当前位置:文档之家› 氯气的物理性质

氯气的物理性质

氯气的物理性质
氯气的物理性质

氯气的物理性质

氨系统与氟利昂系统的区别

氟利昂制冷与氨制冷的比较 氟机(指传统的氟利昂制冷剂和替代的绿色环保制冷剂的制冷 与氨机制冷系统可以从系统运行安全、节能等方面进行比较,具体比较如下: 1.安全性 (a)绿色环保制冷剂R404A为本项目所使用的制冷剂,无色、无味、不燃烧、不爆炸的安全工质;而氨无色,有毒(二级毒性),含有强烈的刺激性气味,对眼、鼻、喉、肺及皮肤均有强烈刺激及中毒危险,空气中浓度超过15%时有立即造成火灾及爆炸的危险。基于上述缺点,在人员密集的公共场所和人员密集的工作场所都会遭到禁用。氨制冷系统因此也受到国家安全生产管理部门的审批管理和运行监管。 (b)另外,氟系统的并联技术已经发展的非常完善,并联系统在运行中不会因为个别压缩机的故障或维护需要而影响整个系统的正常运行。而且相对于单机系统产生相同的冷量,并联机组的每台压机平均运行时间远小于单机供冷系统,压缩机使用寿命更长。 2.节能性 (a)氨机的满液式系统提供单一的,稳定的蒸发压力,但调节即适应温度变化的能力差,对于温度经常处于波动的场合,如经常性入库拉温,其传热温差在变温情况下会很大,也就意味着效率下滑,通常增加1摄氏度的传热温差会引起近3%的能耗增加;对于直接供液的氟系统,由于其通过膨胀阀的良好的调节功能,其在同等条件下的效率要高于氨机的满液式系统。另外传热温差的加大也意味着干耗的增

加,会导致产品品质的下降和货品重量的损失。 (b)对于大型单机系统,在实际运行过程中,绝大部分时间是运行在部分负荷下,对于可进行能量调节的压缩机,特别是螺杆压缩机,其在部分负荷下的能效比要低于满负荷时的能效比,特别是当负荷下降到70%以下时,其能效比下降显著,因此,单机系统的实际运行费用会远高于用满负荷能效比计算的评估值;对于并联系统和SRS(分布式制冷系统)因其是通过控制压缩机的开停来进行能量调节,因此可确保机组在部分负荷运行时每个机头都保持其最高的能效比,系统的实际运行费用会大大降低。 3.系统复杂性比较 氟系统结构紧凑,附件少,机组大部分可以在工厂内完成,系统的质量有充分保证;氨系统由于一直无法找到合适的与氨互溶的润滑油,需要大量的附件保证系统的回油和降低系统温度,导致系统复杂,需要大量现场安装工作,对于系统的质量很大程度上取决于安装队伍的素质。氟系统结构紧凑,占地小的特点还使过道布臵或楼顶布臵机组成为可能。 4.自动化程度 SRS控制系统,根据热负荷来控制机组中压缩机的开停,从而实现对库温的控制。我们可以在集中控制屏上设定库温上下限,这个温差可以设得很小,对库内食品储藏期间的品质非常有利。而国内氨系统对库温的控制一般为全手动控制,根据人员对库温的观察,来确定开启或停止压缩机开机台数。因为全部为人员手动操作,这就需要依

大气气溶胶相关研究综述

摘要 近日,环保部公布了我国第一部综合性大气污染防治规划——《重点区域大气污染防治“十二五”规划》。事实上,随着大气污染给人民生活带来的不便增多,人们空前关注大气科学进展以及PM2.5治理的理论依据。本文将从三个方面对大气气溶胶的研究做出总结和分析:大气气溶胶的基本特征,大气气溶胶的气候效应,国内外相关的大气气溶胶研究计划。 关键词:大气气溶胶;气候效应;环境健康;研究综述 前言 气溶胶是指长时间悬浮在空气中能被观察或测量的液体或固体粒子,其实际直径一般为0.001~100μm,动力学直径为0.002~100μm,对人体、环境、气候等产生着重要的影响。 [4] 由于大气气溶胶在气候、环境等方面的重要作用,近年来越来越引起科学界的重视。 很多过程可以产生气溶胶,根据来源可分为自然气溶胶和人为气溶胶。自然源主要是海洋、土壤和生物圈以及火山等;人为源主要来自化石燃料的燃烧、工农业生产活动等。工业革命以来,人类活动不仅直接向大气排放大量粒子,更重要的是向大气排放大量的SO2和SO X,NO2和NO X在大气中通过非均相化学反应逐渐转化成硫酸盐和硝酸盐粒子,形成二次气溶胶。污染气体形成的大气气溶胶自工业革命以来有大幅度增加。来自自然源的气溶胶如沙尘,也由于人类活动利用土地变化而发生着改变。尽管气溶胶只是地球大气成分中含量很少的组分,但由于其在许多大气过程中的重要作用而日益受到重视。随着环境污染问题的发展,人们已认识到大气气溶胶自身的污染特性与其物理化学性质以及在大气中的非均相化学反应有着密切的关系。[5] 气溶胶还与其他环境问题如臭氧层的破坏、酸雨的形成、烟雾事件的发生等密切相关。此外,气溶胶对人体和其他生物的生理健康也有其特有的影响。[1] 由于气溶胶的气候效应问题,气溶胶再次成为国际学术界的研究热点之一,大气气溶胶是当今大气化学研究中前沿的领域。国际大气化学研究计划(IGAC)科学指导委员会于1994年将国际全球大气化学研究计划和国际气溶胶计划(ICAP)合并重组,大气气溶胶研究被列为3大研究方向之一。大气气溶胶的研究内容,发展到包括物理和化学的性状、来源和形成、时空分布、对气候变化和环境质量的影响以及对大气化学过程的影响等多方面、多层次的综合研究,也涉及到大气科学的各个领域,具有很强的综合性。

