当前位置:文档之家› 高一物理曲线运动重难点解析及典型例题

高一物理曲线运动重难点解析及典型例题

高一物理曲线运动重难点解析及典型例题
高一物理曲线运动重难点解析及典型例题

第五章 曲线运动

第五节 圆周运动 第六节 向心加速度

二. 知识要点:

1. 认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算。理解线速度、角速度、周期之间的关系:v=rω=2πr /T 。理解匀速圆周运动是变速运动。

2. 理解速度变化量和向心加速度的概念,知道向心加速度和线速度、角速度的关系式。能够运用向心加速度公式求解有关问题。

3. 运用极限法理解线速度的瞬时性。掌握运用圆周运动的特点如何去分析有关问题。体会有了线速度后。为什么还要引入角速度。运用数学知识推导角速度的单位。

三. 重难点解析: 1. 线速度

(1)定义:质点沿圆周运动通过的弧长Δl 与所用时间Δt 之比叫做线速度。它描述质点沿圆周运动的快慢。

(2)大小:

t l

v ??=

单位:m/s

(3)方向:质点在某点的线速度方向沿着圆周上该点的切线方向。 2. 匀速圆周运动

(1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。 (2)因线速度方向不断发生变化,故匀速圆周运动是变速运动,这里的“匀速”是指速率不变。 3. 角速度

(1)定义:在匀速圆周运动中,连接质点和圆心的半径转过的角度与所用时间的比值,就是指点的角速度。描述质点转过圆心角的快慢。匀速圆周运动是角速度不变的圆周运动。

(2)大小:

t ??=

θω,单位:rad /s 4. 周期T 、频率f 和转速n

定义:做圆周运动的物体运动一周所用的时间叫做周期,用T 表示,单位为秒(s )。 做圆周运动的物体运动一秒,所转过圆周的次数叫做频率,用f 表示,单位为赫兹(Hz )。1 Hz=11

-S 。

做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做转速。用n 表示,单位为转每秒(r /s ),或转每分(r /min )。

周期频率和转速都是描述物体做圆周运动快慢的物理量。 5. 描述圆周运动各物理量的关系 (1)线速度和角速度间的关系。 v= rω。

(2)线速度与周期的关系。

T r v π2=

(3)角速度与周期的关系。

T πω2=

(4)考虑频率f 则有:f πω2=,v=2πfr 。 (5)而频率f 与n 的关系为f=n 。

以上各物理量关系有:v=ωr=2πfr=2πnr 。 6. 两个有用的结论

(1)在同一个转盘上的角速度相同。

(2)同一个轮子的边缘上,线速度相同,传动中线速度相同。 7. 匀速圆周运动向心加速度

(1)定义:做匀速圆周运动的物体,加速度指向圆心,称作向心加速度。描述线速度改变的快慢。

(2)公式:r v a 2==ω2

r=r T 224π=4π2n 2r=4π2f 2r=ωv 。

(3)方向:总是沿着半径指向圆心。

(4)向心加速度公式也适用于非匀速圆周运动。

【典型例题】

[例1] 如图所示为录音机在工作时的示意图,轮子1是主动轮,轮子2为从动轮,轮1和轮2就是磁带盒内的两个转盘,空带一边半径为r 1=0.5 cm ,满带一边半径为r 2=3cm ,已知主动轮转速不变,恒为n l =36r /min ,试求: (1)从动轮2的转速变化范围;

(2)磁带运动的速度变化范围。

解析:本题应抓住主动轮(r 1)的角速度恒定不变这一特征,再根据同一时刻两轮磁带走动的线速度相等,从磁带转动时半径的变化来求解。

(1)因为v=rω,且两轮边缘上各点的线速变相等,所以r 26022n π=r 16021

n π,即n 2=21r r n 1

当r 2=3cm 时,从动轮2的转速最小,n min =min

/3635

.0r ?=6r /min.当磁带走完即

r 2

=0.5cm ,r 1

=3cm 时,从动轮2的转速最大,为n 2max

=21

r r n 1

=min /365.03

r ?=216r /min ,

故从动轮2的转速变化范围是6r /min ~216r /min 。

(2)由v=r 12πn l 得知:r 1=0.5cm 时,

v 1=0.5×10-2×2π×6036

m/s=0.019m/s

r 1=3cm 时,v 2=3×10-2×2π×6036

=0.113m /s 。

故磁带运动的速度变化范围是0.0 l 9m /s ~0.1 1 3 m /s 。

[例2] 一半径为R 的雨伞绕柄以角速度ω匀速旋转,如图所示,伞边缘距地面高h ,甩出的水滴在地面上形成一个圆,求此圆半径r 为多少?

解析:雨滴飞出的速度大小为v=ωR , ①

雨滴做平抛运动。

在竖直方向上有 h=221gt ②

在水平方向上有 S=vt ③

由几何关系知,雨滴半径 r=2

2s R + ④

解以上几式得 r=R

g h 221ω+

点评:雨滴离开伞边缘后沿切线方向水平抛出,做平抛运动,特别注意不是沿半径飞出,

其间距关系见俯视图.。值得注意的是把立体图转化为平面图这个思想很重要,有助于我们弄清各物理量间的几何关系。

[例3] 一质点沿着半径r=1 m 的圆周以n=2r /s 的转速匀速转动,如图。试求:

(1)从A 点开始计时,经过41

s 的时间质点速度的变化;

(2)质点的向心加速度的大小。

解析:① 求出41

s 的时间连接质点的半径转过的角度是多少?

