当前位置:文档之家› 嗓音声学分析与心理听觉评价的相关性研究

嗓音声学分析与心理听觉评价的相关性研究

嗓音声学分析与心理听觉评价的相关性研究
嗓音声学分析与心理听觉评价的相关性研究

音乐声学基础知识

音乐声学基础知识 音乐是一种艺术形式,一切艺术都包括两个方面,一是艺术表现,一是艺术感知,音乐这种艺术也概莫能外,它通过乐器(包括人的歌喉)所发出的声音来表现,依靠人耳之听觉来欣赏。这声音的产生和听觉的感知之间有什么关系呢?这是我们要讨论的第一个问题——音乐声学。 1、声音的产生与主客观参量的对应关系 关于声音的产生,国外有一个古老的命题:森林里倒了一棵大树,但没有人听见,这算不算有声音?这个命题首先点出了声音产生的两个必要条件,即声源和接收系统。所谓声源,就是能发出声响的本源。以音乐为例,一件正在演奏着的乐器就是声源,而观众的听觉器官就是接收系统。从哲学的角度讲,声源属于客观世界,而接收系统则属于主观世界,声音的产生正是主观世界对客观世界的反映。 但如果只有声源和接收系统,是否就能接到声音呢,并不是这样。如果没有传播媒介,人耳仍不能听到声音。一般来讲,物体都是在有空气的空间里振动,那么空气也就随之产生相应的振动,产生声波。正是声波刺激了人们的耳膜,并通过一系列机械和生物电的传导,最终使我们产生了声音的感觉。如果物体在真空中振动,由于没有传播媒介,就不会产生声波,人耳也就听不到声音。由此,我们可以说,任何声音的存在都离不开这三个基本条件:1)声源;2)媒介;3)接收器。 先来看看产生声音的客观方面——声源——都有哪些特征。 当我们弹一个琴键,通过钢琴机械传动装置,琴槌敲击琴弦,这时如果我们用手触弦,就会明显感到琴弦在振动。当我们拉一把二胡或小提琴时,也会感到琴弦的振动。振动是声源最基本的特征,也可以说是一切声音产生的基本条件。但如果没有我们手对琴键施加压力,使琴槌敲击琴弦,也不会产生振动。实际上,一个声源得以存在,还依赖于两个基本条件:其一是能够激励物体振动的装置(称激励器);其二是能够使装置运动起来的能量;演奏任何一件乐器都不能缺少这两个条件。例如,当我们敲锣打鼓时,锣槌或鼓槌便是激励器,能量则由我们的身体来提供。一架能自动演奏的电子乐器,也同样少不了这两个条件:电子振荡器就是激励器,能量则由电源来提供。 人们常用“频率”(frequecy,振动次数/1秒)来描述一个声源振动的速度。频率的单位叫“赫兹”(Hz),是以德国物理学家赫兹(H.R.Hertz)的名字命名。频率低(即振动速度慢)时,声音听起来低,反之则高。人耳对振动频率的感受有一定限度,实验证明:常人可感受的频率范围在20—20,000Hz左右,个别人可以稍微超出这个范围。音乐最常用的频率范围则在27.5Hz—4186Hz(即一架普通钢琴的音域)之间。超出此范围的乐音,其音高已不能被人耳清晰判别,因而很少用到。语言声的频率范围比音乐还要窄,一般在100Hz—8,000Hz范围内。 声音的强度与物体的振动幅度有关:“幅度越大,声音越强,反之则弱。”声学中用“分贝”(dB)作为计量声音强度的单位。通过实验,人们把普通人耳则能听到的声音强度定为1分贝。音乐上实际应用的音量大约在25分贝(小提琴弱奏)—100分贝(管弦乐队的强奏)之间。音乐声学中称声音强度的变化范围为“动态范围”,动态范围大与小,常常是衡量一件乐器的质量或乐队演奏水平的标志:高质量

初二物理声音强弱与那些因素有关实验报告的模板(完整版)

报告编号:YT-FS-7206-71 初二物理声音强弱与那些因素有关实验报告的模板 (完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

初二物理声音强弱与那些因素有关实验报告的模板(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 1、提出问题: 声音的强弱(声音的响度)可能 1)、与声源振动的幅度(振幅)有关; 2)、与人离声源的距离有关。 2、猜想或假设: 1)、声源的振幅越大,响度越大; 2)、人离声源的距离越近,人听到的声音响度越大。 3、制定计划与设计方案(用控制变量法)如, 探究1)声音的响度与声源振动的幅度(振幅)的关系: 考虑让人与声源的距离相同,使声源的振幅不同,

看在声源的振幅大小不同时,听声音响度大小的情况怎样? 探究2)响度与人离声源距的离大小关系 考虑让声源的振幅相同,使人离声源距离不同,看在人离声源的距离大小不同时,听声音响度大小的情况怎样? 4、进行实验与收集证据 探究1)选一只鼓,在鼓上放一小纸屑,让人离声源的距离0.5米(不变) (1)第一次轻轻地敲击一下鼓,看到小纸屑跳起(如0.5厘米),听到一个响度不太大的声音; (2)第二次重重地敲击一下鼓,看到小纸屑跳起(如1.5厘米),听到一个响度很大的声音。 结论:人离声源的距离相同时,声源的振幅越大,声音的响度越大。 探究2)的实验过程与上类似 结论是:声源的振幅相同时,人离声源的距离越近,人听到的声音响度越大。