水的基本物理化学性质(冰水汽)解答

水的基本物理化学性质 一. 水的物理性质(形态、冰点、沸点): 常温下(0~100℃),水可以出现固、液、气三相变化,利用水的相热转换能量是很方便的。 纯净的水是无色、无味、无臭的透明液体。水在1个大气压时(105Pa),温度 1)在0℃以下为固体,0℃为水的冰点。 2)从0℃-100℃之间为液体(通常情况下水呈液态)。 3)100℃以上为气体(气态水),100℃为水的沸点。 4)水是无色、无臭、无味液体,在浅薄时是清澈透明,深厚时呈蓝绿色。 5)在1atm时,水的凝固点(f.p.)为0℃,沸点(b.p.)为100℃。 6)水在0℃的凝固热为5.99 kJ/mole(或80 cal/g)。 7)水在100℃的汽化热为40.6 kJ/mole(或540 cal/g)。 8)由於水分子间具有氢键,故沸点高、莫耳汽化热大,蒸气压小。 9)沸点: (1)沸点:液体的饱和蒸气压等於液面上大气压之温度,此时液体各点均呈剧烈汽 化现象,且液气相可共存若液面上为1 atm(76 mmHg)时,则该沸点称为「正常沸点」,水的正常沸点为100℃。 (2)若液面的气压加大,则液体需更高的蒸气压才可沸腾;而更高的温度使得更高 的蒸气压,故液体的沸点会上升。液面上蒸气压愈大,液体的沸点会愈高。 (3)反之,若液面上气压变小,则液面的沸点将会下降。 10)水在4℃(精确值为3.98℃)时的体积最小、密度最大,D = 1g/mL。 11)三相点:指在热力学里,可使一种物质三相(气相,液相,固相)共存的一个温度 和压力的数值。举例来说,水的三相点在0.01℃(273.16K)及611.73Pa 出现。 12)临界点(critical point):物理学中因为能量的不同而会有相的改变(例如:冰 →水→水蒸气),相的改变代表界的不同,故当一事物到达相变前一刻时我们称它临 界了,而临界时的值则称为临界点。之温度为临界温度,压力为临界压力。 13)临界温度:加压力使气体液化之最高温度称为临界温度。如水之临界温度为374℃, 若温度高於374℃,则不可能加压使水蒸气液化。 14)临界压力:在临界温度时,加压力使气体液化的最小压力称之。临界压力等於该液 体在临界温度之饱和蒸气压。 二. 水的比热: 把单位质量的水升高1℃所吸收的热量,叫做水的比热容,简称比热,水的比热为4.18xKJ/Kg.K。 在所有的液体中,水的比热容最大。因此水可作为优质的热交换介质,用于冷却、储热、传热等方面。 三. 水的汽化热: 在一定温度下单位质量的水完全变成同温度的气态水(水蒸气)所需的热量,叫做水的汽化热。 水从液态转变为气态的过程叫做汽化,水表面的汽化现象叫做蒸发,蒸发在任何温度下都能进行。 水的汽化热为2257KJ/Kg。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从1℃加热到100℃所需要的热量。

外文文献翻译-:上海冬季亚微米级气溶胶吸湿性增长特性说课讲解

冬季上海地区亚微米级城市气溶胶的吸湿性增长 摘要: 吸湿性增长因子和混合状态的信息对理解被严重污染的长三角地区的雾的形成机制具有重要的作用。在此研究了环境气溶胶的吸湿性增长。用HTDMA测量了复旦大学校园中粒径在30-250nm的干粒子的吸湿性增长因子,研究两种模式化的表面混合物。较少吸湿组在85%的相对湿度下的吸湿性增长因子为1.10。较少吸湿组的平均数部分在0.33-0.17范围内呈现多样化,随着干粒子的尺度的增长有轻微的减少。较多吸湿组的吸湿性增长因子显示出爱根核与积聚模态的粒子有显著的不同。爱根核为接近1.3,而积聚模态为1.4以上。在以硫酸铵盐为基础的模式中,较多吸湿组的吸湿体积增长分数在0.47-0.70这个范围内,而且爱根核和积聚模态的粒子的吸湿性增长分数的界限很清晰。以相对湿度测试为背景的吸湿性增长不仅显示出潮解相对湿度决定于粒子大小,同时也显示出硝酸盐粒子的增长最初是由硫酸盐的凝结提升的。结果也表明了大多数积聚模态的粒子在有雾的情况下都会潮解。 1前言: 近20年来,随着经济的快速增长和城市化进程的加快,中国超大城市的空气污染问题越来越受到关注。由化石燃料燃烧排放的一次污染物和由光化学氧化和多相反应而来的二次污染物对城市居民的环境和健康造成了极大地威胁。雾这种能见度小于十公里的现象是由于高浓度的微粒排放造成的。长江三角洲是中国四大雾区之一。作为长三角的经济中心,上海为国家GDP做出了4.6%的贡献。作为全国最大的超大城市,上海有1800万的常住居民和280万的流动人口(Geng等人,2008)。由当前研究为基础做出结论,上海雾天能见度的下降主要是由于PM2.5浓度升高造成的(Fu等人,2008)。 很多因素影响着大气能见度,比如化学组成、粒子大小的贡献、气溶胶的构成和气溶胶的混合状态。水相、海盐和矿物尘埃的参与促进了硝酸的吸湿反应。N2O5在对流层表面的水解(Dentener和Crutzen,1993;Mongili等人,2006),硫酸盐在有雾状态下的组成(Tursic等人,2004)。环境气溶胶的吸湿增长会改变粒子大小和光学特性(Gasso等人,2000;Kotchenruther等人,1999;Swietlicki等人,1999)。作为相对湿度RH的功能之一的光散射性质是衡量大气气溶胶直接影响气候的衡量参数之一,有些人已经试图将吸湿性增长因子包含到全球气候模型中去(Boucher 和

