当前位置:文档之家› 风电场有功无功自动控制系统手册

风电场有功无功自动控制系统手册

风电场有功无功自动控制系统手册
风电场有功无功自动控制系统手册

风电场有功功率控制

黑龙江公司研发基于WAMS系统风电调峰控制系统 加强风电场有功功率控制 发布时间:2010-04-20 点击次数: 黑龙江公司在6座风电场完成WAMS系统风电调峰控制系统改进和完善,并成功进行了远方控制风电场有功功率试验。据了解,黑龙江公司根据国家电网公司《风电场接入电网技术规定》,在4月19日召开的风电控制技术研讨会上提出了有关风电机组频率保护、电压保护、低电压穿越、风电场有功功率控制、电能质量监测、无功补偿装置的技术要求,而WAMS系统风电调峰控制系统即针对其中的风电场有功功率控制的实际应用。 《风电场接入电网技术规定》中要求风电场应具备有功功率调节能力,能根据电网调度部门指令控制其有功功率输出,为了实现对有功功率的控制,风电场需配置有功功率控制系统,接收并自动执行调度部门远方发送的有功功率控制信号,确保风电场最大有功功率值及有功功率变化值不超过电网调度部门的给定值。 2008年黑龙江公司通讯调度中心研究开发了基于WAMS系统风电调峰控制系统,通过WAMS和EMS系统获取风电、水电、火电机组出力、联络线运行计划、线路潮流电压等电网运行信息,按照调峰量公平公正分配、风电电量损失最小、风电机组无损伤控制三个原则对风电场实施调峰控制。该系统通过在风电场PMU装置增设控制单元,实时接收省调风电调峰控制主站下发的调峰控制指令,从而智能判断风场的运行工况,并将最终的风机控制指令通过协议传递给风电场本地后台监控系统,利用监控系统完成风机控制动作。这种控制方式需要风机生产厂家开放后台监控系统控制协议,并对监控系统进行改进,目前华锐风电公司、金风科技公司配合黑龙江公司已经在6座风电场完成监控系统改进,并成功进行了远方控制风电场有功功率试验。 为充分发挥黑龙江电网风电调峰控制系统作用,解决人工调度的控制不精确、调整速率慢、工作量大等问题,各风电场、风机生产厂家与黑龙江公司密切配合,逐步完善后台监控系统控制协议开放和改进工作,实现风电场功率优化控制功能。(桑学勇)信息来源:黑龙江省电力公司 EMS - Environment Monitoring System环境监测系统

风电场无功补偿方法研究

风电场无功补偿方法研究 摘要:随着风电技术的日益成熟,风力发电凭借其独有的优势,成为非化石燃料发电的重要来源。目前在风电接入电力系统方面,国内外学者进行了大量的探索和研究,并取得了诸多研究成果,但仍然存在着一些问题,如随着风电场规模的逐步扩大和风电容量在电网中的比例的逐渐增加,风电并网运行给区域电网所带来的影响逐渐暴露出来。作为新能源的重要组成部分,风能是一种可再生且无污染的能源,对风能的开发和利用得到了世界各国越来越多的关注和重视,与风电相关的技术和产业正在迅猛发展。文章分析了风电场中的无功补偿技术, 总结了风电场无功补偿的特点,对无功补偿的方式进行了比较,提出了风电场中无功补偿的要点。 关键词:风电场,无功补偿,补偿要点 一.国内风力发电发展概况 我国是一个人口众多,资源相对不足的国家,能源利用方面结构又极不合理。有数据显示,截止到2008 年,尽管我国发电总装机容量达到7.92 亿千瓦,位居世界第二。但其中以煤为主的火电机组占比高达80%,电源结构不合理[8]。同时,由于我国正处在工业化和城镇化加快发展的阶段,能源消耗较高,消费规模不断扩大,特别是目前我们的经济增长方式还是高投入、高消耗、高污染的粗放型,这就加剧了能源的供求矛盾

和对环境的污染。如 2008 年我国的石油对外依存度已达49.8%,我国二氧化硫排放量已居世界第一,二氧化碳排放量为世界第二,能源安全和环境问题正成为制约经济和社会发展的重要瓶颈。有关专家也已指出,随着我国工业化进程的继续深入,经济发展面临的能源、环境压力将会更大,加快发展替代能源已成为当务之急。 由此可见,能源问题已经成为制约经济和社会发展的重要因素,要解决我国的能源问题,一个最好的出路就是发展新的清洁的可再生能源,其中合理的开发和利用风能成为解决问题的一种最有效的方法。国家发改委能源研究所原所长周风起认为:“风电是目前最具有竞争力、最可能实现商业化的可再生能源品种。太阳能目前还太贵,生物质能的产业化还很落后。”此外,利用风力发电的优势还主要表现在:太阳能的有效利用还与天气有关.而风机却不受天气影响可以昼夜不停地工作,而且分布也更为广泛。我国是一个风能资源比较丰富的国家,一直以来,我国风电装机容量在飞速增加的同时,风电并网容量却远远落后于装机量,有数据显示,截至2009 年,在全国各种发电方式总发电量中,风电只占了其中很小的一部分,仅为 0.37%。最近两年我国风电爆发式增长中最为突出的瓶颈已由原来的电价偏低和风机成本高等原因已经被风电场建设和电网建设的不协调、我国开发风电模式和国外不同及部分风机质量达不到并网技术的要求等原因所取代,而这些原因引起的并网困难也导致了我国近三分之一的风机不能并网甚至长期处于闲置状态。由此可以看出,如果不降低风电场并网运行时对电网的影响,那么风力发电很难