心理声学原理

心理声学原理 时间:2016年10月22日星期六来源:百度 心理声学模型是对人听感的统计性质的数学表述模型,它解释人各种听感的生理原理。心理声学模型可以在主观听感劣化不多的条件下,大大降低数字音频信号传输的带宽。它主要基于人的听觉器官的生理结构和感知模式,通过对数字音频信号的相应处理,去除不可闻的信号成分及引入不可闻的畸变,达到普通熵编码无法达到的压缩比率。 由于人耳听觉系统复杂,人类迄今为止对它的机理和听觉特性的某些问题总是还不能从生理解剖角度完全解释清楚。所以,对人耳听觉特性的研究仅限于在心理声学和语言声学内进行。人耳对不同强度和不同频率声音的一定听觉范围称为声域。在人耳的声域范围内,声音听觉心理的主观感受主要有响度、音高、音色等特征和掩蔽效应、高频定位等特性。其中响度、音度、音色可以在主观上用来描述具有振幅、频率和相位三个物理是的任何复杂的声音,故又称为声音“三要素”;而对于多种音源场合的人的耳掩蔽效应等特性尤为重要,它是心理声学的基础。 研究声音和它引起的听觉之间关系的一门边缘学科。它既是声学的一个分支,也是心理物理学的一个分支。心理声学本可包括言语和音乐这样一些复合声和它们的知觉。这些可见语言声学、音乐声学等条,本条只限于较基础和简单的心理声学现象,即①刚刚能引起听觉的声音──听阈;②声音的强度、频率、频谱和时长这些参量所决定的声音的主观属性──响度、音调、音色和音长;③某些和复合声音有关的特殊的心理声学效应──余音、掩蔽、非线性、双耳效应。 分类 听阈分强度阈和差阈。声音不够一定强度不能引起听觉。在多次作用中能有50%的次数引起听觉的最小声压级称为强度阈(也称听阈)。听阈有个体差异,因而所谓正常听阈只能是一些听力正常的年轻人的听阈的统计平均值。听阈随频率而变化。500~4000Hz之间阈值最低,在它们之上和之下的高频声和低频声的

荣格的分析心理学

荣格的智慧 【摘要】分析心理学是20世纪早期诞生的一门探究人类心灵原始意象的深度心理学。在弗洛伊德对人类无意识的发现的基础上,根据自己亲身体验及对临床病人的大量观察和各民族宗教神话的广泛研究,瑞士精神病学家、精神分析的代表人物卡尔-荣格提出来一套颇具说服力的人类心灵深层结构理论。作为其理论精髓的集体无意识思想越来越多地受到人们的重视。本文就人格层次结构学说、性格的类型、人格探索的方法等人格心理学理论中的重要内容以及心理治疗过程中的转移现象和应对策略加以梳理,并浅述了自己在学习过程中的一点心得体会。 【关键词】荣格、意识与无意识、性格类型、转移 ——————————————————————————————————- 荣格(1875—1961),瑞士著名哲学家,分析心理学的创始人。他一生致力于心理学的研究,在弗洛伊德研究的基础上,借鉴了其无意识理论,采纳了精神分析的方法,以意识与无意识、自我与自己为轴心,将不同时间、空间、文化、人性等结合成为一个整体,构成他特有的思想结构,成为举世公认的权威。 人格的结构和内容 一、意识——精神事实对于自我的一种关系。 意识是心灵中唯一能够被个体直接感知的部分。它源于无意识领域,以自我为中心:意识从无意识领域和外部世界中汲取内容,当这些内容与自我发生联系时即成为意识。其本质是辨别,区分自我和非我,主体和客体,肯定和否定等等。事物分离成对立的双方完全是由于意识的区分作用,只有意识才能认识到适当的东西,并使之与不适当的和无价值的东西区别开来。意识的功能有两个方面: 1.外部功能(即心理活动机能):感觉、思维、情感、直觉 感觉:告诉我们存在着某种东西 思维:告诉我们它是什么 情感:告诉我们它是否令人满意 直觉:告诉我们它来自何方和去向何方。 2.内部功能:记忆功能、意识功能的主观因素、情绪 二、个体无意识(又称下意识)——被压抑或遗忘的个体知觉和经验 情结是个体无意识的重要内容,是心灵将经验重建为内在客体后的产物。荣格认为,情结以类似本能的方式运作。说“类似本能”是因为它们对特定的情境或人物会产生立即的、直接的、特指性的反应。然而与本能不同的是,它们不完全是与生俱来的,而更大程度上是创伤、家庭互动模式、文化制约等经验的产物,这些经验再综合了集体无意识原型的原始性要素才产生了情结。情结对心理的影响大多是消极的。但是,对于意识自我来讲,那些苦恼的情感经验、精神创伤等个人生活经历又都可以成为加深个人见识,增强自我的适应,使人格更充实的有利条件。在人的日常生活中,原型要素就是透过情结的经验被体验的。 受地域、民族、经验的不同影响,每个人能够意识到的内容和程度不尽相同,因此个体无意识具有相对性,它的范围受到一定限制。同个人无意识的偶然事件可能易于被召唤到觉醒的意识中来比,组成个体无意识的一切冲动和愿望、模糊

《中国大百科音乐舞蹈卷》辞条定义-音乐声学

yinyue shengxue 音乐声学 acoustics of music 亦称“音乐音响学”。侧重研究与音乐所运用的声 音有关的各种物理现象,是音乐学的分支学科之一。由于音乐是有赖于声音振动这一物理现象而存在的,因此对声音的本性、其各个侧面的特性以及声音振动的前因后果的认识和理解,就影响到人类创造音乐时运用物质材料、物质手段的技术、技巧、艺术水平,也影响到人类认识自己的听觉器官对声音、音乐的生理、心理感受与反应的正确与深刻程度。由于这些原因,音乐声学作为音乐学与物理学的交缘学科,就成为音乐学的一个不可缺少的组成部分。音乐声学包括如下几个知识领域:一般声学作为物理学的一个分支的一般声学,是音乐声学的基础,它向人们提供有关的基础知识:声音作为物理现象的本质和本性是什么,乐音与噪声的区别何在,音高、音强和音色就其客观存在而言是一些什么样的物理量。古代人对音质音色的认识带有神秘感,只能借助各种类比词加以描述。用近代物理学方法进行分析的结果说明,每一种音色都是由许多不同频率(音高) 的振动叠加而成的复合振动状态,可采用频谱分析的方法对它们进行解剖式的科学描述。声音通常是通过在空气中的传播而到达人耳的,因此空气中的声波就是一般声学必须研究的对象,它在空气中的传播速度(声速)、波长,遇到障碍物之后的反射、绕射,所形成的行波、驻波,不同频率的声能在空气中自然消蚀的不同程度等等,在声学中都已得到研究。共振现象是声学中的重要研究课题,就能量传导而言,可有固体、气体、液体(内耳淋巴液)等不同的传导途径;就其强度与稳定程度,则涉及共振体的固有频率问题,激发与应随共振的两物体频率之间的整数比例关系问题,即与谐音列有关的谐振问题;这也是和谐感、音程协和性、律制生律法问题的一般物理学、数学基础。近半个世纪以来,电声学已成为一般声学中份量日益加重的组成部分,电鸣乐器的出现已使电磁振荡成为声源的一种,在日常生活中,音乐的保存、重放、传播也都借助于声波与电波的相互转化来实现,已使声与电紧密地联系在一起。因此在成熟的工业社会里,电声学也是音乐声学的基础。 听觉器官的声学研究人耳的构造属于生理学、解剖学的范围,但人耳何以能具有感受声波的功能,却还必须借助声学才能得到说明。况且由于听觉神经网络的构造过于精细,难以用神经系统解剖学的方法来研究,只