氟利昂制冷机组安全操作规程

制冷机组安全操作规程 1 目的 为规范技术部所有仪器设备的操作、维护保养和统一管理,促进安全作业的规范化、制度化。 2 范围 本规程适用于本厂氟利昂制冷机组的安全操作及保养方法。 3 职责 3.1 仪器管理员负责所有仪器设备的定期维护、保养和统一管理。 3.2 操作人员负责仪器设备的日常安全使用、清洁卫生和填写使用记录。 4 操作规程 4.1 操作前安全检查 4.1.1 操作人员上岗前必须经过培训,熟练掌握本设备的操作 规程和安全守则,禁止独立作业。 4.1.2 操作人员必须按照规定穿戴好劳保防护用品,禁止穿拖 鞋不戴工帽进入操作间。禁止疲劳作业。 4.1.3 检查机组是否充分接地,控制箱连接导线有无裂纹、破 损,各仪表是否正常,机组各构件螺栓是否紧固,发现异 常要及时报告维修,严禁图方便危险作业。 4.2 开车前准备 4.2.1 检查压缩机曲轴箱的油位是否达到规定的要求。各压力 表阀是否开启。冷凝器连接安全阀的截止阀是否打开(此 截止阀除了检修安全阀之外,不准关闭)。 4.2.2 打开系统管路中的全部阀门(压缩机吸、排气截止阀除 外)。 4.3 压缩机的启动和动转 4.3.1 向压缩机气缸盖、油冷却器供水,启动冷却水、冷水水 泵,向冷凝器、蒸发器供水。 4.3.2 按压缩机的旋转方向盘车数圈,打开压缩机排气截止阀。

4.3.3 启动压缩机,利用油压调节阀将油压调至比曲轴箱压力 高0.147-0.196Mpa。 4.3.4 逐步增加负荷。 4.3.5 小心开启压缩机吸气截止阀,注意吸气压力,防止液态 制冷剂进入气缸。 4.3.6 压缩机启动后,调整热力膨胀阀,建议过热度调至 4-6℃。 4.3.7 检查排气压力、冷凝压力、蒸发压力、曲轴箱压力、油 压、排气温度、油温、吸气温度、蒸发器出口过热度、电 流、电压、机器各部位温度以及机器运转声响是否正常。 在运转工况未稳定前操作者应注意上述情况,并不断加以 调节。发现异常要立即停机检查,排除故障方可继续工作。 4.4 停机 4.4.1 关闭冷凝器供液截止阀停止向蒸发器供液,当蒸发压力 降至0Mpa(表压)左右时,将能量级调到0位(若为自动 能量调节,可自选动作)。 4.4.2 关闭压缩机吸气截止阀,停止压缩机,关闭排气截止阀。 4.4.3 停止冷凝器水泵和蒸发器水泵,切断压缩机冷却水(冷 水机组在冬季使用时,停机后应注意放水)。 4.4.4 切断电源。 4.5填写《仪器设备使用记录表》。 5 维护保养 5.1 压力试验时严禁以可燃气体进行。 5.2 运输制冷剂的钢瓶不能过期使用,如钢瓶已过期,则应重新 检查鉴定,确认合格方可使用。 5.3 安全阀必须定期校正,校正后加铅封;无铅封的安全阀不能 使用。 5.4 监测仪表应准确齐全,且应定期检查鉴定,没有合格证的仪 表不能使用。 5.5 氟里昂系统内的制冷剂未放干净时,不准补焊。 5.6 每月定期对机组维护一次(月使用频率超过2次,每半月检 查一次),检查有无漏油、漏气、异味等,发现异常及时报告, 并做好维修记录。

氟利昂制冷机组安全操作规程

行业资料:________ 氟利昂制冷机组安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共7 页

氟利昂制冷机组安全操作规程 1目的 为规范技术部所有仪器设备的操作、维护保养和统一管理,促进安全作业的规范化、制度化。 2范围 本规程适用于本厂氟利昂制冷机组的安全操作及保养方法。 3职责 3.1仪器管理人员负责所有仪器设备的定期维护、保养和统一管理。 3.2操作人员负责仪器设备的日常安全使用、清洁卫生和填写使用记录。 4操作规程 4.1操作前安全检查 4.1.1操作人员上岗前必须经过培训,熟练掌握本设备的操作规程和安全守则,禁止独立作业。 4.1.2操作人员必须按照规定穿戴好劳保防护用品,禁止穿拖鞋不戴工帽进入操作间。禁止疲劳作业。 4.1.3检查机组是否充分接地,控制箱连接导线有无裂纹、破损,各仪表是否正常,机组各构件螺栓是否紧固,发现异常要及时报告维修,严禁图方便危险作业。 4.2开机前准备 4.2.1检查压缩机的油位是否达到规定的要求。各压力表阀是否开启。冷凝器连接安全阀的截止阀是否打开(此截止阀除了检修安全阀之外,不准关闭)。 第 2 页共 7 页

4.2.2打开系统管路中的全部阀门(压缩机吸、排气截止阀除外)。 4.3压缩机的启动和动转 4.3.1向冷凝蒸发器供水,开启水泵。 4.3.2启动压缩机,利用排气压力将油压升高,电磁阀开启润滑油进入压缩机补油(从压缩机视油镜注意观察补油是否正常)。 4.3.3逐步增加负荷。 4.3.4小心开启压缩机吸气截止阀,注意吸气压力,防止液态制冷剂进入压缩室。 4.3.5压缩机启动后,根据需要库温调整热力膨胀阀,节流阀。 4.3.6检查排气压力、冷凝压力、蒸发压力、排气温度、油温、吸气温度、蒸发器出口过热度、电流、电压、机器各部位温度以及机器运转声响是否正常。在运转工况未稳定前操作者应注意上述情况,并不断加以调节。发现异常要立即停机检查,排除故障方可继续工作。 4.4停机 4.4.1关闭氟泵和供液截止阀停止向蒸发器供液,当蒸发压力降至0Mpa(表压)左右时,将能量级调到0位(若为自动能量调节,可自选动作)。 4.4.2关闭压缩机吸气截止阀,停止压缩机,关闭排气截止阀。 4.4.3停止冷凝蒸发器水泵,(蒸发冷在冬季使用时,停机后应注意储水槽放水以免结冰冻坏水泵)。 4.4.4切断电源。 4.5填写《仪器设备运转记录表》。 5维护保养 5.1压力试验时严禁使用燃气体进行。 第 3 页共 7 页