南方电网风电场无功补偿及电压控制技术规范

Q/CSG 中国南方电网有限责任公司企业标准 南方电网风电场无功补偿及电压控制 技术规范 中国南方电网有限责任公司发布

目次 前言.............................................................. 错误!未定义书签。 1 范围............................................................ 错误!未定义书签。 2 规范性引用文件.................................................. 错误!未定义书签。 3 术语和定义...................................................... 错误!未定义书签。 4 电压质量........................................................ 错误!未定义书签。 电压偏差..................................................... 错误!未定义书签。 电压波动与闪变............................................... 错误!未定义书签。 5 无功电源与容量配置.............................................. 错误!未定义书签。 无功电源..................................................... 错误!未定义书签。 无功容量配置................................................. 错误!未定义书签。 6 无功补偿装置.................................................... 错误!未定义书签。 基本要求..................................................... 错误!未定义书签。 运行电压适应性............................................... 错误!未定义书签。 7 电压调节........................................................ 错误!未定义书签。 控制目标..................................................... 错误!未定义书签。 控制模式..................................................... 错误!未定义书签。 8 无功电压控制系统................................................ 错误!未定义书签。 基本要求..................................................... 错误!未定义书签。 功能和性能................................................... 错误!未定义书签。 9 监测与考核...................................................... 错误!未定义书签。 无功和电压考核点............................................. 错误!未定义书签。 无功和电压考核指标........................................... 错误!未定义书签。 无功和电压监测装置........................................... 错误!未定义书签。 10 无功补偿及电压控制并网测试..................................... 错误!未定义书签。 基本要求..................................................... 错误!未定义书签。 检测内容..................................................... 错误!未定义书签。

阐析风电场无功电压控制

阐析风电场无功电压控制 近年,随着我国对于能源发电的进一步重视,我国的能源发电行业也随之兴盛起来。风能发电就是其中一种。伴随着风能发电的迅猛增长,很大量的风能发电机组也相继地并入到了国家电网系统,这样一来就对我国的电网系统的安全运行和供电质量提出了比较大的挑战。其中的无功电压就成为了外界非议最多的讨论点。风能电场存在着一些缺点,例如风电场在进行有功输出时波动比较厉害,正是这种波动不能满足电网系统关于电压的相关要求,这种情况下,严重的后果是造成风电场的电力输出脱离电网系统。因此,我们在进行风能输出的时候,需要一个自动控制电压的系统来进行风电机组的电压动态补偿对风电机组的电压进行整体的调控。 标签:风电场;无功电压;控制 近些年,由于我国国务院针对能源问题的一系列法律法规的制定,例如:《可再生能源关于中长期的发展规划》。这样的鼓励能源方面的一些举措,使得我国的风能源发电迅速的发展开来,并且按照国务院的相关规划,截止到2020年,我国的风电机组发电要达到1.5亿千瓦时。基于上面的叙述,风力发电的自身的具有间歇性的特点,使得风力发电的有功输出极为被动,给未来的风能发电带来了很大的不确定性,这种不确定性就给国家的电网系统带来了很多的运行中的未知性。根据我国在2005年出台更新的关于风电场并入电网系统的规划,要求我国的风电场必须配备相应容量的无功补偿设备装置。这些装置包括三种主要的设备,第一,具有可以投切性能的电容电抗器,包括了由晶闸管控制的电容电抗器,英文缩写为TCR,由磁控制的电容电抗器,英文缩写为MCR。第二,静止特性的无功发生器,英文缩写为:SVG。第三,静止特性的无功补偿器,英文缩写为SVC。 1 当前的风电发电的主要特点 (1)并入国家电网系统的单个风电场的电容逐渐增大。(2)并入国家电网系统的风电机组的电压的等级也逐渐增高。由于风电场通常处在电网系统的尾端,这样就让风电场的输电送电的距离变远,电源的电压也会变高。在缺乏有效的火电的帮助支撑后,风电场的电源单方面的电容变大,电压变高就导致了国家的电网系统受到风电场的不稳定的影响的范围进一步的扩大了,这样就更突出了并入国家电网系统后的电压控制的问题,这些问题主要的表现是: 第一,由于风电场输电缺乏有效的控制,同时风电场输电的过程中具有波动性,这两种因素就导致了在国家电网系统中的电压考核通过率较低。 第二,由于我国的各地的并入国家电网系统的风电场输电没有统一为一家控制,这样就导致了多家风电场之间没有有效的协调和沟通,会导致国家电网系统出现很多运行障碍,最为严重的就是致使风发电的大规模脱离国家电网系统。