② 求出质点在A 点和41

s 末线速度的大小和方向。 ③ 由矢量减法作出矢量三角形。

④ 明确边角关系,解三角形求得△v 的大小和方向。

⑤ 根据

r v a n 2

=

或a n =ω2r 求出向心加速度的大小。 答案:(1)△v=22πm/s 方向与OA 连线成45o角指向圆心O (2)a=l6π2

[例4] 如图所示,一个球绕中心轴线'OO 的角速度ω做匀速圆周转动,则( )

A. a 、b 两点线速度相同

B. a 、b 两点角速度相同

C. 若θ=30o,则a 、b 两点的速度之比v a :v b =3:2

D. 若θ=30o,则a 、b 两点的向心加速度之比a a :a b =3:2

解析:由于a 、b 两点在同一球上,因此a 、b 两点的角速度ω相同,选项B 正确.而据

v=ωr.可知v a

r b ,则v a :v b =3:

2,选项C 正确,由a=ω2r ,可知a a :a b =r a :r b =3:2,选项D 正确。

[例5] 如图所示,定滑轮的半径r=2cm ,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2m/s 2做匀加速运动,在重物由静止下落距离为1 m 的瞬间,滑轮边缘上的点的角速度ω= rad /s ,向心加速度a= m/s 2。(滑轮质量不计)

解析:根据机械能守恒有mgh=2

21mv

,v=2m /s 。

显然,滑轮边缘上每一点的线速度也都是2m/s ,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为

ω=r v =02.02

rad/s=100rad /s ,

向心加速度为 a=ω2r=1002×0.02m/s 2=200m /s 2

【模拟试题】

1. 质点做匀速圆周运动,则( )

A. 在任何相等时间里,质点的位移都相等

B. 在任何相等的时间里,质点通过的路程都相等

C. 在任何相等的时间里,质点运动的平均速度都相同

D. 在任何相等的时间里,连接质点和圆心的半径转过的角度都相等

2. 机械手表的分针与秒针从重合至第二次重合,中间经历的时间为( )

A. min 6059

B. 1 min

C. 5960min

D. 6061min

3. 如图所示的皮带传动装置中,右边两轮是连在一起同轴转动,图中三轮半径的关系为:r 1=2r 2,r 3=1.5r 1,A 、B 、C 三点为三个轮边缘上的点,皮带不打滑,则A 、B 、C 三点的线

速度之比为。角速度之比为。周期之比为。

4. 如图所示是生产流水线上的皮带传输装置,传输带上等间距地放着很多半成品产品。A 轮处装有光电计数器,它可以记录通过A处的产品数目。已知测得轮A、B的半径分别为r A=20cm,r B=l0cm,相邻两产品距离为30cm,lmin内有41个产品通过A处,求:(1)产品随传输带移动的速度大小;

(2)A、B轮轮缘上的两点P、Q及A轮半径中点M的线速度和角速度大小,并在图中画出线速度方向;

(3)如果A轮是通过摩擦带动C轮转动,且r C=5 cm,在图中描出C轮的转动方向,求出C轮的角速度(假设轮不打滑)。

5. 如图所示,直径为d的纸制圆筒以角速度ω绕垂直纸面的轴O匀速运动(图示为截面)。从枪口发射的子弹沿直径穿过圆筒。若子弹在圆筒旋转不到半周时,在圆周上留下a、b两个弹孔,已知aO与bO夹角为θ,求子弹的速度。

6. 如图所示,M、N是两个共轴圆筒横截面,外筒半径为R,内筒半径比R小得多,可以忽略不计,筒的两端是封闭的,两筒之间抽成真空,两筒以相同的角速度ω绕其中心轴线(图中垂直于纸面)作匀速转动。设从M筒内部可以通过狭缝s(与M筒的轴线平行)不断地向外射出两种不同速率v1和v2的微粒,从s处射出时的初速度的方向都是沿筒的半径方向,微粒到达N筒后就附着在N筒上.如果R、v1和v2都不变,而ω取某一合适的值,则()

A. 有可能使微粒落在Ⅳ筒上的位置都在a处一条与s缝平行的窄条上

B. 有可能使微粒落在N筒上的位置都在某处,如b处一条与缝s平行的窄条上

C. 有可能使微粒落在N筒上的位置分别在某两处,如b处和c处与s缝平行的窄条上

D. 只要时间足够长,N筒上到处都落微粒

7. 关于向心加速度,下列说法正确的是()

A. 它是描述角速度变化快慢的物理量

B. 它是描述线速度大小变化快慢的物理量

C. 它是描述线速度方向变化快慢的物理量

D. 它是描述角速度方向变化快慢的物理量

8. 一质点做匀速圆周运动的半径约为地球的半径,R=R 地≈6400km ,它的线速度大小是v=l00m/s ,将这个匀速圆周运动看成是匀速直线运动你认为可以吗?试论证之。

9. 如图所示为质点P 、Q 做匀速圆周运动时向心加速度随半径变化的图线.表示质点P 的图线是双曲线,表示质点Q 的图线是过原点的一条直线。由图线可知( )

A. 质点P 线速度大小不变

B. 质点P 的角速度大小不变

C. 质点Q 的角速度随半径变化

D. 质点Q 的线速度大小不变

10. 如图所示,圆轨道AB 是在竖直平面内的41

圆周,在B 点轨道的切线是水平的,一质

点自A 点从静止开始下滑,不计摩擦和空气阻力,则在质点刚要到达B 点时的加速度大小为 ,滑过B 点时的加速度大小为 。

11. 如图所示,一质量为m 的砂袋用长为l 的绳子拴住悬挂在O 点,被拳击运动员水平击中后,荡起的最大高度是h.求砂袋刚被击中后的瞬间,砂袋的向心加速度是多大?