氟利昂制冷机组安全操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 氟利昂制冷机组安全操作 规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6774-87 氟利昂制冷机组安全操作规程(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管 理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作, 使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 目的 为规范技术部所有仪器设备的操作、维护保养和统一管理,促进安全作业的规范化、制度化。 2 范围 本规程适用于本厂氟利昂制冷机组的安全操作及保养方法。 3 职责 3.1 仪器管理人员负责所有仪器设备的定期维护、保养和统一管理。 3.2 操作人员负责仪器设备的日常安全使用、清洁卫生和填写使用记录。 4 操作规程 4.1 操作前安全检查

4.1.1 操作人员上岗前必须经过培训,熟练掌握本设备的操作规程和安全守则,禁止独立作业。 4.1.2 操作人员必须按照规定穿戴好劳保防护用品,禁止穿拖鞋不戴工帽进入操作间。禁止疲劳作业。 4.1.3 检查机组是否充分接地,控制箱连接导线有无裂纹、破损,各仪表是否正常,机组各构件螺栓是否紧固,发现异常要及时报告维修,严禁图方便危险作业。 4.2 开机前准备 4.2.1 检查压缩机的油位是否达到规定的要求。各压力表阀是否开启。冷凝器连接安全阀的截止阀是否打开(此截止阀除了检修安全阀之外,不准关闭)。 4.2.2 打开系统管路中的全部阀门(压缩机吸、排气截止阀除外)。 4.3 压缩机的启动和动转 4.3.1 向冷凝蒸发器供水,开启水泵。 4.3.2 启动压缩机,利用排气压力将油压升高,电磁阀开启润滑油进入压缩机补油(从压缩机视油镜

中国大气气溶胶气候效应研究进展

李明华,范绍佳 中山大学大气科学系(510275) Email:lmh20000@https://www.doczj.com/doc/1c989243.html, 摘要:全球和区域气候变化是当今各国政府和科学界关注的重大问题。大气气溶胶作为影响气候变化的一个重要因子,引起了全球科学界的重视,是当今国际科学界的热门研究话题。本文总结了二十世纪九十年代以来我国科学家在大气气溶胶气候效应研究方面的一系列成果,讨论了未来研究的主要难题及研究方向。 关键词:中国;大气气溶胶;气候效应 1.引言 全球和区域气候变化是当前各国政府和科学界关注的重大问题。大气气溶胶作为影响气候变化的一个重要因子,引起了全球科学界的重视,是当今国际科学界的热门研究话题[1-4]。 大气气溶胶是指大气与悬浮在其中的固体和液体微粒共同组成的多相体系,习惯上用来指大气中悬浮的10-3~101μm固体和液体粒子。大气气溶胶对气候的影响主要通过两种方式:一种是大气气溶胶粒子通过吸收和散射太阳辐射改变地-气系统的能量收支,直接影响气候;另一种是大气气溶胶粒子作为云凝结核(CCN)改变云的光学特性、分布和生命期,间接影响气候。理论上,只要知道大气气溶胶浓度时空分布的信息及其物理、化学、光学特性、尺度分布和大气含量的准确信息,便可精确计算其直接辐射强迫的大小。而实际上所缺乏的也正是对这些量和其变化过程的详细了解。因此,对其直接辐射强迫的估计只能是基于现有实验结果和观测资料基础上的理论数值模拟。模式结果表明,目前对人为大气气溶胶(硫酸盐、硝酸盐、煤烟、矿尘和生物大气气溶胶等)全球年平均直接辐射强迫的估值大体介于-0.3~-1.0W/m2 之间,不确定性是估值的两倍。由于理论上对云的夹卷和混合过程,以及大气气溶胶-云-辐射-气候之间的微物理和化学反应过程了解还很不全面,准确地估计大气气溶胶间接辐射强迫的大小是相当困难的。全球年平均间接辐射强迫估值介于0~-1.5W/m2之间,不确定性更大,还没有一个合理的中间估值[5]。 大气气溶胶的气候效应比温室气体复杂得多,尽管大多数研究认为大气气溶胶对气候的影响与温室效应气体的影响是反向的,但二者不能简单抵消[6]。从二者寿命来看,对流层大气气溶胶的寿命只有几天到几周,它的辐射强迫作用集中在排放源附近,而且基本只影响北 - 1 -

制冷系统氟利昂安全使用与应急处置

制冷系统氟利昂安全使用与应急处置 一、氟利昂特性 氟利昂又名氟氯烷,是含有氟和氯的有机化合物,由于很容易液化,是一种很好的制冷剂,目前应用最广的是R22,即二氟一氯甲烷,R22是一种无色、无味、无毒、无腐蚀性的气体,化学性质稳定,不易燃烧爆炸,相对密度1.18(水=1),相对蒸气密度3.0(空气=1),R22几乎不溶于水,能溶于乙醚、氯仿等有机溶剂,氟利昂作为制冷剂使用比氨安全可靠,但属于破坏臭氧层和产生温室效应气体。 二、氟利昂事故风险 1.氟利昂本身无毒,是一种窒息性气体,氟利昂比空气重,发生泄漏后,会滞留在较低和通风不畅的地方,与空气混合到一定浓度时,造成环境缺氧,人在此环境中停留,可导致因缺氧而窒息,吸入量过大或时间过长,会抑制呼吸功能导致昏迷甚至死亡。 2.氟利昂与明火相遇且在水汽等作用下,可分解生成光气、氯化氢、氟化氢等有毒有害气体,可引起中毒。 3.人体直接接触到液态氟利昂,可导致人员冻伤。 4.储存氟利昂的容器或气瓶若遇高热,内部压力增大,有发生开裂和物理爆炸的危险。 三、氟利昂泄漏应急处置措施 1.制冷系统发生氟利昂泄漏时,操作人员应迅速停止机组运转,切断供电电源,确认泄漏点(必要时使用冷媒检漏仪检漏),尽可能关闭泄漏点前后端阀门,切断与系统相连的阀门。 2.打开门窗通风,迅速疏散泄漏区域内人员至上风处,并进行隔离,严格限制出入。