风电场风电机组优化有功功率控制的研究

2017年度申报专业技术职务任职资格 评审答辩论文 题目:风电场风电机组优化有功功率控制的研究 作者姓名:李亮 单位:中核汇能有限公司 申报职称:高级工程师 专业:电气 二Ο一七年六月十二日

摘要 随着风电装机容量的与日俱增,实现大规模的风电并网是风电发展的必然趋势。然而,由于风能是一种波动性、随机性和间歇性极强的清洁能源,导致风电并网调度异于常规能源。基于此,本文将针对风电场层的有功功率分配开展工作,主要工作概括如下: (1)对风电机组和风电场展开研究,分析风力发电机组运行特性、风力发电机组控制策略、风电场的控制策略。 (2)提出了一种简单有效的风电场有功功率分配算法,可以合理利用各机组的有功容量,优化风电场内有功调度分配指令,减少机组控制系统动作次数,平滑风电机组出力波动。 (3)优化风机控制算法后,通过现场实际采集数据将所提方法与现有方法进行了比较,验证了所提方法的合理性。 关键词:风电机组、风电场、有功功率控制、AGC

Abstract With increasing wind power capacity, to achieve large-scale wind power is an inevitable trend of wind power development. However, since the wind is a volatile, random and intermittent strong clean energy, resulting in wind power dispatch is different from conventional energy sources. And the wind farm is an organic combination for a large number of wind turbines, wind farms under active intelligent distribution layer hair is also included in the grid scheduling section. Based on this, the active allocation and scheduling for grid scheduling side active layer wind farm work, the main work is summarized as follows: (1)Wind turbines and wind farms to expand research, in-depth analysis of the operating characteristics of wind turbines, wind turbine control strategy, control strategies of wind farms. (2)This paper proposes a simple and effective wind power active power allocation algorithm, can reasonable use each unit capacity, according to the optimization of wind farms in active dispatching command, decrease The Times of turbine control system action smooth wind power output fluctuation unit. (3)After optimization of the fan control algorithm, through the practical field data collected will be presented method are compared with those of the existing method, the rationality of the proposed method was verified. Keywords:wind turbine, wind farm, active power control

风电场无功电压控制分析

风电场无功电压控制分析 【摘要】风电发展迅猛,但大量风电机组直接接入电网,是对电网安全运营、电能质量保证的重大挑战。其引起的无功电压问题日益受到关注。风电场有功出力波动较大,风电场电压波动大,难以满足电网的电压要求,而且各风电场间及与风电汇聚站间彼此缺乏协调,严重时还会导致大规模风机脱网。需要有一个自动电压控制系统充分利用风电场的风电机组和动态无功补偿装置来对风电场的电压整体调控。 【关键词】风电场;电压控制;无功补偿;静止无功发生器(SVG);晶闸管控制电抗器(TCR);磁控电抗器(MCR);风力发电机组 引言 近年来,风电行业以一种前所未有的速度迅猛发展。根据国务院《可再生能源中长期发展规划》,至2020年风电装机将达到1.5亿千瓦。风力发电自身固有的间歇性特点使风电场有功出力波动较大,且未来时刻的发电功率具有一定不确定性,给电网运行带来极大挑战,其引起的无功电压问题日益受到关注。根据GB/Z19963—2005《风电场接入电力系统技术规定》的要求,风电场一般均配置一定容量的无功补偿装置,包括可投切电容电抗器、静止无功发生器(SVG)和静止无功补偿器(SVC,其中有晶闸管控制电抗器(TCR)及磁控电抗器(MCR))。 目前风电接入电网出现了两个特点: (1)单个风电场容量增大; (2)接入电网的电压等级更高。 但风电基地一般都地处电网末端,输电距离远,电压等级高,缺乏强大火电支撑,而增加的风电接入容量与更高的电压等级使得电网受风电影响的范围更广,也使风电接入后的电压控制问题更加突出,主要表现在: (1)缺乏就地控制,风电场电压波动大,难以满足电网的电压考核要求。 (2)各自为政,缺乏协调,严重时导致大规模风机脱网。 随着风电的飞速发展,相关的政策、技术标准也随之出台,现摘取《风电场接入电力系统技术规定》有关无功电压方面的一些具体要求。 风电场的无功电源包括风电机组及风电场无功补偿装置。风电场要充分利用风电机组的无功容量及其调节能力。风电场的无功容量应按照分(电压)和分(电)区基本平衡的原则进行配置,并满足检修备用要求。 风电场应配置无功电压控制系统,具备无功功率及电压控制能力。当电网电压处于正常范围内时,风电场应当能风电场并网点电压在额定电压的97%~107%范围内。风电场变电站的主变压器应采用有载调压变压器通过调整变电站主变压器分接头控制场内电压,确保场内风电机组正常运行。 对于风电装机容量占电源总容量比例大于5%的省级电力系统,器电力系统区域内新增运行的风电场应具有低电压穿越能力。 对于总装机容量在百万千瓦以上风电基地内的风电场,在低电压穿越过程中应具有以下动态无功支撑能力:电力系统发生三相短路故障引起电压跌落,当风电场并网点电压处于额定电压的20%~90%区间内,风电场通过注入无功电流支撑电压恢复;自电压跌落出现的时刻起,该动态无功电流控制的响应时间不大于80ms,并能持续600ms。 当风电场并网点电压在额定电压的90%~110%之间时,风电机组应能正常