【试题答案】

1. 解析:质点做匀速圆周运动时,相等时间内通过的圆弧长度相等,即路程相等,B 项正确,此时半径所转过的角度也相等,D 项正确。但由于位移是矢量,在相等时间里,质点位移大小相等,方向却不一定相同,因此位移不一定相同,而平均速度也是矢量,虽然大小相等,但方向不尽相同,故A 、C 错误。本题选B 、D 。

2. 解析:先求出分针与秒针的角速度:

ω分=36002πrad /s ,ω秒=602π

rad /s

设两次重合时间间隔为△t ,则有

φ分=ω分△t ,φ秒=ω秒△t ,φ秒一φ分=2π,

即 Δt=分秒

ωωπ-2=5960

(min )

故选项C 正确

3. 解析:因为A 、B 两轮由不打滑的皮带相连,所以相等时间内A 、B 两点转过的弧长相

等。即v A =v B .由v=ωr 知B A ωω=12r r =21

。又B 、C 是同轴转动,相等时间转过的角度相等,即

ωB =ωA ,由v=ωr 知,

C B v v =32r r =115.121r r

=31

所以v A :v B :v C =1:1:3,ωA :ωB :ωC =l :2:2

再根据T=等得 T A :T B :T C =1:21:21

=2:1:1

4. 解析:首先明确产品与传送带保持相对静止的条件下,产品速度的大小就等于传送带上每一点速度的大小,在传送带不打滑的条件下,传送带上各点运动速度的大小都等于A 、B 轮缘上点的线速度的大小。由传送带相邻产品的间距及单位时间内通过A 处的产品的个数可以确定出皮带上点的速度,进而知道A 、B 轮缘上的两点P 、Q 线速度的大小,然后由线速度与角速度的关系,求出A 、B 两轮的角速度及A 轮半径中点M 的线速度及C 轮的角速度.由题意知,1分钟内有41个产品通过A 处,说明1分钟内传输带上的每点运动的路程为两产品间距的40倍。设传输带运动速度大小为v ,则

(1)v=t s =6030

.040?m/s=0.2m/s

(2)v P =v Q =0.2m /s 。A 轮半径上的M 点与P 点的角速度相等,故

v M =21v P =21

×0.2m /s=0.1m/s

ωP =ωM =A P r v =2.02

.0rad /s=lrad /s ,ωQ =2ωP =2rad /s

(3)C 轮的转动方向如图所示,如果两轮间不打滑,则它们的接触处是相对静止的,即它们轮缘的线速度大小是相等的,所以ωC r C =ωA r A 。

C 轮的角速度

ωC =C A

r r ωA =05.02

.0·1rad /s=4rad /s

答案:(1)0.2m/s (2)v P =v Q =0.2m/s ,v M =0.1m/s =M W ωP =1 rad /s ωQ =2rad /s (3)ωC =4rad /s

5. 解析:设子弹速度为v ,则子弹穿过筒的时间 t=v d

此时间内筒转过的角度 α=π—θ

据α=ωt ,得 π一θ=ωv d

则子弹速度 v=θπω-d

本题中若无角度的限制,则在时间t 内转过的角度 α=2nπ+π一θ=π(2n+1)一θ α=2nπ十π一θ=π(2n+1)一θ

则子弹速度 v=))(12(θπω-+n d

(n=0,1,2,…)

6. 解析:因M 、N 的角速度ω相同,故在任意一段时间内,N 筒与s 缝在同一径向连线

上的a 点必定与s 缝一起转过同样大小的角度,且粒子历时皆为v R

,于是这些在不同时刻

从s 缝射出、速率为v 的粒子一定落在N 筒上比a 点落后相同角度ωt=ωv R 的位置上,即落

在一条与s 缝平行的窄条上,不会各处散落,故排除D 。

题设中未限制ω的大小,而圆周上各点转过的角度又具有周期性(周期为2π)。只要ω

满足ω1v R =2πn ,ω2v R

=2πm (m 、n 为任意整数),则两种粒子落在N 筒上的位置都在a 处

的一条与s 缝平行的窄条上,A 正确。

若ω满足ω1v R =2πn+ω2v R

,则均可以到达b ,故B 正确。

若速度为v 1和v 2的粒子到达N 上的角度差不是2π的整数倍,则它们不能到达同一窄条上而分开,故C 正确。

7. 解析:从匀速圆周运动的特点入手思考。匀速圆周运动其角速度大小不变,角速度的方向是不变的。线速度方向总是与半径垂直,半径转过多少度,线速度的方向就改变多少度。