3.通知部门负责人和维修人员。 4.部门负责人组织人员到达现场处理事故,及时对泄漏区域进行合理排风,加速扩散。 5.现场抢险人员不得盲目进入泄漏现场,必须进入泄漏高浓度区域切断泄漏源和堵漏作业时,抢险人员需佩戴自给正压式空气呼吸器。 6.焊接泄漏管道等设施时要将氟利昂完全排放干净,泄漏容器要妥善处理,修复检验后再用。 7.区域内泄漏氟利昂未处理完时,区域内禁止明火操作。 8.处理泄漏点时,注意防止维修人员被泄漏制冷剂冻伤。 9.有人员吸入氟利昂,应使之迅速脱离现场至空气新鲜处,保持呼吸道通畅,拨打急救电话,如呼吸困难,给输氧,如呼吸停止,立即进行人工呼吸。 10.一旦皮肤接触氟利昂引起冻伤,应立即用大量清水冲洗至少15分钟并就医。 11.一旦眼睛接触氟利昂液体,应立即用大量清水冲洗至少15分钟并就医。 四、氟利昂操作和储存注意事项 1.操作人员必须经过培训,持制冷工操作证上岗,严格遵守操作规程。 2.操作人员穿一般作业工作服,戴一般作业防护手套,正常工作时不需要特殊防护。 3.空气流动差的操作区域应设置通风设施,注意全面通风,防止氟利昂气体泄漏到工作场所空气中,避免高浓度吸入。 4.进入储罐、地沟等受限空间作业,严格执行《受限空间作业安全管理规定》,现场有人监护。

土的物理性质、水理性质和力学性质

第二章 土的物理性质、水理性质和力学性质 第一节 土的物理性质 土是土粒(固体相),水(液体相)和空气(气体相)三者所组成的;土的物理性质就是研究三相的质量与体积间的相互比例关系以及固、液两相相互作用表现出来的性质。 土的物理性质指标,可分为两类:一类是必须通过试验测定的,如含水量,密度和土粒比重;另一类是可以根据试验测定的指标换算的;如孔隙比,孔隙率和饱和度等。 一、土的基本物理性质 土的三相图(见教材P62图) (一)土粒密度(particle density) 土粒密度是指固体颗粒的质量m s 与其体积Vs 之比;即土粒的单位体积质量: s s s V m =ρ g/cm 3 土粒密度仅与组成土粒的矿物密度有关,而与土的孔隙大小和含水多少无关。实际上是土中各种矿物密度的加权平均值。 砂土的土粒密度一般为:2.65 g/cm 3左右 粉质砂土的土粒密度一般为:2.68g/cm 3 粉质粘土的土粒密度一般为:2.68~2.72g/cm 3 粘土的土粒密度一般为:2.7-~2.75g/cm 3 土粒密度是实测指标。 (二)土的密度(soil density) 土的密度是指土的总质量m 与总体积V 之比,也即为土的单位体积的质量。其中:V=Vs+Vv; m=m s +m w 按孔隙中充水程度不同,有天然密度,干密度,饱和密度之分。 1.天然密度(湿密度)(density) 天然状态下土的密度称天然密度,以下式表示: v s w s V V m m V m ++==ρ g/cm3 土的密度取决于土粒的密度,孔隙体积的大小和孔隙中水的质量多少,它综合反映了土的物质组成和结构特征。 砂土一般是1.4 g/cm3 粉质砂土及粉质粘土1.4 g/cm3 粘土为1.4 g/cm3 泥炭沼泽土:1.4 g/cm3 土的密度可在室内及野外现场直接测定。室内一般采用“环刀法”测定,称得环刀内土样质量,求得环刀容积;两者之比值。 2.干密度(dry density ) 土的孔隙中完全没有水时的密度,称干密度;是指土单位体积中土粒的重量,即:固体颗粒的质量与土的总体积之比值。