风电场无功补偿相关问题及解决办法

[转载]风电场无功补偿相关问题及解决办法(一) 一般来说,风电场的无功功率需求来自于两个方面:风机与变压器。其中变压器的无功损耗又分为正常运行时的绕组损耗和空载运行时的铁心损耗。无论是否运行,只要变压器与主网联接,铁心的励磁无功损耗总是存在的。 1.风力发电系统简介 随着经济的快速增长和社会的全面进步,我国的能源供应和环境污染问题越来越突出。开发和利用可再生能源的需求更加迫切。风能作为可再生能源中最重要的组成部分和唯一经济的发电方式,由于其清洁无污染、施工周期短、投资灵活、占地少,具有良好的社会效应和经济效益,已受到世界各国政府的高度重视。随着风力发电技术的快速发展和国家在政策上对可再生能源发电的重视,我国风力发电建设已进入了一个快速发展的时期。 我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。随着风电场规模的增大,风电场与电网之间的相互影响越来越大而系统对风力发电系统的要求也越来越严格。对风电系统主要的两个要求是正常运行状态下的无功功率控制和故障状态下的穿越能力。 一般来说,风电场的无功功率需求来自于两个方面:风机与变压器。其中变压器的无功损耗又分为正常运行时的绕组损耗和空载运行时的铁心损耗。无论是否运行,只要变压器与主网联接,铁心的励磁无功损耗总是存在的。 风力发电系统中,风力发电机是能量转换的核心部分,风力发电机系统按照发电机运行的方式来分,主要有恒速恒频风力发电系统和变速恒频风力发电系统两种。 对于恒速恒频发电机组,普遍采用普通异步发电机,这种发电机正常运行在超同步状态,转差率s 为负值,电机工作在发电机状态,且转差率的可变范围很小(s<5%),风速变化时发电机转速基本不变。在正常运行时无法对电压进行控制,不能象同步发电机一样提供电压支撑能力,不利于电网故障时系统电压的恢复和系统稳;发出的电能也随风速波动而敏感波动,若风速急剧变化,感应电机消耗的无功功率随着转速的变化而不断变化。由于恒速恒频发电机组自身不能控制无功交换并且需要吸收一定数量的无功功率,因此通常在机组出口端并联电容器组,但是单纯地依赖常规的补偿电容器是无法满足无功功率补偿要求,可能会引起风电机组发出电能质量问题,如电压闪变、无功波动以及故障条件下的穿越能力。因此,恒速恒频发电机组需要静止无功补偿装置来优化其在正常条件和故障状态下的运行。在工程中通常采用静止无功补偿器SVC或STATCOM来进行无功调节,采用软起动来减小起动时发电机的电流。恒速恒频发电机组适合用于小功率,通常不高于600 kW的系统。

风电场无功调节情况分析

风电场无功调节情况分析 汉梁风电场装备的风电机组为国产电气集团生产的双馈异步感应电机,单机容量为 1.5MW,风机技术指标明确功率因数可在-0.95~0.95间运行。共装132台风机,装机容量为200MW。单台风机功率因数和无功定值可在风机就地控制器设定,也可以在集控的全场风机监控系统中设定,此功能目前被风机厂商屏蔽。单台风机无功发生极限也实时计算,但是计算结果在风机就地控制器中未显示也未送出到集控监控系统中。主接线形式为:每11台风机出口经35kV箱变接入35kV汇流线,共12回35kV汇流线,送到220kV汇流站,在220kV汇流站的35kV母线侧装设SVC动态无功补偿设备。 无功补偿设备SVC两套均为荣信公司的TCR,每套容量为25MVar,分为一组固定容量电容器组和一组感性及容性并联结构,TCR运行方式为以电压为目标,维持电压在电压限制围的中间水平。从现场SVC性能试验结果来看,在SVC投入情况下,线路电流大,造成场功率损耗很大。 汉梁风电场风机控制系统为阜特公司为电气配套,升压站监控系统为南瑞设备。SVC一次设备的电容器组和电抗投退可在升压站监控系统中软操实现。根据调度和风场要求,目前风机功率因数设定为-0.98~0.98运行。 下图1—图4为汇流线C上1号、2号、8号、10号风机在2011年4月1日15时至4月1日18时的无功曲线图。从图中可看出,风机实时无功在AVC的调控下进行实时调整。15:00:00至15:45:00期间风机运行在滞相,结合图9数据查询,各风机向电网送出无功在+70Kvar左右浮动,在15:45:00后各风机逐步调整,在15:50:00后运行在进相,此. . .