答案:C

8. 解析:应从两个方面论述题中的看法:(1)求出质点的向心加速度,研究其大小是否可以忽略。(2)分析在不太大的空间内(如几百千米)速度方向变化的大小。

答案:在不太大的空间范围内可以看成匀速直线运动。 9. A

10. 解析:小球由A 点到B 点所做的运动是圆周运动的一部分,因而小球刚要到达B 点

时的运动为圆周运动,其加速度为向心加速度,大小为:a 1=R v 2

,从A 到B ,由机械能守恒

定律有:

mgh=2

21mv ,

gR v 2=,

故 a 1=R v 2

=2g

小球滑过B 点后做平抛运动,只受重力,加速度大小为g 答案:2g ;g

11. 解析:由机械能守恒得最低点速度

gh v 2=

向心加速度

r v a 2=

∴ a=l gh 2

曲线运动典型例题

一、选择题 1、一石英钟的分针和时针的长度之比为3:2,均可看作是匀速转动,则() A.分针和时针转一圈的时间之比为1:60 B.分针和时针的针尖转动的线速度之比为40:1 C.分针和时针转动的角速度之比为12:1 D.分针和时针转动的周期之比为1:6 2、有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶,做匀速圆周运动.如图所示中虚线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是() A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大 C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的向心力将越大 3、 A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球的轨道半径的2倍,A的转速为30 r/min,B 的转速为r/min,则两球的向心加速度之比为:() A.1:1 B.6:1 C.4:1 D.2:1 4、两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动,如图所示,则a、b两小球具有相同的 A.角速度B.线速度C.向心力D.向心加速度 5、关于平抛运动和匀速圆周运动,下列说法中正确的是() A.平抛运动是匀变速曲线运动B.平抛运动速度随时间的变化是不均匀的 C.匀速圆周运动是线速度不变的圆周运动D.做匀速圆周运动的物体所受外力的合力做功不为零 6、在水平面上转弯的摩托车,如图所示,提供向心力是 A.重力和支持力的合力B.静摩擦力C.滑动摩擦力D.重力、支持力、牵引力的合力 7、如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则() A.物块始终受到三个力作用 B.只有在a、b、c、d四点,物块受到合外力才指向圆心 C.从a到b,物体所受的摩擦力先减小后增大 D.从b到a,物块处于失重状态

高一物理典型例题

高一物理典型例题 关联速度1光滑水平面上有A、B两个物体,通过一根跨过定滑轮的轻绳子相连,如图,它们的质量分别为m A和m B,当水平力F拉着A向右运动,某时绳子与水平面夹角为θA=45?,θB=30?时,A、B两物体的速度之比VA:VB应该是________ 小船过河1若河宽仍为100m,已知水流速度是5m/s,小船在静水中的速度是4m/s,即船速(静水中)小于水速。求:1.欲使船渡河时间最短,求渡河位移? 2.欲使航行距离最短,船应该怎样渡河?求渡河时间? 平抛1小球从斜面上方一定高度处向着水平抛出,初速度v0,已知传送带的倾角为θ。1.若小球垂直撞击斜面,求飞行时间t1 ,求水平位移x1; 2.若小球到达斜面的位移最小,求飞行时间t2 求速度偏转角的正切值; 3.反向平抛,何时离斜面最远; 平抛实验1如右图所示在“研究平抛物体的运动”实验中用方格纸记录了小球的运动轨迹,a、 b、c和d为轨迹上的四点,小方格的边长为L,重力加速度为g。求: 1.小球做平抛运动的初速度大小为v0 2.b点时速度大小为vb

3.从抛出点到c点的飞行时间Tc 4.已知a点坐标(xy)求抛出点坐标 水平圆周1如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥体固定在水平面上不动,其轴线沿竖直方向,母线与轴线之间的夹角为30°,小球以一定速率绕圆锥体轴线做水平匀速圆周运动,求恰好离开斜面时线速度 竖直圆周1如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求: 1.物体在A点时弹簧的弹性势能; 2.物体从B点运动至C点的过程中产生的内能. 开普勒第三定律赤道卫星中同步轨道半径大约是中轨道半径的2倍,则同步卫星与中轨道卫星两次距离最近间隔时间_________。 万有引力两个完全相同的均匀球体紧靠在一起万有引力是F,用相同材料制成两个半径为原来一半的小球紧靠在一起的万有引力________。 黄金代换若分别在地球和某行星上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,其水平距离之比为k,且已知地球与该行星半径之比也为k,则地球的质量与该行星的质量之比_________。

高考物理超经典力学题集萃

高考物理经典力学计算题集萃 =10m/s沿x1.在光滑的水平面内,一质量m=1kg的质点以速度v 0 轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点 时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人

2019高考物理练习(曲线运动)经典例题(带解析)

2019高考物理练习(曲线运动)经典例题(带解析) 1、关于曲线运动,以下说法中正确的选项是〔AC〕 A.曲线运动一定是变速运动 B.变速运动一定是曲线运动 C.曲线运动可能是匀变速运动 D.变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,那么可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,假设突然撤去F1,而保持F2、F3不变,那么质点〔A〕 A、一定做匀变速运动 B、一定做直线运动 C、一定做非匀变速运动 D、一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,那么撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,那么撤去F1后,质点可能做直线运动〔条件是F1的方向和速度方向在一条直线上〕,也可能做曲线运动〔条件是F1的方向和速度方向不在一条直线上〕。 3、关于运动的合成,以下说法中正确的选项是〔C〕 A.合运动的速度一定比分运动的速度大 B.两个匀速直线运动的合运动不一定是匀速直线运动 C.两个匀变速直线运动的合运动不一定是匀变速直线运动 D.合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定那么可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如下图, 求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x轴上的分运 动是匀加速直线运动,在y轴上的分运动是匀速直线运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。那么物体所受的合力F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为v x0=0,v y0=4m/s,故物体的初速度