音频编解码原理讲解和分析

音频编码原理讲解和分析 作者:谢湘勇,算法部,xie.chris@https://www.doczj.com/doc/108991848.html, 2007-10-13 简述 (2) 音频基本知识 (2) 采样(ADC) (3) 心理声学模型原理和分析 (3) 滤波器组和window原理和分析 (6) Window (6) TDAC:时域混叠抵消,time domain aliasing cancellation (7) Long and short window、block switch (7) FFT、MDCT (8) Setero and couple原理和分析 (8) 量化原理和分析 (9) mp3、AAC量化编码的过程 (9) ogg量化编码的过程 (11) AC3量化编码的过程 (11) Huffman编码原理和分析 (12) mp3、ogg、AC3的编码策略 (12) 其他技术原理简介 (13) 比特池技术 (13) TNS (13) SBR (13) 预测模型 (14) 增益控制 (14) OGG编码原理和过程详细分析 (14) Ogg V orbis的引入 (14) Ogg V orbis的编码过程 (14) ogg心理声学模型 (15) ogg量化编码的过程 (16) ogg的huffman编码策略 (17) 主要音频格式编码对比分析 (19) Mp3 (19) Ogg (20) AAC (21) AC3 (22) DRA(A VS内的中国音频标准多声道数字音频编码) (23) BSAC,TwinVQ (24) RA (24) 音频编码格式的对比分析 (25) 主要格式对比表格如下 (26) 语音编码算法简介 (26) 后处理技术原理和简介 (28) EQ (28)

荣格分析心理学的基本理论

荣格分析心理学的基本理论 (一)集体无意识 集体无意识既是对弗洛伊德个体潜意识的发展,也是荣格的一种创造,荣格用它来表示人类心灵中所包含的共同的精神遗传。 荣格自己在给集体无意识做定义的时候,曾经这样说:“集体无意识的是精神的一部分,它与个体潜意识截然不同,因为它的存在不像后者那样可以归结为个人经验。因此不能为个人所获得。构成个人无意识的主要是一些我们曾经意识到,但以后由于遗忘或压抑而从意识中消失的内容;集体无意识从来就没有出现在意识之中,因此也就从未为个人获得,它们的存在完全得自于遗传。 (二)原型 荣格的原型概念与其集体无意识概念的关系十分密切。正如他所曾明确表达的那样,个人潜意识与各种情绪的构成有关,而集体无意识的内容则主要是原型。 荣格说:“原型是人类原始经验的集结,它们像命运一样伴随着我们每一个人,其影响在我们每个人的生活中感觉到。” 集体无意识是通过某种形式的继承或进化而来,是由原型这种先存的形式构成,原型赋予某些心理内容以独特的形式,集体无意识具有普遍的表现方式,它组成了一种超个人的心理基础,普遍地存在于我们每个人身上,并且会在意识及无意识的层次上,影响着我

们每个人的心理和行为。 (三)原型意象 荣格用原型意象来描述原型将自身呈现给意识的形式,但荣格也一直努力区分原型与原型意象的不同,原型本身是无意识的,我们的意识无从认识它,但是可以通过原型意象来理解原型的存在及其意义。于是我们可以把原型意象看作是原型的象征性表现。 无意识内容一旦被觉察,它便以意象的象征形式呈现给意识。 象征的物质成分使意识处于激活状态,意识受到象征的激活,而把兴趣指向象征,并力求去理解它。这就是说,象征除了“能量转换者”的动力学作用之外,也是“意识塑造者”。它迫使心理去同化象征中所包含着的一种或多种无意识内容。同时,由于原型及原型意象总是具有其集体无意识的渊源,因而一旦将这些理论运用在实际的临床心理分析的过程中,实际上就是在利用集体无意识原型以及原型意象本身所包含的治愈功能与作用,在这种意义上,意象、象征与想象,也就成为荣格心理分析中最重要的方法与特色。 荣格曾根据自己的分析与体验,以及自己的临床观察与验证提出了阿尼玛,阿尼姆斯,智慧老人,内在儿童,阴影和自性等诸多分析心理学意义上的原型意象。这些原型意象存在于我们每个人的内心深处,在意识以及无意识的水平上影响着我们每个人的心理行为。 1、阿尼玛 阿尼玛是荣格用来形容男人内在的女性存在的原型意象。她既