风电场无功补偿相关问题及解决办法

风电场无功补偿相关问题及解决办法 1. 风力发电系统简介 随着经济的快速增长和社会的全面进步,我国的能源供应和环境污染问题越来越突出。开发和利用可再生能源的需求更加迫切。风能作为可再生能源中最重要的组成部分和唯一经济的发电方式,由于其清洁无污染、施工周期短、投资灵活、占地少,具有良好的社会效应和经济效益,已受到世界各国政府的高度重视。随着风力发电技术的快速发展和国家在政策上对可再生能源发电的重视,我国风力发电建设已进入了一个快速发展的时期。 我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。随着风电场规模的增大,风电场与电网之间的相互影响越来越大而系统对风力发电系统的要求也越来越严格。对风电系统主要的两个要求是正常运行状态下的无功功率控制和故障状态下的穿越能力。 一般来说,风电场的无功功率需求来自于两个方面:风机与变压器。其中变压器的无功损耗又分为正常运行时的绕组损耗和空载运行时的铁心损耗。无论是否运行,只要变压器与主网联接,铁心的励磁无功损耗总是存在的。 风力发电系统中,风力发电机是能量转换的核心部分,风力发电机系统按照发电机运行的方式来分,主要有恒速恒频风力发电系统和变速恒频风力发电系统两种。 对于恒速恒频发电机组,普遍采用普通异步发电机,这种发电机正常运行在超同步状态,转差率s 为负值,电机工作在发电机状态,且转差率的可变范围很小(s<5%),风速变化时发电机转速基本不变。在正常运行时无法对电压进行控制,不能象同步发电机一样提供电压支撑能力,不利于电网故障时系统电压的恢复和系统稳;发出的电能也随风速波动而敏感波动,若风速急剧变化,感应电机消耗的无功功率随着转速的变化而不断变化。由于恒速恒频发电机组自身不能控制无功交换并且需要吸收一定数量的无功功率,因此通常在机组出口端并联电容器组,但是单纯地依赖常规的补偿电容器是无法满足无功功率补偿要求,可能会引起风电机组发出电能质量问题,如电压闪变、无功波动以及故障条件下的穿越能力。因此,恒速恒频发电机组需要静止无功补偿装置来优化其在正常条件和故障状态下的运行。在工程中通常采用静止无功补偿器SVC或STATCOM来进行无功调节,采用软起动来减小起动时发电机的电流。恒速恒频发电机组适合用于小功率,通常不高于600 kW的系统。

风电场有功自动控制系统研究

风电场有功自动控制系统研究 王栋 (中能电力科技开发有限公司) 摘要:随着风电在电力系统中装机量的增加,一个功率可控、在控的风电场是未来发展的方向。本文设计并研制了一套风电场有功自动控制系统(AGC);验证了双馈风电机组的安全有功可调范围及调节速率;提出了AGC的控制策略;开发了相应软件,并进行了整场有功实验。 关键词:风电场;有功;AGC 1.概述 对于相对稳定电力系统来说,输出负荷变化频繁的风电场在并网后给电力系统所带来的冲击影响,会随着风电比例的不断增加而增加。为此,国家电网公司出台的《国家电网公司风场接入电网技术规定》明确规定[1]:风电场应具备有功功率控制系统,能够接受并自动执行电网调度的有功出力控制信号确保风电场最大输出功率及功率变化率不超过电网调度的给定值。 风电场有功控制AGC(Automatic Generation Control)的目的是在风电场侧建立一个面对全风电场的有功功率自动控制系统。在电网没有要求时,每台风机按各自最大出力运行;在电网限负荷运行时,实时监测各风机状态,进行优化计算,分配每台风机出力,实现风电场自动、优化、稳定的运行,满足电网要求。 基于以上背景,研制了有功自动控制系统,目的是利用风电机组本身的可调节能力对风电场的输出有功进行控制,既能够提高风电场的可控性,也能够优化风电场的电能质量。 2.系统结构 风电场有功功率自动控制系统(AGC系统)采用分层模块化的结构,主要包含升压站数据采集模块、风电机组数据采集模块、风电机组控制模块和AGC决策模块。总体技术方案见下图。

图1 系统框图 升压站数据采集模块负责对风电场综合自动化采集数据或并网PCC点CT、PT数据的实时采集,经过处理后将升压站的状态信息传递到AGC决策模块。 风电机组数据采集模块负责对风机SCADA采集数据或直接与各风电机组的CCU(中央控制单元)实时进行通讯,采集其状态信息并上传到AGC决策模块。 AGC决策模块负责接收升压站数据采集模块、风电机组数据采集模块上传的升压站和风电机组的状态信息,生成风电机组有功调节方案并与风电机组控制模块进行通讯。 风电机组控制模块负责与AGC决策模块进行通讯,将AGC决策模块的风电机组有功调节命令传送至每一台需要进行有功调节的风电机组进行执行。 风电场的有功功率分配按各风机的运行状态进行优化计算。根据电网调度要求负荷曲线、自动采集并网点上网出力、综合考虑厂用电情况,设计闭环自适应反馈控制,使并网点出力保持在调度要求,并使尽可能多的风机参加运行,有利于冬季设备维护。 3.系统通讯 风电场并网PCC点电网状态信息的采集,利用风电场变电站高压侧母线上已有的计量表计及电网状态监测传感器来实现,采集的参数为:风电场出口有功功率、无功功率、并网点电压、频率。 风电机组的运行工况信息,通过和现场风机厂商的SCADA系统通讯获得。风机的控制指令由风电场有功功率自动控制系统产生,经过OPC接口和风机SCADA