高中物理力学经典题型

F A B C 一.例题 1.如右图所示,小木块放在倾角为α的斜面上,它受到一个水平向右的力F(F≠0) 的作用下 处于静止状态,以竖直向上为y 轴的正方向,则小木块受到斜面的支持力 摩擦力的合力的方向可能是( ) A.沿y 轴正方向 B.向右上方,与y 轴夹角小于α C.向左上方,与y 轴夹角小于α D.向左上方,与y 轴夹角大于α 2.如图示,物体B 叠放在物体A 上,A 、B 的质量均为m ,且上下表面均与斜面平行,它们以共同的速度沿倾角为θ的固定斜面C 匀速下滑。则:( ) A 、A 、 B 间没有摩擦力 B 、A 受到B 的静摩擦力方向沿斜面向下 C 、A 受到斜面的滑动摩擦力大小为mgsin θ D 、A 与斜面间的动摩擦因数μ=tan θ 3.如图所示,光滑固定斜面C 倾角为θ,质量均为m 的A 、B 一起以某一初速靠惯性 沿斜面向上做匀减速运动,已知A 上表面是水平的。则( ) A .A 受到B 的摩擦力水平向右,B.A 受到B 的摩擦力水平向左, C .A 、B 之间的摩擦力为零 D.A 、B 之间的摩擦力为mgsin θcos θ 4年重庆市第一轮复习第三次月考卷 6.物体A 、B 叠放在斜面体C 上,物体B 上表面水平,如图所示,在水平力F 的作用下一起随斜面向左匀加速运动的过程中,物体A 、B 相对静止,设物体A 受摩擦力为f 1,水平地面给斜面体C 的摩擦为f 2(f 2≠0),则:( ) A .f 1=0 B .f 2水平向左 C .f 1水平向左 D .f 2水平向右 22、如图是举重运动员小宇自制的训练器械,轻杆AB 长1.5m ,可绕固定点O 在竖直平面内自由转动,A 端用细绳通过滑轮悬挂着体积为0.015m3的沙袋,其中OA=1m ,在B 端施加竖直向上600N 的作用力时,轻杆AB 在水平位置平衡,试求沙子的密度.(g 取10N /kg ,装沙的袋子体积和质量、绳重及摩擦不计) B θ C A

曲线运动经典例题

《曲线运动》经典例题 1、关于曲线运动,下列说法中正确的是(AC) A. 曲线运动一定是变速运动 B. 变速运动一定是曲线运动 C. 曲线运动可能是匀变速运动 D. 变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,则可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A) A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。 3、关于运动的合成,下列说法中正确的是(C) A. 合运动的速度一定比分运动的速度大 B. 两个匀速直线运动的合运动不一定是匀速直线运动 C. 两个匀变速直线运动的合运动不一定是匀变速直线运动 D. 合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x 轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线 运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。则物体所受的合力 F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为 v x0=0,v y0=4m/s,故物体的初速度

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

最新推荐推荐高三物理力学综合测试经典好题(含答案)教学内容

高三物理力学综合测试题 一、选择题(4×10=50) 1、如图所示,一物块受到一个水平力F 作用静止于斜面上,F 的方向与斜面平行, 如果将力F 撤消,下列对物块的描述正确的是( ) A 、木块将沿面斜面下滑 B 、木块受到的摩擦力变大 C 、木块立即获得加速度 D 、木块所受的摩擦力改变方向 2、一小球以初速度v 0竖直上抛,它能到达的最大高度为H ,问下列几种情况中,哪种情况小球不. 可能达到高度H (忽略空气阻力): ( ) A .图a ,以初速v 0沿光滑斜面向上运动 B .图b ,以初速v 0沿光滑的抛物线轨道,从最低点向上运动 C .图c (H>R>H/2),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 D .图d (R>H ),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 3. 如图,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F1、F2,当物块和木块分离时,两木块的速度分别为v1和v2,,物体和木板间的动摩擦因数相同,下列说法 若F1=F2,M1>M2,则v1 >v2,; 若F1=F2,M1<M2,则v1 >v2,; ③若F1>F2,M1=M2,则v1 >v2,; ④若F1<F2,M1=M2,则v1 >v2,;其中正确的是( ) A .①③ B .②④ C .①② D .②③ 4.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s2的加速度向右运动后,则(g=10m/s2)( ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 5.如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小 球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上 升到最大高度(距离底部)的说法中正确的是: ( ) A .一定可以表示为g v 22 B .可能为3 R C .可能为R D .可能为 3 5R 6.如图示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不 漏气。活塞下挂一砂桶,砂桶装满砂子时,活塞恰好静止。现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则 ( ) A .气体压强增大,内能不变 B .外界对气体做功,气体温度不变 C .气体体积减小,压强增大,内能减小 D .外界对气体做功,气体内能增加 7.如图所示,质量M=50kg 的空箱子,放在光滑水平面上,箱子中有一个质量m=30kg 的铁块,铁块与箱子的左端ab 壁相距s=1m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计。用水平向右的恒力F=10N 作用于箱子,2s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( ) θ F R F