制冷系统各部件 及原理

制冷系统调节站 1)液体调节站的作用是起到向各冷间调节供液量,或进行冷间融霜排液操作。液体调节站 有各冷间的供液阀,和融霜排液阀及排液总阀。 2)气体调节站的作用是调节制冷压缩机的吸气量或控制进入冷间制冷剂的过热量。气体调 节站有各冷间的的回气阀和制冷剂热气阀及热气总阀 供液方式 1)直接膨胀式供液制冷系统 高压液体通过膨胀阀直接向蒸发器供液制冷,吸热气化后直接由制冷压缩机吸入,称为直接膨胀式供液制冷系统。其流程:高压液体制冷剂~膨胀阀~蒸发器~制冷压缩机吸入。 优点:简单,不需要设置气液分离器,节省投资:缺点:不能均匀供液,且难以控制供液,因无效气体,影响蒸发器传热效率和制冷压缩机的制冷效率。只适用于负荷小的小型冷库和小型自动化制冷装置。 在氟利昂系统中多采用直接膨胀式供液制冷系统。为避免供液难以控制,使用了热力膨胀阀供液,这样可以使制冷剂有一定的过热度,不会造成制冷压缩机的湿运行。 2)重力供液制冷系统 利用位置较高的氨液分离器里的液体高度作为液柱静压力,使液体依靠重力作用流入蒸发器供液制冷,称为重力供液制冷系统。其流程:高压液体制冷剂~浮球阀或手动膨胀阀~氨液分离器~低压液体制冷剂借助重力由高向低处流进~蒸发器制冷~氨液分离器~制冷压缩机吸入。 优点:节省阀门,操作简单,因减少无效气体的影响,提高蒸发器传热效率,并保证压缩机干压行程:缺点;氨液分离器必须紧靠冷库冷间,并在蒸发器上方要求氨液分离器液位至蒸发器最高一层排管间距为1.5米以上具有一定的压力。 3)氨泵供液 a)下进上出式 优点:供液均匀、蒸发器传热效果好,降温快。缺点:要求循环桶容量应大些,一般直径为1.2米或1.4米,液柱静压力对蒸发温度有一定的影响,蒸发器油垢不易排出。氨系统多用于此方式。 b)上进下出式 优点:低压循环桶的容量可小些,无液柱压力对蒸发温度的影响,蒸发器的油垢容易排出。缺点供液不均匀,蒸发器传热效果较差,降温慢。氟系统一般采用此方法以便于回油。 高压储液器作用 1)容纳冷凝器冷凝后的高压制冷剂液体 2)根据工况,调节系统正常供液 3)具有液封作用,是高低压系统不串气 高压储液器管理 1)正常工作时,放油阀、放空阀应关闭,其他各阀应开启。 2)正常工作时,高压储液桶液位应相对稳定。一般在40%~60%之间,最高不得超过 80%,最低不小于30%。 中冷器的作用 1)把低压机排出的过热气体冷却到相应压力下的饱和气体,并使流速由10~25米每 秒将为0.4~0.7米每秒,进行油氨分离: 2)通过中冷器蛇形盘管外的低压氨液,是高压氨液再次冷却,从而提高制冷剂单位 质量的制冷量。 中冷器正常操作与管理

气溶胶的影响

气溶胶的影响 气候: 气溶胶粒子能够从两方面影响天气和气候。一方面可以将太阳光反射到太空中,从而冷却大气,并会使大气的能见度变坏;另一方面却能通过微粒散射,漫射和吸收一部分太阳辐射,减少地面长波辐射的外逸,使大气升温。 气候变化受到气候系统内部可变化性和外部因子(包括自然因素和人类活动)的共同影响,气溶胶的福幅射强迫效应是其中重要的外部银子之一,但目前对气溶胶气候效应的科学理解水平还相当低。最近Menon等利用美国GISS气候数值模式得到的模拟结果表明黑炭气溶胶吸收短波辐射,从而产生大气异常加热的直接影响,这种加热引起东亚中部大气的上升运动和南北两侧弃团的下沉,造成了我国东部地区夏季降水“南多北少”的变化趋势。Xu的工作却指出我国夏季“南涝北旱”的原因是工业排放的硫酸盐气溶胶显著减少了太阳辐射,陆地气温降低,使海陆温差减小,夏季风偏弱,进而造成我国夏季雨带位置偏南,气溶胶的气候效应仍是一个存在较大争议的额科学问题。 东亚是全球硫化物排放较多的地区之一,今年来伴随着经济的高速增长有更多的含硫气体排入大气中,大量生成的硫酸盐气溶胶除了使环境恶化外,还可能对该区域气候造成一定影响,Li等认为中国四川盆地近40年来气温的变冷趋势可能与这一地区硫酸盐气溶胶含量的增加有关。Qian等利用一个简单的硫酸盐气溶胶辐射模式与区域气候模式(RegCM)耦合,模拟了东亚区域硫酸盐气溶胶的辐射强迫气候效应,发现硫酸盐气溶胶的直接,间接,辐射强迫对屈原气候都有影响,其中间接辐射强迫的作用较大。……中国东南部气溶胶增加将导致日照时数减少和日照强度降低,进而使夏季这一地区的最高气温降低。上述研究表明,城市工业发展使大量的工业废气排放至城市大气中,不仅严重地污染了大气环境,而且使空气浑浊度增大,特别是大气中的气溶胶大量增加,其直接和间接的辐射强迫将使得城市太阳辐射强度减弱,进而可能对区域气候产生影响。 导致全球变冷的主要因子使大气气溶胶。除黑炭气溶胶可产生0.1W/m2的辐射强迫外,绝大部分气溶胶粒子(包括硫酸盐,硝酸盐一级矿物沙尘等)总的直接辐射强迫和间接辐射强迫(仅包括云反照率效应,见下)分别为-0.5W/m2和-0.7W/m2,二者总计达到-1.2W/m2,已经接 近工业革命以来大气主要温室气体二氧化碳所产生的1.66W/m2气候变化辐射强迫。 研究造成工业革命以来气候变化的驱动力(辐射强迫)以及预测未来的气候变化时,不但要考虑大气温室气体的变化,还要考虑其他强迫银因子特别是大气气溶胶的变化。由于大气气溶胶可以散射和吸收太阳短波辐射以及地球长波辐射,影响地气系统的辐射平衡(直接效应);与此同时,他们还可以作为凝结核影响云的辐射特性以及作为反应表面影响大量化学反应的速度(间接效应);因此,大气气溶胶大气辐射和气候变化的研究中占有重要地位。 气溶胶粒子的辐射强迫机制主要有直接辐射强迫和间接效应,间接效应分为第一类间接效应(云反照率效应,或Twomey效应),第二类间接效应(云生命期效应),还包括冰核化效应,热力学效应及半直接效应。大气气溶胶通过上述直接,半直接与间接效应,影响地气系统的辐射收支并仅为影响地球气候外,气溶胶粒子的存在还将引起大气加热率和冷却率的变化,直接影响大气动力过程。沙尘的大气气溶胶还可能携带营养盐,当其沉降到海洋时会影响海洋初级生产力,影响辐射活性气体(例如CO2、CH4和DMS等)的海气交换通量,并进而影响全球碳循环,最终造成对地球气候系统的冲击。这些影响均可以归类于大气气溶胶的“间接气候效应”,他们可能是非常重要的,有关研究刚刚开始不久,难以给出任何定量描述。使情景变得更加复杂的还有,大气气溶胶不但可以吸收和散射太阳辐射,而且也可以吸收和散射红外热辐射;而这两种效应所产生的辐射强迫以及对气候的影响是完全不同的。总之,大

