻技术等,以及它们在MEMS微制造中的应用。 关键词:激光微细加工 微机电系统 激光LIGA 微细立体光刻 微制造 1 MEMS及其微制造技术概述 微机电系统(ME MS)是微电子技术的延伸与拓宽,它不但具有信号处理能力,而且具有对外部世界的感知功能和执行功能,在此基础上可开发出高度智能、高功能密度的新型系统。ME MS器件与系统未来将成为多个领域的核心,其作用与以CPU为代表的集成电路构成当今电子系统的核心一样。鉴于ME MS技术的重要技术经济潜力和战略地位,引起了世界各国的高度重视。ME MS主要是美国学者的称谓,在日本称为微机械,在欧洲称为微系统。此外,微技术在不同的学科与应用领域,还有类似的不同的专业或行业术语,如生物技术领域的基因芯片(DNA芯片)、生物芯片(Bio-Chip),分析化学领域的微全流体分析系统(uT AS)、芯片实验室(Lab on Chip),与光学集成形成微光机电系统(MOE MS)等。 ME MS是从微电子技术发展而来,其微制造技术主要沿用微电子加工技术与设备。微电子加工技术与设备价格昂贵,适合批量生产。由于微电子工艺是平面工艺,在加工ME MS三维结构方面有一定的难度。目前,通过与其它学科的交叉渗透,已研究开发出以下一些特定的ME MS微制造技术。 (1)LIG A技术 LIG A和准LIG A技术最大的特点是可制出高径比很大的微构件,但缺点同样突出,成本高。 (2)材料去除加工技术 这类技术主要包括准分子激光微细加工[1~4]、微细电火花加工[5]、以牺牲层技术为代表的硅表面微细加工、以腐蚀技术为主体的体硅加工技术、电子束铣、聚焦离子束铣等。 (3)材料淀积加工技术 这类技术主要包括激光辅助淀积(LC VD)、微细立体光刻[6、7]、电化学淀积等。 上述各类技术的对比分析如表1所示[5]。 表1 MEMS主要微制造技术对比 技术最小尺寸精度高宽比粗糙度 几何自 由度 材料范围LIG A 技术 ++++++++ 金属、聚合物、 陶瓷 刻蚀技术+-+-+-金属、聚合物 准分子 激光 -(+)-+--+ 金属、聚合物、 陶瓷 微细立 体光刻 -(+)-(+)++-++聚合物 微细电 火化 +++++++ 金属、半导体、 陶瓷LCVD++-++-+金属、半导体 金刚石 精密切削 +++++-- 非铁金属、 聚合物 注:表中++、+、-、--分别表示很好、好、较差、很差,+-表示不同应用条件下的相对效果,括号内的“+”表示最新研究有所进展。 在目前ME MS微细加工技术的研究与应用中,激光微细加工技术得到了广泛的关注与研究。激光微细加工制造商宣称激光微细加工技术具有:非接触工艺、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点。 实际上,激光微细加工技术最大的特点是“直写”加工,简化了工艺,实现了ME MS的快速原型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。 在ME MS微制造中主要采用的激光微细加工技术有:激光直写微细加工、激光LIG A、激光微细立体光刻等,下面分别加以介绍。 2 准分子激光直写微细加工及其在MEMS中的应用 准分子激光以其高分辨率、光子能量大、冷加工、 ? 5 ? 制造技术与机床 2002年第3期 Special R eports综 述

MEMS技术的发展与应用

测控新技术课程报告 MEMS技术的发展与应用 摘要 微机电系统(Micro-Electronic Mechanical System-MEMS),是在微电子技术基础上结合精密机械技术发展起来的一个新的科学技术领域。 早在二十世纪六十年代,在硅集成电路制造技术发明不久,研究人员就想利用这些制造技术和利用硅很好的机械特性,制造微型机械部件,如微传感器、微执行器等。如果把微电子器件同微机械部件做在同一块硅片上,就是微机电系统——MEMS: Microelectromechanical System。一般来说,MEMS是指可以采用微电子批量加工工艺制造的,集微型机构、微型传感器、微型致动器(执行器)以及信号处理和控制电路,直至接口、通讯和电源等部件於一体的微型系统。 由于MEMS是微电子同微机械的结合,如果把微电子电路比作人的大脑,微机械比作人的五官(传感器)和手脚(执行器),两者的紧密结合,就是一个功能齐全而强大的微系统。 关键词:精密机械技术,微执行器,微传感器,微型致动器

前言 微电子机械系统(Micro Electro Mechanical System),简称MEMS,是在微电子技术基础上发展起来的集微型机械、微传感器、微执行器、信号处理、智能控制于一体的一项新兴的科学领域。它将常规集成电路工艺和微机械加工独有的特殊工艺相结合,涉及到微电子学、机械设计、自动控制、材料学、光学、力学、生物医学、声学和电磁学等多种工程技术和学科,是一门多学科的综合技术。MEMS在许多方面具有传统机电技术所不具备的优势,包括质量和尺寸普遍减小、可实现大批量生产、低的生产成本和能源消耗、易制成大规模和多模式阵列等。MEMS 研究的主要内容包括微传感器、微执行器和各类微系统,现在已成为世界各国投入大量资金研究的热点。从广义上讲,MEMS 是指集微型传感器、微型执行器以及信号处理和控制电路,甚至接口电路、通信和电源于一体的微型机电系统。 1.MEMS的发展过程 微机电的概念最早可追溯到1959年R.Fe ym.在加州理工大学的演讲。1982年,K.E .Pe terson发表了一篇题为“Silicon as a Mechanical Material”的综述文章,对硅微机械加工技术的发展起到了奠基的作用。 微机电研究的真正兴起则始於1987年,其标志是直径为10um的硅微马达在加州大学伯克利分校的研制成功。自此以后,微电子机械系统技术开始引起世界各国科学家的极大兴趣。 为了进一步完善这一学科,使其更多更快地为人类服务,除探索新技术,新工艺以外,各国科学家们还在积极努力从事MEMS基础理论研究,包括对微流体力学,微机械磨擦和其他相关理论的研究,并建立一套方便,快捷的分析与设计系统。相信在不久的将来,MEMS将广泛渗透到医疗、生物技术、空间技术等领域 2.MEMS的基本原理 MEMS由传感器、信息处理单元。执行器和通讯/接口单元等组成。其输入是物理信号,通过传感器转换为电信号,经过信号处理(模拟的和/或数字的)后,由执行器与外界作用。每一个微系统可以采用数字或模拟信号(电、光、磁等物理量)与其它微系统进行通信 3.MEMS的特点 .微型化、以硅为主要材料、大量生产、集成化、多学科交叉、应用上的高度广泛。 4.MEMS的制造技术 MEMS的制作主要基于两大技术:IC技术和微机械加工技术,其中IC技术主要用于制作MEMS中的信号处理和控制系统,与传统的IC技术差别不大,而微机械加工技术则主要包括体微机械加工技术、表面微机械加工技术、LIGA技术、准LIGA技术、

相关主题
相关文档 最新文档