高一物理向心力典型例题含答案

向心力典型例题(附答案详解) 一、选择题【共12道小题】 1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a 靠在圆筒的壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆 筒转动的角速度ω至少为()A. B. C. D. 解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmr ω2,故. 所以A、B、C均错误,D正确. 2、下面关于向心力的叙述中,正确的是() A.向心力的方向始终沿着半径指向圆心,所以是一个变力 B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用 C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力 D.向心力只改变物体速度的方向,不改变物体速度的大小 解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度

的大小,即向心力不做功. 答案:ACD 3、关于向心力的说法,正确的是() A.物体由于做圆周运动而产生了一个向心力 B.向心力不改变圆周运动物体速度的大小 C.做匀速圆周运动的物体其向心力即为其所受的合外力 D.做匀速圆周运动的物体其向心力大小不变 解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD 4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子, 一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所 示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平 匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为() A.2.4π s B.1.4π s C.1.2π s D.0.9π s 解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉

高中物理曲线运动经典题型总结-(1)word版本

专题 曲线运动 一、运动的合成和分解 【题型总结】 1.合力与轨迹的关系 如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大 D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解 例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、 B A v v = B 、B A v v ? C 、B A v v ? D 、重物B 的速度逐渐增大 4.渡河问题 例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) 例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) (B) (C) (D) 【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) m

高一物理典型例题汇总

高一物理必修1知识集锦及典型例题 各部分知识网络 (一)运动的描述: -(D 表示物体位置的变动,可用从起点到终点的有向线段表示,是矢量 1(2》位移的大小小于或等于路程 Q )物理意义:表示物休位置变化的快慢 [平均速度严巻方向与位移方向相同 瞬时速度*当加-0时山二号^方向为那一刻的运动方向 「①速厦是 矢童,而逋率是标量 平均速率=遐遅 时何艸砲卒时间 ③瞬时速度的大小等于瞬时速率 [■物理意义:表示物体速度变化的快慢 I 加速度峠定小=汪汽速度的变化率人单位m/乳是矢量 ' 〔方向:与速度变化的方向相同■与速度的方向关系不确定 [意义:表示位移随时何的变化规律 应用:①判断运动性质〔匀速、变速、静止) 俨一E 图象丿 ②判斯运动方向(正方向、负方向) 1 ③比较运动快慢 I ④确定也移或时间等 图象] (意义:表示速度随时间的变化规律 应用:①确定某时刻的速度 ②求位移(面积) I 图象] ③判斷运匪性质(静止、匀速、匀变速、非匀变速) ④ 判断运动方向(正方向、负方向〉 ⑤ 出较加速度大小等 X [根据纸带上点谨的疏密判断运动情况 '实验:用打点计时器测速度{求两点间的平均速度卫=善 .粗略求瞬时速度’当心取很小的值时,瞬时速度釣等于平均速度 x=aT 2 , o (a 6 a 5 a 』(a 3 a ? aJ a 2 (3T) (推述运动的物理量v 速度 ⑶与速率的区别与联系2②平均速度二 运 动的描 述 测匀变速直线运动的加速度:△

「物理意义:表不物体速度蛮化的快馒 定义2=耳^(速度的变化率人单位m/d 矢量. 其方向与速度变化的方向相同,与速度方向的关系不确定 、速度、速度变化量 与加速度的区别 '意义;表示位移随时间的变化规律 应用:①判斯运动性质(匀速、变速、静止) 卩一£图象」②判断运动方向(正方向、负方向) ③比较运动快慢 、④确定位務或时间 靈臾匸表示速度随时间的变化规律 应用:①确定某时刻的速度 ② 求位移(面积) ③ 判断运动性质(静止、匀速、匀变速、非匀变速) ④ 判断运动方向(正方向、负方向) ?⑤比较加速度大小等 ,加速度恒定?速度均匀变化] Vt = v^+at 工=Sf+*亦 < —说=2a 工 一 询+讪 吟一y-二叫 a 与v 同向,加速运动;a 与v 反 向,减速运动。 咽 —II 匀变速 直线运€ 动 的规律 咱由落体运动 la=g

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

(完整版)人教版高中物理必修一知识点超详细总结带经典例题及解析(20200921053238)

高中物理必修一知识点运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎ 知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2 .参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3 .质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。 ' 物体可视为质点主要是以下三种情形: (1) 物体平动时; (2) 物体的位移远远大于物体本身的限度时; (3) 只研究物体的平动,而不考虑其转动效果时。 4 .时刻和时间 (1) 时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2 秒末”,“速度达2m/s 时”都是指时刻。 (2) 时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5 .位移和路程 (1) 位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2) 路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3) 位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1) .速度:是描述物体运动方向和快慢的物理量。 (2) .瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3) .平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。 第 1 页共28 页