水的特性

水的基本特性 在自然界中,几乎水的全部物理性质,要么是独特的,要么是处于这种性质范围的极端状态。由此,导致了它在化学上的特殊性。这些在物理及化学上的特点,又使得它在生物学上具有不可代替的作用。这就可以清楚的看出,水在自然地理研究中的价值。 让我们首先来熟悉一下水分子的结构。由两个氢原子和一个氧原子所组成的水分子,呈非对称分布,共形状略作V字形,这是依据水分子的电子云分布决定的。现已清楚的是,氧原子居于中心,两个氢原子位于类似正方体之一个面的两个对角。H—O—H之间的角度(也就是V字形结构之角度)为104°31′,而不是真正的正方体所应有的109°30′。氧原子的8个电子分布是:两个靠近原子核,两个包含在与氢原子结合的键中。另外两对孤对电子则形成两个臂,伸向与包含氢原子那个面相对的另一个面中,分别位于该面的两个对角(见图7.1)。这两个臂的电子云,特别引起人们的关注,因为它们显示出了一个带负电区,能吸引邻近水分子中氢原子的局部正电区,借此力量把水分子互相连接起来,这就是水分子所表现出来的“极性”。 正因极性作用的缘故,水聚结在一起而不轻易地汽化,就是说在通常气压下,水不致在较低的温度时就沸腾。由于水分子中电荷的分布,它产生了1.84×10-18静电单位的偶极矩。如果水分子没有带负电的电子云臂及偶极矩,水分子之间的结合就不会如现在这样,海洋中所有液态水势必完全汽化,生命的形成必然是不可能的。借助于极性,水分子能连接起来一直升高到近百米高的树顶,光靠毛管力及大气压力是无法解释的。 我们已经提到,液态水几乎在其所有的物理化学性质方面都是异乎寻常的。例如仅从它发生相变时的温度来说,就十分独特。元素周期表中第ⅥA族各元素的氢化物,随着分子量由H2S、H2Se,到H2Te的增大,其熔点也按照这样的序列

氨制冷与氟利昂制冷系统

一、氨制冷系统 图3-1为单级压缩氨泵供液制冷系统的组成。制冷剂蒸气经压缩机1、油分离器2进入冷凝器3,冷凝后的制冷剂液体进入高压贮氮器4,氨液经管路送至调节阀降压降温后送人低压循环桶5,在低压循环桶中,将节流产生的氨气分离后,氨液经氨泵6,通过调节站进入冷分配设备7,在7中吸收了被冷却物体的热量而汽化,汽化后的氨气经氨液分离器,在分离器中,由于流速降低,将它携带的液滴分离出来,再进入压缩机。这样不仅防止了压缩机的湿冲程,还使分离出来的液体制冷剂得到利用,它多用于多层冷库和远距离冷库。其优点是使氨液分离器高度降低,在排管中氨液强迫流动可提高传热效果,经调节后容易达到均匀供液,可以实现系统的自动化。 除氨泵供液外还有直接供液制冷系统和重力供液制冷系统。直接供液是指对蒸发器供液只经过膨胀阀直接进入蒸发器而不经过其他设备;重力供液是利用制冷剂液柱的重力向蒸发器输送低温的氨液。其制冷系统的组成和工作过程和氨泵供液过程基本相同,不再介绍。 二、氟利昂制冷系统

图3-2为小型氟利昂冷藏库的系统组成图。压缩机1从蒸发盘管11中吸气,经压缩,进入油分离器2,利用流速降低及离心力的原理和机械过滤的作用,将蒸气中携带的油分离,然后进入水冷冷凝器3,冷却冷凝成饱和液体贮存在贮液桶4中,贮液桶除使商低压(液封)隔开外,还能贮存液体和调节供液量。使用时液体制冷剂经贮液桶的出液阀进入干燥过滤器5,滤除制冷剂中的机械杂质和水分,以免引起系统在热力膨胀阀处发生脏堵或冰堵。然后制冷剂再进入气液热交换器6,被从盘管出来的蒸气过冷,它不仅防止压缩机的液击,而且提高制冷量和减少有害过热。过冷后的液体制冷剂经电磁阀7进入热力膨胀阀8,电磁阀7在系统中起开闭作用,和压缩机电动机同时动作。压缩机启动时电磁阀通电开启,使系统接通,压缩机停机时,电磁阀断电关闭,系统切断,这样可防止大量液体制冷剂进入蒸发盘管,以免下次压缩机启动时产生湿冲程。制冷剂经热力膨胀阀8节流减压后压力和温度都降低,然后经直通截止阁9和分液头10分别进入冷库的各组盘管11。截止阀9是为检修热力膨胀阀时,将它关闭,切断系统,避免空气进入系统或系统中的制冷剂大量外泄。为保证运行的经济和安全还装了高低压力继电器13,使装置的高、低压力控制在某一数值,从而使高压不致过高以保护机器的安全运行,低压不致过低以保证运行的经济性。温度继电器12是使库温控制在所需要的数值内。此外对冷量较大的制冷压缩机,为了安全运行还装有油压继电器和水量调节器。