歌唱发声咽喉机能及嗓音声学原理分析

歌唱发声咽喉机能及嗓音声学原理分析 歌唱发声咽喉机能及嗓音声学原理分析 内容简介: 歌唱发声咽喉机能及嗓音声学原理分析 著名歌手帕基埃罗蒂(G.Pahierotti)在他的回忆录中写道: 知道如何呼吸和良好发声的人,才知道如何美妙歌唱。在声乐教学中,如何帮助学生掌握正确的呼吸和发声方法是至关重要的。声乐教学是 论文格式论文范文毕业论文 歌唱发声咽喉机能及嗓音声学原理分析 著名歌手帕基埃罗蒂(G.Pahierotti)在他的回忆录中写道: 知道如何呼吸和良好发声的人,才知道如何美妙歌唱。在声乐教学中,如何帮助学生掌握正确的呼吸和发声方法是至关重要的。声乐教学是一门相对抽象的学科,在学习过程中,常常只能通过讲解和示范来实施教学活动,致使很多声乐学生不能理解歌唱的生理机制,从而形成错误的发声方法,教学目标难以实现。实践证明,歌唱发声的咽喉机能及嗓音的声学分析均属于嗓音医学范畴,具有严密的科学性和客观性。其意义在于通过大量的咽喉部X射线摄片、录音采样和声学分析数据,使声乐教学中的主体与客体双方均能相对形象地、客观地了解到歌唱发声时声带的功能状况及其器质性变化,对于更好地掌握科学的发声原理具有重要的指导意义。 一、嗓音与咽喉运动方式的关系分析发声是喉部功能属性客观体现的一种基本特征。运用喉肌电图、频闪喉镜检测、录音采样、声学

分析等技术手段,来客观地展示咽喉在发元音、清辅音和浊辅音时不同的喉肌表现,能够帮助学生更快地了解歌唱的声学原理,在歌唱时更加自如地控制咽部小肌肉群的活动,以求发出更加美妙的歌声。嗓音是由肺部呼出气流使声带振动而发出的声音,与咽喉的运动密切相关。咽喉是人类饮食、呼吸、发音的重要器官,上连口鼻,下通肺胃,是连接口腔和肺胃的通路,又为经脉循行的要冲。咽喉不单只是呼吸时气流出入的通道,它对吸入的空气还有温湿度的调节和清洁作用。同时,在大脑的调节下,声门作为空气出入肺部的必经之路,可根据人体生命活动需氧量的增减而发生宽窄变化,声门在人平稳呼吸时较小,运动或情绪激动时,声门扩张,以便增加肺部气体交换。发声时,先吸入空气,声带内收、拉紧,声门闭合,当气流自肺部呼出冲击声带时,使之振动而发出声音。经过咽腔和口腔改变形状,鼻腔与胸腔参与,产生共鸣,使声音清晰,和谐悦耳,并由软腭、口、舌、唇、齿等协同作用,形成各种语音。声调的高低取决于声带的长度、张力和呼出气流的力量。喉肌电图可作为研究发声功能的一种方法。它是通过发声时喉肌机能的检测来揭示发声时喉部肌肉运动轨迹的方法。检测过程如下: 采用配置有记忆系统、示波器和监听装置的肌电记录仪,其两个电极针附着于两侧环杓侧肌,请受检者分别发出元音、清辅音和浊辅音。元音发咿,清辅音发丝,浊辅音发日,观察波形和肌电图直接记录。通过检测发现: 受检者在发元音和浊辅音时,声带肌肉有明显的运动痕迹,而在发清辅音时声带肌肉不活动。频闪喉镜是声带振动检查的最好方法。检测用于观察发声时声带活动动态,借以研究发声生理及检查发声障

心理声学(Psychoacoustic Facts and Models )第一章

心理声学:事实和模型 第一章 刺激和过程 在这一章中,简要回顾了声音的光谱特性和时间之间一些基本的相关性。对扬声器和耳机将电信号转换成声音进行了阐述。此外,还提到一些心理物理学方法和程序。最后,对刺激和一般听觉感受之间的关系和心理声学中的原始数据的处理进行了讨论。 1.1声音的时间和频谱特性 在心理声学经常使用的声音的一些时间和频谱特性如图1.1。声音很容易通过声压随时间的变化P (t )进行描述。和大气压力的大小相比,声源所造成的声压的时空变化是非常小的。声压的单位是帕斯卡(Pa )。在心理声学中,经常涉及声压值10-5帕(绝对阈值)到102帕(痛阈)。为了解决涉及范围很大的量值的处理,通常使用声压级L ,声压和声压级有关方程 20log( )p L dB p = (1.1) 式中,基准声压020p Pa μ=。 除了声压和声压级,声强I 和声强级在心理声学中也很重要。在平面行波,声压级及声强级相关方程如下: 00 20log()10log()p I L dB p I == (1.2) 式中,基准声级-122010 W/m I =。 特别是在处理噪声时,与直接使用声强相比,使用声强密度更方便。例如,虽然定义不是很确切,但“1 Hz 带宽的声音强度”也可用来表达“噪声功率密度”。对声强密度取对数即为声强密度级,通常缩短密度级l 。对于密度级与频率无关的白噪声,L 和L 相关方程如下: [10log(/)]L l f Hz dB =+? (1.3) 其中,f ?表示赫兹(Hz )衡量问题的声音带宽。

图1.1 心理声学常用刺激的时间功能和相关的频谱在图1.1中,图“1-KHz tone”显示了连续正弦振荡的声压p的时间函数,和1ms时间内的最大值,对应频谱只用一个中心频率1 kHz时的谱线。 “beats”图是最容易解释的谱域,显示了两个振幅相同的纯音的组合。相应的时间功能清楚地显示一个包络的强烈变化。 “AM tone”图,描绘了一个正弦调幅中心频率为2 kHz的音调的时间功能和频谱。时间函数显示随调制频率变化的包络的正弦振荡。相应的频谱说明,一个调幅音调需要三条线来描述。水平的差异,ΔL,一方面在2kHz之间的中线,要么较低或其他上侧线,都涉及到调制,M的程度,由方程 (1.4) L m dB 20log(/2)] 6ms期间的包络波动表明,对应的调制频率为167赫兹,在谱域中,上部和下部线路与中心线之间的频率差,称为载波。 “音频脉冲”图显示纯音的时间函数和频谱,即固定间隔矩形门。音频率是2KHz,选通间隔为6 ms。在谱域,线之间的间距对应的选通频率为167Hz。 “直流脉冲”图显示了类似的情况。只是在这种情况下,是一个直流电压,而不是一个周期的纯音门控。直流脉冲的持续时间是1ms,间隔为8ms。相应的频谱显示,8毫秒的倒数分离线,即125 Hz 。在频率对应于1/1ms,2/1ms,3/1ms等时,谱线的幅度显示不同的最小值。 最后一个例子是产生离散或谱线的“调频”。描述了一个频率为2 kHz音调在1~3 kHz 频率范围内,调制频率为200 Hz的正弦调频。相关频谱的振幅关于2 kHz对称,并遵循其包络的一个贝塞尔函数。如果调制指数(即频率偏差和调制频率之间的比率)小到使大多数 贝塞尔频谱线消失,那么由此得到的频谱类似于具有一条中心线和两侧线的调幅音调的频