风电场风电机组优化有功功率控制的研究

风电场风电机组优化有功功率控制的研究

————————————————————————————————作者:————————————————————————————————日期:

2017年度申报专业技术职务任职资格 评审答辩论文 题目:风电场风电机组优化有功功率控制的研究 作者姓名:李亮 单位:中核汇能有限公司 申报职称:高级工程师 专业:电气 二Ο一七年六月十二日

摘要 随着风电装机容量的与日俱增,实现大规模的风电并网是风电发展的必然趋势。然而,由于风能是一种波动性、随机性和间歇性极强的清洁能源,导致风电并网调度异于常规能源。基于此,本文将针对风电场层的有功功率分配开展工作,主要工作概括如下: (1)对风电机组和风电场展开研究,分析风力发电机组运行特性、风 力发电机组控制策略、风电场的控制策略。 (2)提出了一种简单有效的风电场有功功率分配算法,可以合理利用 各机组的有功容量,优化风电场内有功调度分配指令,减少机组控制系 统动作次数,平滑风电机组出力波动。 (3)优化风机控制算法后,通过现场实际采集数据将所提方法与现有 方法进行了比较,验证了所提方法的合理性。 关键词:风电机组、风电场、有功功率控制、AGC

Abstract With increasing wind power capacity, to achieve large-scale wind power is an inevitable trend of wind power development. However, since the wind is a volatile, random and intermittent strong clean energy, resulting in wind power dispatch is different from conventional energy sources. And the wind farm is an organic combination for a large number of wind turbines, wind farms under active intelligent distribution layer hair is also included in the grid scheduling section. Based on this, the active allocation and scheduling for grid scheduling side active layer wind farm work, the main work is summarized as follows: (1)Wind turbines and wind farms to expand research, in-depth analysis of the operating characteristics of wind turbines, wind turbine control strategy, control strategies of wind farms. (2)This paper proposes a simple and effective wind power active power allocation algorithm, can reasonable use each unit capacity, according to the optimization of wind farms in active dispatching command, decrease The Times of turbine control system action smooth wind power output fluctuation unit. (3)After optimization of the fan control algorithm, through the practical field data collected will be presented method are compared with those of the existing method, the rationality of the proposed method was verified. Keywords:wind turbine, wind farm, active power control

南方电网风电场无功补偿及电压控制技术规范QCSG1211004

. Q/CSG 中国南方电网有限责任公司企业标准 南方电网风电场无功补偿及电压控制 技术规范

目次 前言............................................................................. II 1 范围 (3) 2 规范性引用文件 (3) 3 术语和定义 (3) 4 电压质量 (5) 4.1 电压偏差 (5) 4.2 电压波动与闪变 (5) 5 无功电源与容量配置 (5) 5.1 无功电源 (5) 5.2 无功容量配置 (5) 6 无功补偿装置 (5) 6.1 基本要求 (5) 6.2 运行电压适应性 (6) 7 电压调节 (6) 7.1 控制目标 (6) 7.2 控制模式 (6) 8 无功电压控制系统 (6) 8.1 基本要求 (6) 8.2 功能和性能 (6) 9 监测与考核 (7) 9.1 无功和电压考核点 (7) 9.2 无功和电压考核指标 (7) 9.3 无功和电压监测装置 (7) 10 无功补偿及电压控制并网测试 (7) 10.1 基本要求 (7) 10.2 检测内容 (7)

前言 本标准按照GB/T 1.1-2009给出的规则起草。 本规定由中国南方电网有限责任公司系统运行部提出、归口并负责解释。 本标准起草单位:中国南方电网有限责任公司系统运行部,广东电网有限责任公司电力科学研究院本标准主要起草人:吴俊、曾杰、苏寅生、盛超、陈晓科、宋兴光、李金、杨林、刘正富、王钤、刘梦娜

南方电网风电场无功补偿及电压控制技术规范 1 范围 本标准规定了风电场接入电力系统无功补偿及电压控制的一般原则和技术要求。 本标准适用于通过35kV及以上电压等级输电线路与电力系统连接的风电场,通过其他电压等级集中接入电网的风电场可参照执行。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 12325 电能质量供电电压偏差 GB/T 12326 电能质量电压波动和闪变 GB/T 19963 风电场接入电力系统技术规定 GB/T 20297 静止无功补偿装置(SVC)现场试验 GB/T 20298 静止无功补偿装置(SVC)功能特性 SD 325 电力系统电压和无功电力技术导则(试行) DL/T 1215.1 链式静止同步补偿器第1部分:功能规范导则 DL/T 1215.4 链式静止同步补偿器第4部分:现场试验 Q/CSG110008 南方电网风电场接入电网技术规范 Q/CSG 110014 南方电网电能质量监测系统技术规范 Q/CSG 1101011 静止同步补偿器(STA TCOM)技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 风电机组wind turbine generator system; WTGS 将风的动能转换为电能的系统。 3.2 风电场wind farm;wind power plant 由一批风电机组或风电机组群(包括机组单元变压器)、汇集线路、主变压器及其他设备组成的发电站。 3.3 风电场并网点point of interconnection of wind farm 风电场升压站高压侧母线或节点。 3.4 公共连接点point of common coupling 风电场接入公用电网的连接处。