高一物理曲线运动重难点解析及典型例题

第五章 曲线运动 第五节 圆周运动 第六节 向心加速度 二. 知识要点: 1. 认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算。理解线速度、角速度、周期之间的关系:v=rω=2πr /T 。理解匀速圆周运动是变速运动。 2. 理解速度变化量和向心加速度的概念,知道向心加速度和线速度、角速度的关系式。能够运用向心加速度公式求解有关问题。 3. 运用极限法理解线速度的瞬时性。掌握运用圆周运动的特点如何去分析有关问题。体会有了线速度后。为什么还要引入角速度。运用数学知识推导角速度的单位。 三. 重难点解析: 1. 线速度 (1)定义:质点沿圆周运动通过的弧长Δl 与所用时间Δt 之比叫做线速度。它描述质点沿圆周运动的快慢。 (2)大小: t l v ??= 单位:m/s (3)方向:质点在某点的线速度方向沿着圆周上该点的切线方向。 2. 匀速圆周运动 (1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。 (2)因线速度方向不断发生变化,故匀速圆周运动是变速运动,这里的“匀速”是指速率不变。 3. 角速度 (1)定义:在匀速圆周运动中,连接质点和圆心的半径转过的角度与所用时间的比值,就是指点的角速度。描述质点转过圆心角的快慢。匀速圆周运动是角速度不变的圆周运动。 (2)大小: t ??= θω,单位:rad /s 4. 周期T 、频率f 和转速n 定义:做圆周运动的物体运动一周所用的时间叫做周期,用T 表示,单位为秒(s )。 做圆周运动的物体运动一秒,所转过圆周的次数叫做频率,用f 表示,单位为赫兹(Hz )。1 Hz=11 -S 。 做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做转速。用n 表示,单位为转每秒(r /s ),或转每分(r /min )。 周期频率和转速都是描述物体做圆周运动快慢的物理量。 5. 描述圆周运动各物理量的关系 (1)线速度和角速度间的关系。 v= rω。 (2)线速度与周期的关系。 T r v π2= 。 (3)角速度与周期的关系。

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

(完整版)八年级的物理力学典型例题.docx

液体压强典例 例 1 小华制成如图 5 所示的“自动给水装置”,是用一个装满水的塑料瓶子倒放在盆景中, 瓶口刚好被水浸没。其瓶中水面能高于盆内水面,主要是由于() A、瓶的支持力的作用 B、瓶的重力作用 C、水的浮力作用支持力 D、大气压的作用 【解题思路】瓶内高于水面的水与瓶的支持力和重力作用无关,可排除A、 B。瓶内装满水瓶子倒放在盆景中后,是大气压的作用,与浮力无关。 【点评】只所以瓶中水面能高于盆内水面是由于瓶外大气压比瓶内上面的空气气压大。此题考查学生是否理解大气压在生产生活中的应用原理;考查学生的物理知识与生产生活结合能 力。难度较小。 例 2 在塑料圆筒的不同高处开三个小孔,当筒里灌满水时.各孔喷出水的情况如图 5 所示,进表明液体压强() A.与深度有关B.与密度有关 C.与液柱粗细有关D.与容器形状有关 图 5 【解题思路】由图示可知,小孔距水面越远,孔中喷出的水流越远,这说明液体的压强随深 度的增加而增大。【答案】 A 【点评】本题考查了液体内部压强的特点。理解水从孔中喷出的越远,液体压强越大,是解题的关键。本题难度中等。 例 3 在两个完全相同的容器 A 和B 中分别装有等质量的水和酒精(p水>p 酒精 ) ,现将两个完全相同的长方体木块甲和乙分别放到两种液体中,如图 2 所示,则此时甲和乙长方体木块下表 面所受的压强P 甲、 P 乙,以及 A 和B 两容器底部所受的压力F A、 F B的关系是 A.P甲

FB。 C.P甲=P 乙FA

例 4 如图 1 所示,在三个相同的容器中分别盛有甲、乙、 丙三种液体;将三个完全相同的铜 球,分别沉入容器底部,当铜球静止时,容器底受到铜球的压力大小关系是 F < F < , 甲 乙 丙 则液体密度相比较 图 1 A .一样大 B .乙的最小 C .丙的最小 D . 甲的最小 例 5 右图为小明发明的给鸡喂水自动装置, 下列是同学们关于此装置的讨论, 其中说法正确 的是( ) A .瓶内灌水时必须灌满,否则瓶子上端有空气,水会迅速流出 来 B .大气压可以支持大约 10 米高的水柱,瓶子太短,无法实现 自动喂水 C .若外界大气压突然降低,容器中的水会被吸入瓶内,使瓶内的水面升高 D .只有当瓶口露出水面时,瓶内的水才会流出来 例 6 内都装有水的两个完全相同的圆柱形容器, 放在面积足够大的水平桌面中间位置上。 若 将质量相等的实心铜球、铝球(已知 ρ铜 > ρ 铝)分别放入两个量筒中沉底且浸没于水中 后(水未溢出) ,两个圆柱形容器对桌面的压强相等, 则此时水对圆柱形容器底部的压强 大小关系为:( ) A 、放铜球的压强大; B 、放铝球的压强大; C 、可能一样大; D 、一定一样大。 例 7 如图所示,底面积不同的薄壁圆柱形容器内分别盛有液体甲和乙,液面相平。已知甲、 乙液体对容器底部压强相等。 若分别在两容器中放入一个完全相同的金属球后, 且无液体溢出,则:( ) A 、甲对容器底部压强可能等于乙对容器底部压强; B 、甲对容器底部压力可能小于乙对容器底部压力; C 、甲对容器底部压强一定大于乙对容器底部压强; D 、甲对容器底部压力一定大于乙对容器底部压力。 例 8 如图所示, 两个底面积不同的圆柱形容器内分别盛有不同的液体甲和乙, 甲液体对容器 底部的压强等于乙液体对容器底部的压强。 下列措施中, 有可能使甲液体对容器底部的压强