浅谈琵琶“弹”的声学特性

浅谈琵琶“弹”的声学特性 摘要:本文采用实验分析的方法对琵琶演奏时的“弹”进行分析,提取了 26个音的时长、能量、频谱的声学参数,结果显示:1)倍高音、高音、中音、低音、倍低音的时长依次增加;2)整体能量衰减速度减慢,并提出周期型、弧线形、直线型三种能量的衰减模式;3)对频谱进行研究,并分析出琵琶的谐波振动周期 性模式。本文首次将实验语音学研究方法引入琵琶的研究中,为琵琶演奏和教学提供理论依据。 关键词:琵琶;乐器声学;能量;时长;频谱 一、引言 “声学是音乐声学的根基,也是中国古代科学中最为发达的学科之一。宋代科学家沈括在《梦溪笔谈》中首先使用‘声学’一词,而有关音乐声学的理论则散见于经、史、子、集之中,历代史书中的‘律历制’或‘音乐制’,其中关于律学、乐器制造、音乐演奏和演唱技巧等的记述也多涉及音乐声学范畴”。戴念祖(中国物理史的专家),在他的《中国声学史》(1994)中系统地叙述了音乐对于声学发展的重要性。 中国古代音乐声学的研究中注重乐律的理论研究。早在春秋战国时代,中国已出现了成熟的乐律计算理论和乐器调音工具,可视为中国早期音乐声学的诞生。十九世纪下半叶,随着西方声学理论著作的传入,中国的音乐声学开始融入具有 现代科学意义的研究成分。在1893年出版的《声学揭要》一书中,除介绍了声学基本原理外还论及乐音和乐器发声原理等内容。当代也有一些论著,对音乐声学产生了影响,系统地介绍了现代音乐声学的发展历程。龚镇雄的《音乐声学—音响、乐器、计算机音乐、Mml、音乐厅声学原理及应用》(1995)是一本全新结构的音乐声学专著。另外,韩宝强的专著《音的历程—现代音乐声学导论》(20XX),唐林等著《音乐物理学导论》(1991)、朱起东著《音乐声学基础》(1988)、胡泽著《音乐声学》(20XX)等都是针对音乐声学研究做出了相关的研究。 乐器声学是音乐声学的一种,本文对乐器中的琵琶进行分析,以琵琶中的简单指法“弹”作为研究对象,提取时长、能量等声学参数,进行分析总结,通过对频谱的分析,研究琵琶演奏时的振动方式。琵琶声学分析的研究为音乐学研究提供客观数据,同时为乐器演奏和教学提供了理论依据。 二、琵琶的简介及发音特色 1.琵琶的简介

韩宝强声学研究教授

韩宝强,男,1956年生。1977年进入天津音乐学院作曲系学习作曲。1982年师从缪天瑞攻读民族音乐学律学方向硕士学位。1986年先后在中国艺术研究院、南京大学信息物理系、德国埃森大学音乐系攻读博士学位。1995年和2000年分别在德国Osnabrueck大学音乐系和美国斯坦福大学计算机音乐与声学研究中心(CCRMA)作高级访问学者。目前在中国音乐学院音乐科技系就职,任教授,博士生导师。研究方向为律学和音乐声学。 此次报告对以下问题进行全面的剖析: 乐器声学系统与空间音乐声学 一、乐器声学结构系统 任何乐器都可以从不同角度进行结构的分解。例如可以从演奏、制作工艺、零部件加工、乃至乐器修理等角度进行结构分解,都可以对乐器进行不同结构的分解。 以小提琴为例,演奏者将其分为琴身、琴马、琴弦和琴弓四个结构系统,因为演奏者经常要对这四个部件进行调整。而到了制琴者那里,则会从制作程序的角度对提琴结构进行分解,一般会分为背板、面板、侧板、琴头、指板等。其它部件,如琴弓、琴马、琴弦、弦钮、系弦板等,通常可以通过采购获得,故很少将其列入结构系统。 乐器声学系统(acoustic system of musical instruments),是从声学角度对乐器各部件加以区别的分类体系。 例如,单从演奏角度看,一把二胡可以分为琴弓、琴杆和琴筒三个部分,但从声学结构上却要分为5个系统: 1.振动系统 产生振动的物体,如弦乐器的琴弦、吹管乐器的簧片、空气漩流(就边棱音乐器而言),等等。 2.激励系统 能够激发振动的物体,如弦乐器的琴弓、扬琴的琴键,吹奏者和歌唱者胸腔中的气流等。 3.传导系统 将振动系统产生的振动传导至共鸣系统的装置,如京胡、二胡的琴马,筝、瑟的弦柱,琵琶、阮、古琴的弦枕、系弦板等。 4.共鸣系统 能够迅速扩散振动体振动能量的物体,如弦乐器的琴箱、歌唱者的胸腔、口腔等。有些乐器的共鸣体同时还具耦合作用,即对发声体的音高起调节作用,如一些吹管乐器的竹管、木琴和钟琴下面的共鸣管等。 5.调控系统 对乐器的音响和演奏性能加以控制的装置,如扬琴和古筝的调弦装置、吹管乐器的按孔和按键等。 以二胡为例: 琴弦是振动系统。琴弓是激励系统。琴马是传导系统。琴筒是共鸣系统。 琴杆、弦轴、千斤等属于调控系统 在乐器声学系统中,振动系统和激励系统是所有乐器发声的必备条件,即使再简单的乐器也不可缺少这两个结构,否则根本无法发声。此外,其它三个声学系统在一些乐器中并不同时存在,譬如许多打击乐器就没有共鸣系统和传导系统,例如:锣、镲、编钟、编磬等。 大部分管乐器没有传导系统。 有些乐器,单从外形上看并没有调控装置,譬如锣、大鼓等,但是演奏者可以通过演奏技巧来调控声音的强弱、长短、甚至可以调整高低。当然,这需要演奏者具备一定的技巧才能做