风电场无功补偿计算

风电场无功补偿计算 摘要:电力系统的无功平衡和无功补偿是保证电压质量的基本条件之一,是保证系统安全稳定运行和经济运行的重要保障。随着风力发电在电力能源中所占比例增大,大规模风电场并网运行后,其无功补偿对局部电网的调教作用将更加明显。本文分析了影响风电场无功平衡的几个重要因素,虑影根据某风电场风机出力情况,计算风电场升压站的无功缺额,提出了无功配置建议。 关键词:风电场、无功补偿 1、引言 近年来我国风电产业取得了巨大进步,随着风电技术的日益成熟,风电已从过去的自发自用、独立运行的小型风力发电机发展成为多机联合并网运行的大型风力发电场。然而,风能的随机性和不可控性决定了风电机组的出力具有波动性和间歇性的特点:且风机大多为异步发电机,其运行特性与同步机有本质的区别。因此,大风电接入系统和远距离输送,往往存在无功平衡、电压稳定、输电通道允许的送电容量问题,有时会制约风电的发展【1、2】。风机为异步机,需吸收无功来发出有功。现大风机多为交流励磁双馈电机,采用恒功率因素控制模式的双馈电机能够提供一定动态无功支持,但其无功调节能力有限【3】。交流励磁双馈电机变速恒频风力发电技术是目前最有前景的风力发电技术之一,已成为国内、外该领域研究的热点。此方案最大的优点是减小了功率变换器的容量,降低了成本,且可以实现有功、无功的独立灵活控制。但其核心技术掌握在国外制造商手中,出厂风机的功率因素固定,不易在运行中进行调整,现阶段风电场的功率因素调节一般都为机组停机后进行调节,因此有必要对风电场的无功补偿计算,以确定风电场的无功补偿配置。 2、无功配置容量计算 风电场的无功容量平衡一般考虑有,风机的发出无功、电缆的充电功率、升压变的无功损耗、需向主网提供的无功功率。 1)风机的无功出力 风力发电机在向系统送出有功的同时,一般也同时送出无功,由于风机类型的限制,功率因素不易在运行中进行调整,其中出厂功率因素一般整定在1,或者0.98。若发出的功率,风机的无功出力为,其值为:

国家电网风电场接入电网技术规定

国家电网风电场接入电网技术规定(试行) 1范围 本规定提出了风电场接入电网的技术要求。 本规定适用于国家电网公司经营区域内通过110(66)千伏及以上电压等级与电网连接的新建或扩建风电场。 对于通过其他电压等级与电网连接的风电场,也可参照本规定。 2规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定;凡是不注日期的引用文件,其最新版本适用范围于本规定。 GB 12326-2000 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 12325-2003 电能质量供电电压允许偏差 GB/T 15945-1995 电能质量电力系统频率允许偏差 DL 755-2001 电力系统安全稳定导则 SD 325-1989 电力系统电压和无功技术导则 国务院令第115号电网调度管理条例(1993) 3 电网接纳风电能力 (1)风电场宜以分散方式接入系统。在风电场接入系统设计之前,要根据地区风电发展规划,对该地区电网接纳风电能力进行专题研究,使风电开发与电网建设协调发展。 (2)在研究电网接纳风电的能力时,必须考虑下列影响因素: a)电网规模 b)电网中不同类型电源的比例及其调节特性 c)负荷水平及其变化特性 d)风电场的地域分布、可预测性与可控制性 (3)在进行风电场可行性研究和接入系统设计时,应充分考虑电网接纳风电能力专题研究的结论。为便于运行管理和控制,简化系统接线,风电场到系统第一落点送出线路可不必满足“N-1”要求。 4 风电场有功功率 (1)基本要求 在下列特定情况下,风电场应根据电力调度部门的指令来控制其输出的有功功率。 1)电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电线路发生过载,确保电力系统稳定性。 2)当电网频率过高时,如果常规调频电厂容量不足,可降低风电场有功功率。 (2)最大功率变化率 最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参