高中高一物理典型例题分析总结计划模板计划模板粤教版本2.doc

典型例题: 1、过河问题 例 1.小船在 200m 的河中横渡,水流速度为 2m/s ,船在静水中的航速是 4m/s ,求: 1.小船怎样过河时间最短,最短时间是多少? 2.小船怎样过河位移最小,最小位移为多少? v 2 v 1 解: 如右图所示,若用 v 1 表示水速, v 2 表示船速,则: ①过河时间仅由 v 2 的垂直于岸的分量 v ⊥决定,即 t d ,与 v 1 无关,所以当 v 2⊥岸时, v 过河所用时间最短,最短时间为 t d 也与 v 1 无关。 v 2 ②过河路程由实际运动轨迹的方向决定,当 v1<v2 时,最短路程为 d ; 2、连带运动问题 指物拉绳(杆)或绳(杆)拉物问题。由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。 例 2 如图所示,汽车甲以速度 v 1 拉汽车乙前进,乙的速度为 v 2,甲、乙都在水平面上运 动,求 v 1 ∶v 2 v 1 v 1 和 v 2cos α,两者应该 甲 v 1 解析:甲、乙沿绳的速度分别为 v 2 α 乙 相等,所以有 v 1∶v 2=cos α∶1 3、平抛运动 例 3 平抛小球的闪光照片如图。已知方格边长 a 和闪光照相的频闪间隔 T ,求: v 0、 g 、 v c 解析:水平方向: v 0 2a 竖直方向: s gT 2 , g a A T T 2 B 先求 C 点的水平分速度 v x 和竖直分速度 v y ,再求合速度 v C : C v x v 0 2a , v y 5a , v c a 41 D T 2T 2T ( 2)临界问题 E 典型例题是在排球运动中, 为了使从某一位置和某一高度水平扣 出的球既不触网、又不出界,扣球速度的取值范围应是多少? 例 4 已知网高 H ,半场长 L ,扣球点高 h ,扣球点离网水平距离 s 、求:水平扣球速度 v 的取值范围。 解析:假设运动员用速度 v max 扣球时,球刚好不会出界,用速度 v min 扣球时,球刚好不触

曲线运动复习提纲及经典习题

《曲线运动》复习提纲 一、曲线运动 1.曲线运动速度方向:时刻变化; 曲线该点的切线方向。 2.做曲线运动的条件:物体所受合外力方向与它的速度方向不在同一直线上(即F(a)与v 不共线) 3.曲线运动的性质:曲线运动一定是变速运动,即曲线运动的加速度a ≠0。 ①做曲线运动的物体所受合外力的方向指向曲线弯曲的一侧(凹侧)。 ②轨迹在力和速度方向之间 4.曲线运动研究方法:运动合成和分解。(实际上是F 、a 、v 的合成分解) 遵循平行四边形定则(或三角形法则) 二、运动的合成与分解 物体实际运动叫合运动 物体同时参与的运动叫分运动 (1)合运动与分运动的关系: ①独立性。 ②等时性。 ③等效性。 (2)几个结论:①两个匀速直线运动的合运动仍是匀速直线运动。 ②一个匀速直线运动和一个匀变速直线运动的合运动,不一定是直线运动(如平抛运动)。 ③两个匀变速直线运动的合运动,一定是匀变速运动,但不一定是直线运动。 (3)典型模型:①船过河模型 1)处理方法:小船在有一定流速的水中过河时,实际 上参与了 两个方向的分运动:随水流的运动(水速),在静水中的船的运动 (就是船头指向的方向)。 船的实际运动是合运动。 2)若小船要垂直于河岸过河,过河路径最短,应将船头偏向上游,如图甲所示,此时过河时间: θsin 1v d v d t ==合 3)若使小船过河的时间最短,应使船头正对河岸行驶,此时过河时间1 v d t =(d 为河宽)。因为在垂直于 河岸方向上,位移是一定的,船头按这样的方向,在垂直于河岸方向上的速度最大。 ②绳(杆)端问题 船的运动(即绳的末端的运动)可看作两个分运动的合成: a)沿绳的方向被牵引,绳长缩短,绳长缩短的速度等于左端绳子伸长的速度。即为v ; b)垂直于绳以定滑轮为圆心的摆动,它不改变绳长。这样就可以求得船的速度为αcos v , 当船向左移动, α将逐渐变大,船速逐渐变大。虽然匀速拉绳子,但物体A 却在做变速运动。 三、平抛运动 1.运动性质 a)水平方向:以初速度v 0做匀速直线运动. b)竖直方向:以加速度a=g 做初速度为零的匀变速直线运动,即自由落体运动. 说明:在水平和竖直方向的两个分运动同时存在,互不影响,具有独立性.合运动是匀变速曲线运动.相等的时间内速度的变化量相等.由△v=gt ,速度的变化必沿竖直方向 2.平抛运动的规律 以抛出点为坐标原点,以初速度v 0方向为x 正方向,竖直向下为y 正 方向,如右图所示,则有: 分速度 gt v v v y x ==,0

相关主题
文本预览
相关文档 最新文档