初中趣味物理知识:趣谈水的几个物理特性

初中趣味物理知识:趣谈水的几个物理特性 在我们人类生活的地球表面上,有70%的地方由液态水覆盖着,可以说地球是个名副其实的水球。几乎所有的生命形式的主要构成成分都是水,没有水就没有生命的存在,也不会有今天有滋有味的生活。水有很多我们熟知的特性,如无色、无味、能溶解许多物质、在0℃时结冰、100℃时汽化、能吸收大量的热能、能形成晶莹的水珠等等。虽然一般人对水都比较了解,但仍有很多值得研究的地方,即使是它那些熟知的特性也显得是如此地巧妙,因而让人类居住的这个神秘的星球有了无比丰富的生命与多姿多彩的生活。 水比其他任何液体都能溶解更多的物质,这要得力于它独特的分子结构,特别是水分子的有极性。我们都知道水的分子式是H2O.水的分子结构非常简单,由两个氢原子和一个氧原子呈一定对称性组成V字型分子。这种结构导致水分子在氧的一边出现微弱的负电,而在氢的一边形成微弱正电,所以水分子很容易相互形成立体的连接,也使它很容易与其他物质的原子因电荷的吸引而相互接合,因而使水有很强的溶解其他物质的能力。比如当我们将盐加到水中时,水分子的有极性使它与盐分子间形成微弱结合,使得晶体盐粒均匀分散到水中。正是这一特性才使得我们的生活中有那么多的美味,我们每一天都在不知不觉中喝下了各种水溶液,酸甜

苦辣样样都有。水的这种强溶解性,使得动物体内的水溶液携带着各种所需要的物质在体内循环,从而也为生命的代谢起了重要的作用。 在地球环境条件下,水是已知惟一三态共存的自然物质。水的不同状态对应分子的不同排列形式,在固体状态下分子呈高度有序态存在。大多数物质在一定压力下,随着温度的下降,其密度会上升;而水却比较特殊,在温度大于4℃时,水是遵循这一规律的,包括从气态水到液态的过程。但在低于4℃后,水的密度反而开始减小,即水在4℃时的密度最大。水的这种固态密度大于液态密度的特性在自然界中几乎是独一无二的。在地球的大部分能结冰的地方,冬天来临时,水开始结冰,然后浮在水面上,这样将冰下方的液态水与冰上方的冷空气隔离开,从而阻止或是减缓了冰下液态水的固化,也保证了水中以液态水为生活条件的生命形式比如鱼类、水草等的存活。当第二年春天到来时,上升的气温会熔化掉浮在水面上的冰,水又重新回到流动的液态。试想一下,如果水没有这一特殊的物理性质会是什么样的结果?上面的水结冰后往下沉,涌上来的水又结成冰,如此反复,最终是一条河或整个湖都变成硕大的冰疙瘩,水中的生命也就无法生存下去了。果真如此,生命形式是否还这样丰富多彩也就很难说了。 对液态的水来说,它的水分子由于有极性会处于一种半

制冷系统中油分离器结构及工作原理

制冷系统中油分离器结构及工作原理 一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有0.1mm油膜时,将使蒸发温度降低2.5℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至0.8~1m/s);同时改变流向,使密度较大的润滑油分离出来沉积在油分离器的底部。或利用离心力将油滴甩出去,或采用氨液洗涤,或用水进行冷却降低汽体温度,使油蒸汽凝结成油滴,或设置过滤层等措施来增强油的分离效果。 (三)油分离器的形式和结构目前常见的油分离器有以下几种:洗涤式、离心式、过滤式、及填料式等四种结构型式,下面分述它们的结构及工作原理。 1、洗涤式油分离器 洗涤式油分离器适用于氨系统,它的主体是钢板卷焊而成的圆筒,两端焊有钢板压制的筒盖和筒底。进汽管由筒盖中心处伸入至筒下部的氨液之内。进气管的下端焊有底板,管端

水的物理性质之一

水的物理性质之一 纯净的水是没有颜色、没有味道、没有气味 的透明的液体。 随着温度的变化,水会发生状态变化。在 101.3kPa的压强下,液态的水冷却到0℃时凝固 成固态的冰。因此,水的凝固点是0℃(或称冰的 熔点是0℃)。在同样的压强下,液态的水到100℃ 时沸腾,因此水的沸点是100℃。 水沸腾后变成水蒸气时,体积迅速膨胀。据 科学实验测定,1cm3的水变成101.3kPa压强、 100℃时的水蒸气,体积约为1700cm3,扩大约1700 倍。 水在4℃时的密度(ρ)是1g/cm3。当水结冰时,体积比液态水约增大9%。因此,冰的密度比水小,能浮在水面上,起隔热保温作用,冰下的水仍在流动,鱼儿照样能生存。 水的物理性质之二 纯净的水是无色、无味的透明液体。在1.0×105Pa下,水的凝固点(熔点)为0.00℃,沸点为100.00℃。水的密度比较特殊。在0℃~4℃之间随着温度的升高密度不是减小而是增大,0℃时为0.999841g/cm3,到4℃时达到最大值为1.000000g/cm3,4℃以后和一般物质一样随温度升高而逐渐减小(20℃为0.998203g/cm3,100℃时为0.958354g/cm3。水的这一性质使其广泛用于住宅的采暖,散热后的冷水密度大,可对热源处的热水

形成压力,形成自动循环。0℃冰的密度为0.91671g/cm3,比同温度水的密度还小,因而水结冰时体积膨胀,这种膨胀力很大,可以冻裂水管和汽车发动机水箱,这就是冬天的夜晚汽车要放掉冷却水的原因。在河水或湖水中,结成的冰浮在水面上,可使冰下的水温处于比较稳定状态,保证了水中生物的生存。水的这种密度特性是水分子的排列结构造成的。冰的结构中,每个水分子皆以四面体顶角的方向被另外四个水分子所包围,形成一种很不紧凑的架状结构,因此冰的密度较小。冰熔化时,这种结构被拆散,水分子趋于密集,使水的密度增大。4℃后,随温度的升高,水分子振动加剧,水分子间距离增大,水的密度变小。水的这些性质是使用高纯水测定的,天然水中或多或少地含有某些杂质,其性质和高纯水比较会略有差异。

相关主题
文本预览
相关文档 最新文档