风电场有功功率控制综述

风电场有功功率控制综述 发表时间:2019-03-29T16:00:29.617Z 来源:《电力设备》2018年第29期作者:龙玮[导读] 摘要:经济的发展,促进人们对能源需求的增大。 (上海上电电力工程有限公司上海 200090)摘要:经济的发展,促进人们对能源需求的增大。风能作为一种清洁的可再生能源具有取之不尽、用之不竭、环境污染小、投资灵活等诸多优点。风电场的有功功率控制是风电场可控运行的一项关键技术,控制策略的优劣直接影响到风场输出功率的稳定性、快速性、跟随性等各项性能指标,所以发展风电场的有功功率控制技术能够保证更有效地利用风能,也对电力系统的安全、稳定运行起着重要作用。 本文就风电场有功功率控制展开探讨。 关键词:风电场;风电机组;有功功率控制引言 由于风电具有随机性、波动性和反调峰特性,高比例的风电并入电网会对电力系统的稳定性和安全性造成很大的冲击,因此有必要对风电场有功功率输出进行控制,减少风电功率的波动性,提高输出功率的平滑性。 1.风电场有功功率控制原理风电场有功功率控制系统一般主要由风电场功率控制层、机组群控制层、机组控制层组成图,各层功能及控制周期见表1。 表1风电场分层控制 风电场有功控制系统的目的是为了使风电场能够根据调度指令调整其有功功率的输出,在一定程度上表现出与常规电源相似的特性,从而参与系统的有功控制。然而,风电场有功控制能力不等同于风力发电机组控制能力的简单叠加。为此,利用风力发电机群的统计特性,可以采用两种方式实现此目的:一是将风电场有功控制系统分为风电场控制层、各类机群控制层和机组控制层,依次下达调度指令,完成风电场有功功率控制的任务;二是电网调度中心将指令直接下达给风电机组,各机组调节有功出力,实现有功功率的控制。 2.风电场有功功率的控制 2.1最大出力模式 最大出力模式是指当风电场的预测功率小于电网对风电场的调度功率时,风电场处于最大出力状态向电网注入有功功率。最大出力控制模式就是在保证电网安全稳定的前提下,根据电网风电接纳能力计算各风场最大出力上限值,风电场输出功率变化率在满足电网要求的情况下处于自由发电状态。若超出本风电场的上限值时,可根据其他风场空闲程度占用其他风电场的系统资源,以达到出力最大化和风电场之间风资源优化利用的目的。在最大出力模式投入运行时,风电场内的各台达到切入风速但在额定风速以下的风机处于最大功率跟踪(MaximumPowerPointTracking,MPPT)状态;风电场内处于额定风速以上的各台风电机组运行在满功率发电状态,从而保证风电场的输出功率达到最大值,尽可能提高风能资源的利用效率。 2.2 基于目标函数优化的功率控制 基于目标函数优化的有功功率控制策略,通常先确定目标函数以及约束条件,在此基础上建立多目标优化的风电场模型。在基于目标函数优化的场站级有功功率控制策略中,基于小扰动分析方法分析了限功率运行下风电机组非线性模型的稳定特性,并综合了3个目标,分别是限功率运行状态均衡度、风电场功率目标偏差、总机组启停次数最少,建立了多目标优化模型。以减少风电机组控制系统的动作次数和平滑风电机组的功率输出为目标,通过超短期风功率预测数据确定风电机组出力趋势,来确定风电机组的出力加权系数,从而来优化风电场内有功调度指令,并与传统的固定比例分配算法以及变比例分配算法作比较,说明其控制策略的有效性。 2.3 功率增率控制模式 功率增率控制模式是对风电场输出有功功率的变化率进行限制,使风电场输出的有功功率能够保持一定的稳定性,并且能满足国家电网公司颁布的关于有功功率变化率的相关规定。在功率增率控制模式投入运行时,风电场的输出功率在每个控制周期的变化必须在给定的斜率范围之内,且风电场的整体输出功率应该在满足斜率的前提下尽量跟随风电场的预测功率。风电场的功率增率控制模式可以避免风电场的输出功率变化过于频繁、变化率过大,从而保证功率输出的稳定性。该模式通常与风电场的其他控制模式组合使用,在保证输出功率斜率满足条件下,对风电场的其他方面进行控制。 2.4 分层控制策略 分层控制策略一般将风电场内的控制系统分为若干层,从场站级控制层面到单机控制层面,逐层优化调度指令,从而实现风电场有功功率控制的准确度。在基于风电场场站级的分层控制策略中,综合运用分层递阶控制和模型预测控制方法,提出了一种含大规模风电场的电网有功调度控制方法。以风电场场站级有功控制为研究对象,将控制策略分为群间和群内优化调度2个层面,并提出一种基于遗传算法改进的模糊C均值聚类算法,用于风电场内的机组分群,根据风电机组分群结果和分群调度思想,来实现风电场输出功率可控的目标,但本策略是在假设风电场预测功率准确的情况下进行控制的,并未深入研究风电场预测功率的准确性对调度的影响。风电场内有功调度分为3个层次,分别是场站优化分配层、分群控制层、单机管理层,在分群控制层面,根据风电机组未来有功功率变化趋势以及负荷状态进行机组分类,值得借鉴的是,该系统加入了反馈校正环节,根据风电场实时有功功率的数据反馈,对功率组合预测模型系统进行误差反馈校正,整体提高了有功功率预测的精度。随着装机容量的不断增加,造成风电场存在大量的弃风现象,由此风电场的控制模式发生变化,从传统的MPPT模式向限功率控制模式转变,这对风电场以及风电机组的控制策略提出了更高的设计要求。考虑变速恒频风电机组在不同风速下的功率调节和机械特性,从电气性能,机械性能,运行维护状态3个准则层出发,提出风电场功率调节综合评价指标体系,在此评价体系中,各指标的权重使用熵值法修正的层次分析法来确定,并通过模糊综合评价对机组调节性能进行评分,进而确定调控序列,建立风电场降功率优化分配模型。

相关主题
文本预览
相关文档 最新文档