多媒体实验报告:声音的采集与处理

深圳大学实验报告 课程名称:多媒体技术及应用 实验项目名称:声音采集与处理 学院:传播学院 专业: 指导教师:王志强 报告人:刘立娜学号: 2012080286 班 级:4 实验报告提交时间: 2013.03.30 教务处制

一、实验目的与要求 1.通过实验加深对声音数字化的理解。 2.学会正确连接耳麦以及设置录音和放音的方法。 3.掌握声音录制方法并从网上下载音频文件。 4.掌握一种数字音频编辑软件的使用方法。 二、实验方法及步骤 1.实验方法:运用以前了解到的知识内容,在通过阅读书上的实验步骤进行操作。 2.实验步骤 ①Audition的启动与退出 ②录制音频、播放音频、导入音频 ③音频的剪辑 ④音频的特效 三、实验过程及内容 1.Audition的启动与退出 Audition是集声音录制、音频混合和编辑于一身的音频处理软件,它的主要功能包括录音、混音、音频编辑、效果处理、降噪、音频压缩与刻录音乐CD等,还可以与其它音频软件或视频软件协同合作。 Audition提供广泛的、灵活的工具箱,完全能够满足专业录音和专业视频用户的需求。利用Audition,可以录制多轨文件、编辑音频文件、创建原始音乐文件、混缩无限的音频轨道。 启动计算机进入Windows后,可以用鼠标单击任务栏中的“开始”在弹出的开始菜单中,将鼠标指针移到“所有程序—Adobe Audition3.0”菜单命令上,单击即可启动。或把 Audition快捷方式一到桌面上来,单击即可。

图2.1Audition应用程序窗口 如果要退出Audition,可以选择“文件—退出”菜单命令,或按Ctrl+Q组合键,也可以直接单击Audition应用程序窗口右上角的“关闭”在退出之前,如果有已修改的但未存盘的文件,系统会提示保存它。或者点击左上角的“文件—保存”。 图2.2保存提示图2.3 “另存为“对话框 2.录音、播放音频、导入音频 1)录音的操作过程:(单轨录音) 1.选择“文件—新建”菜单命令,这时会出现“新建波形”会话框,如图 2.4所示。选择适当的采样频率、采样分辨率和声道数,如选取44100Hz,16-bit和立体声就可以到达CD 音频效果。 图2.4“新建波形”对话框 2.单击“传送器”控制面板中的红色“录音”按钮,开始录音。对准话筒进行录音,完成后单击“传送器”控制面板的“停止”按钮即可。我们还可以通过控制时间长短来录音,在编辑视图中,选择“选项”菜单中的“时间录音模式”命令。在“传送器”控制面板中单击“录音”这时会出现“定时录音模式”对话框,如图2.5所示。在该对话框中,可以设置录制的时间长短和开始录音。设置完毕,单击“确定”开始按设置进行录音。 图2.5“定时录音模式”对话框

荣格分析心理学的基本理论

荣格分析心理学的基本理论

荣格分析心理学的基本理论 (一)集体无意识 集体无意识既是对弗洛伊德个体潜意识的发展,也是荣格的一种创造,荣格用它来表示人类心灵中所包含的共同的精神遗传。 荣格自己在给集体无意识做定义的时候,曾经这样说:“集体无意识的是精神的一部分,它与个体潜意识截然不同,因为它的存在不像后者那样可以归结为个人经验。因此不能为个人所获得。构成个人无意识的主要是一些我们曾经意识到,但以后由于遗忘或压抑而从意识中消失的内容;集体无意识从来就没有出现在意识之中,因此也就从未为个人获得,它们的存在完全得自于遗传。 (二)原型 荣格的原型概念与其集体无意识概念的关系十分密切。正如他所曾明确表达的那样,个人潜意识与各种情绪的构成有关,而集体无意识的内容则主要是原型。 荣格说:“原型是人类原始经验的集结,它们像命运一样伴随着我们每一个人,其影响在我们每个人的生活中感觉到。” 集体无意识是通过某种形式的继承或进化而来,是由原型这种先存的形式构成,原型赋予某些心理内容以独特的形式,集体无意识具有普遍的表现方式,它组成了一种超个人的心理基础,普遍地存在于我们每个人身上,并且会在意识及无意识的层次上,影响着我们每个人的心理和行为。

就会通过投射等机制,来影响我们的心理学与行为,因为男人内在的这种原型意象,既可以成为男人向上的促动者,也可以成为堕落的诱惑者。 实际上,荣格曾把阿尼玛描述为一种灵魂形象,往往在男人的心情、反应、冲动以及任何自发的心理生活中扮演着特殊的角色,发挥某种既定的作用,男人总是倾向于某个现实的女性对象那里,看到自己内在的阿尼玛和心灵的投影。 任何带有无意识的心理内容,总是会在梦中出现的,阿尼玛也是这样。荣格曾经描述了阿尼玛发展的四个阶段,不同阶段有着不同的形象,分别为:夏娃——海伦——玛丽亚——索菲亚。 夏娃:往往表现为男人的母亲情结; 海伦:则更多地表现为性爱对象; 玛丽亚:爱恋中的神性; 索菲亚:像缪斯那样属于男人内在创造源泉。 1、阿尼姆斯 阿尼姆斯是与阿尼玛相对应的一个概念,象征着女人内在的男性成分,被其阿尼姆斯所占据的女人,则会失去很多女性的色彩。但是能够辨析与关注其阿尼姆斯存在的女性,则能够从这原型的意象中获得积极的力量。 女性内在阿尼姆斯的发展阶段:赫尔克里斯——亚历山大——阿波罗——赫耳墨斯。女人的阿尼姆斯出现在梦中的时候,最初往往表现以某种大力士或运动员的形象,然后会出现计划、行动以及独立自主的形象,接着会有类似“教授”、或“牧师”等指导意义的形象,

声音处理实验报告

沈阳师范大学 现代教育技术实验报告 实验题目音频资源的处理 学号姓名张慧专业英语年级10级 指导教师薛峰提交时间2013-04-03 一、实验目的 1. 掌握声音文件的基本剪辑方法 2.掌握录音的方法 3. 掌握调整音量的方法 4.掌握降噪的方法 5.掌握混音的方法 二、实验内容及要求 1、打开“音频实践课”文件夹中的“剪辑.mp3”文件,将声音的57秒-1分15秒内的波形复制到一个新的文件中,然后,将新文件的音量降低3分贝,最后给声音的开头和结尾分别作淡入和淡出的操作,最后保存声音,文件名为“基本剪辑.mp3”(要求写出处理的步骤并且提供相应的操作截图) 2、将“音频实践课”文件夹中的“伊利优酸乳-极限自行车篇15秒.wmv”视频文件中的声音录制出来,保存为mp3格式,文件名为“录音.mp3”(要求写出处理的步骤并且提供相应的操作截图) 3、将“音频实践课”文件夹中的“噪音.mp3”文件中噪音去掉,然后直接保存(要求写出处理的步骤并且提供相应的操作截图) 4、使用多轨界面将“音频实践课”文件夹中的“背影.wav”和“春风.wav”混缩为一段配乐得朗诵,注意:背景音乐长度和音量要适当。最后将文件混缩另存为“配乐朗诵.mp3”(要求写出处理的步骤并且提供相应的操作截图) 三、实验过程和具体步骤 第一题 1.启动audition,文件--打开文件“剪辑.mp3”,单击确定。 2.再新建一个音频“未命名”,单击确定。 3.在选择中输入开始和结束的时间,再单击选择框。在选中的区域单击右键复制 4.打开未命名,在音频栏中单击右键,粘贴。 5.在选中的区域中的音量调节钮向下拖拽,调小3分贝 6.在开始和结尾选择淡入淡出选项,做淡入淡出处理 7.将声音保存为“音频剪辑.MP3”。 第二题 打开音量控制面板,选择“选项-属性”菜单,选择录音,勾选Stereo Mix选项,然后单击确定。调整完成后,转为录音控制菜单,勾选Stereo Mix选项,然后将其最小化。打开audition软件,创建一个新波形,按下“录音”按钮,然后打开“伊利优酸乳-极限自行车篇15秒.wmv”进行播放,此时则开始录制视频中声音,产生波形,单击“文件-另存为”弹

声品质基本概念与研究综述

声品质基本概念与研究综述 引言 多年以来,噪声控制技术的任务是降低声源的声辐射,声源的测试也是围绕A声压级或A声功率级,这种努力的原则是基于A声压级或A声功率级越低越好。而随着技术的发展,大多数声源的辐射噪声己经得到降低,对人们的听觉不会造成物理伤害。研究发现,此时传统的声压级、以及三分之一倍频程的评价标准己经不能反映人们对于噪声的主观判断,往往有声压级相同的声音,给人的主观感觉却截然不同,而有的声音声压级虽然较高,但让人感觉比较愉悦,在这样的情况下,声品质的概念便应运而生了。定义中的“声”并不是指单纯声波这样一个物理过程,而是指人耳的听觉感知过程;“品质”是指由人耳对于声音事件感知过程最终做出的主观判断。这一概念更强调人们对声特性判断的主观性。 1.声品质基本评价量 在声品质评价中,目前已有一系列的基本特性被认为是适宜于描述听觉事件的,这些量主要有:响度、锐度、粗糙度、抖晃度等。这些量中的某几个组合在一起,形成了感觉舒适度、烦躁度等综合性指标。 1.1响度 响度是对声音强度的一种感受,它是人们对声音感知影响最大的一个参量。通过对响度及其依赖关系的研究,以及掩蔽效应的研究,人们发现,两个声级相等而频率间隔大于临界带的纯音产生的响度大

于频率处于两纯音之间而声级为两纯音按能量叠加的纯音的响度。两纯音的频率间隔增加,组成复合音的响度也随之增加。这意味着响度不是由单独频率成分所决定的,而是由两者相互影响而产生,尤其是当两者频率间隔较小时,影响较为明显。只有在两者频率间隔足够大时无相互影响,这时,响度值等于两者的响度之和。 由于临界带对响度计算有很大的影响,因此在构造响度模型时,把激励声级对临界带率模式作为基础。将总响度N看成是特征响度N'对临界带率的积分,即: 其中()z N'为在一个临界带内的特征响度,单位为Bark sone G,下标G表示响度值是由临界带声级计算得来的。 1.2 粗糙度 粗糙感是在调制频率为15~300Hz 时产生的。调制函数的频谱在15~300Hz 区域即足以产生粗糙感,并非要周期性调制。这也是大多窄带噪声即使没有包络和频率的周期性变化,却产生粗糙感的原因。将调制频率为70Hz,调制幅度为100%,声级为60dB的1kHz 纯音粗糙度定义为1 asper。 影响粗糙度的因素主要有两个,一个为频率分辨率,一个为时间分辨率,频率分辨率由激励模式或特征响度随临界带的关系决定。当调制幅度为25%时,即m=0.25 ,粗糙度达到其最低值0.1 asper,调制幅度每增加10%,相应粗糙度增加17%,因此在可听粗糙度划

声音伪装实验报告

一、实验目的 1、熟悉LabVIEW的基本模块和基本操作,掌握LabVIEW的基本使用方法。 2、了解LabVIEW的编程环境,深层次理解声音信号的实质,以及其变换方法。 3、自学声音伪装的要领,灵活使用信号与系统的知识实践运用。 二、实验设备 myDAQ 麦克风耳机 三、程序流程: 四、实验步骤及原理阐述: 1.启动LabVIEW,并新建一个扩展名为vi的文件,进入了后面板的编辑。 2.用DAQ进行数据音频采集与采样并转化为声音信号输出。接入两个DAQ数据采集控件,一个用于声音信号接入,一个用于声音信号输出,用于与声音传感器进行数据采集并进行采

样。 3. 用带通滤波器设置低音、中音、高音频段,将相关频段音频提取出来。根据男中音、男低音、男高音的相关频率范围,设定相应的低音、中音、高音频率范围,接入带通滤波器,将声音信号按不同频率分为三个频段。 4. 将分频后的各个音段调节音量大小。此处进行第一次声音变声,方法为对每一频段的声音信号进行音量调节,即乘以一个可以人为通过摇杆调节大小的常数,调节幅值大小。 5.仿真信号输出采样率一定的正弦波形,与信号相乘,最后接入带通滤波器调节频率。这是整个声音伪装的关键一步,即通过设定仿真信号采样率,输出一定的正弦信号,然后与低音声音信号相乘,进行傅里叶变换,再接入带通滤波器,设定滤波范围,实现频率搬移,对于中音和高音频段进行相同的处理,只是仿真信号和滤波器频率范围不一样。由此,可以实现将原低音搬到高音频率,原高音搬至低音频段,中音根据低高音段大小,进行频率搬移。 6.将调整后的低音、中音和高音进行信号合并,然后调节整体音量大小。这是整个声音伪装的第三以及结束阶段,将经过调整的低音、中音、高音进行信号合并,并进行如4中一样的操作,对整体音量进行调节。 7.实现测试,接入传感器和麦克风,并对控件面板进行美化,点击“运行”,即可完成实验 五、设计过程 1、在程序框图中画出while大循环,设置开关键。 2、设计声音采集模块,即在while中放置输入DAQ助手,DAQ助手采集到的声音信从数据段输出。输入模块截图: 3、设计变声模块 ⑴采集输入波形按标准人声低中高音频率通过滤波器分开为三个频段信号,三个信号分别乘以外加的三个调节滑杆输入值调节大小,输入波形通过波形显示器显示。模块设计截图如下:

电声学是研究声电相互转换的原理和技术

耳机之基本常识

耳机线技术 音乐在我们的日常生活中无处不在,美妙的乐声使枯橾的或烦闷的心情带来了欢乐.音乐使人们对生活充满希望.要想掌握耳机(电声)技术.必须对以下几个方面有有入的了解. 1.电声基础知识 2.仪器使用 3.维修技巧 以下将在这三个方面进入电声知识这个领域. 一,电声基础知识 所要知道的概念 电声学是研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和利用的科学。它所涉及的频率范围很广泛,从极低频的次声一直延伸到几十亿赫的特超声。不过通 常所指的电声,都属于可听声范围。 电声技术的历史最早可以追溯到19世纪,由爱迪生发明留声机和贝尔发明用于电话机的碳粒传声器开始,1881年曾有人以两个碳粒传声器连接几对耳机,作了双通路的立体声传递表演。大约在1919年第一次用电子管放大器和电磁式扬声器做了扩声实验。 在第一次世界大战以后,科学家们把机电方面的研究成果应用于电声领域中,于是电声学就有了理论基础。随着电声换能器理论的发展,较为完善的各类电声设备和电声测量仪器相继问世,较别是20世纪70年代来,电子计算机和激光技术在电声领域中的应用,大大促进了电声学的发展。

电声转换器是把声能转换成电能或电能转换成声能的器件,对它的研究是电声学的一个重要内容分支。广义的电声换能器应用的频率范围很宽,包括次声、可听声、超声换能器。属于可听声频率范围内的电声换能器有传声器、扬声器、送受话器、助听器等等。按照换能方式,它们又可以分成电动式、静电式、压电式、电磁式、碳粒式、离子式和调制气流式等。其中后三种是不可逆的,碳粒式只能把声能变成电能,离子式和调制气流式的只能产生声能。而其他类型换能器则是可逆的,即可用作声接收器,也可用作声发射器。 各种电声换能器,尽管其类型、功用或工作状态不同,它们都包含两个基本组成部分,即电系统和机械振动系统。在换能器内部,电系统和机械振动系统之间通过某种物理效应相互联系,以完成能量的转换;在其外部,换能器的电系统与信号发生器的输出回路,或前级放大器的输入回路相匹配;而换能器的机械振动系统,以其振动表面与声场相匹配。所以设计电声换能器要同时考虑到力-电-声三个体系。 这三种体系是互相牵制的,处理得不好往往会顾此失彼。例如,一个有效的磁系统可能会非常笨重,变成一种令人不能接受的声障碍物;或者声输入阻抗或电输出阻抗的数值,可能根本不能与周围媒质或附属设备相匹配。由此可见,电声换能器的设计总是在许多相互矛盾的因素中采取折衷的办法,因而在一定程度上可能还带有许多主观判断的技巧在内。 电声技术是电声领域中发展得比较快的一个分支,在政治、军事、文化各个领域内有着广泛的应用。例如,应用于有线或无线通信系统,有线或无线广播系统以及会场、剧院的扩声;录音棚、高保真录放系统等;此外还应用于发展中的声控语控技术;以及语言识别和声测等新技术。总起来说,它主要包括录放声技术、扩声技术以及与它们有关的电声仪器和电声测试技术等。 录放声技术是指把自然声音经过一系列技术设备(如传声器、录音机、拾声器等)进行接收、放大、传送、存储、记录和复制加工,然后再重放出来供人聆听的技术。它研究的主要问题是如何保持自然声的优良的音质,即在各个环带以及整个系统,都具有逼真地保持声音信号原来面貌的能力,包括对声音信号进行必要的美化和加工。

相关主题
文本预览
相关文档 最新文档