当前位置:文档之家› 数值仿真分析方法的研究与实践在注射模热流道温度场的应用

数值仿真分析方法的研究与实践在注射模热流道温度场的应用

数值仿真分析方法的研究与实践在注射模热流道温度场的应用
数值仿真分析方法的研究与实践在注射模热流道温度场的应用

数值仿真分析方法的研究与实践在注射模热流道温度

场的应用

陈凤

浙江机械与电气工程学院机械工程系

邮箱:cfeng0096@yahoo.co https://www.doczj.com/doc/16635007.html,

关键词:热流道,温度场,数值仿真分析

摘要:在本文中,学习如何建立和解决数值模拟对热流道注塑模具温度场的可视化分析并在计算机上实现,最后引用相应的例子。

I 介绍

热流道的温度分布不仅可以直接影响塑料的融化性能,还会影响注塑成型产品的质量和生产效率。通过分析温度场和热流道的温度控制,控制注塑成型的过程,不仅可以减少变形,提高力学性能,还能改善外观质量,提高尺寸精度。在注塑模具的总体设计中,温度场分析通常比采用与计算结果比较更接近实际情况,也更稳定。但在热流道的应用中,温度的要求更高,因此有必要建立一个数学模型来分析不稳定温度场。

II 如何建立和解决温度场数学模型

为了方便分析,从喷嘴到喷射流道的热流道几何模型可以视为一个沿流道中心线的轴对称体。热流道在注射后,熔融态的热流道仍然不受任何压力。如果忽视塑料结晶的话,则该融化基本上可以视为粘性流体在无内热源状态下的能量转换。其温度的传导主要是通过静

态而交换的。

热流道在注射成型过程中,温度现象非常复杂。考虑温度的实际分析,热流道中有四种热量交换,主要是:熔体内部交换热量;热流道系统之间的热量交换;热流道系统内部交换热量;热流道系统和冷却剂之间交换热量。这大大增加了分析的困难,因此是分析之前必须进行以下假设:

(1)熔融状态下塑料的性能不会改变,也就是说,密度、比热容、恒定压力和熔体热导率都是常数。

(2)热流道加热器在多方面上是对称的,所以可以这么认为,流道是均匀加热,融化的周向温度沿流道是均匀分布的,融化过程是沿热流道的几何模型的中心线轴对称的。

数字模型:基于上述假设和热传导的原则,温度场的数学模型可以用傅里叶热微分方程进行如下描述:

(1)在公式中,

K——熔体热导率,W/(m℃);

T——熔化瞬间温度,℃;

t——时间,s;

ρ——熔体密度,kg/m3;

C——熔化的定压比热容J/(kg℃);

x,y,z——三维坐标。

分析模型:温度场的数学模型是用来建立热流道并解决其边界温度条件的。包括边界温度与加热方法、加热和热功率的结构元素。因为热流道加热器的管道是均匀分布的,因此流道的边界温度和热流道温度控制箱同样可以认为是均匀的。关键问题是要想确定喷嘴和流道之间的边界温度的条件是多方面的。

在喷嘴和模具之间有严格的隔热性能,所以可以认为,在喷嘴和模具之间不会产生热交换。喷嘴上的径向温度分布基本上是均匀的,

而轴向温度差才是最主要的。因此我们可以确定与模具无热交换的喷嘴的温度分布坐标函数。它的热交换模式与有均匀内热源的一维稳定热传导是相等的。热传导方程如下:

22d =0dz T L K

+ (2) 212z /c +c T L =-(2K )+

(3) 在公式(2)和公式(3)中,

L ——单位体积的热源强度;

W ——可计算的热功率,W/(m ℃);

K ——喷嘴的导热系数,W /(m ℃)。

在热流道的几何模型中,上述方程同样适用于热流道的出口和喷嘴的顶部之间的区域,包括严格的轴向边界温度条件。热流道的温度是可以通过具体的设计计算得到的。热流道板上出口处的溶液的温度是和热流道板上边缘溶液的温度相等的。经过了热流道的加热之后,塑料熔体开始冷却和硬化。浇口的温度等于塑料开始硬化时的温度,这是另一个相等的地方。喷嘴在从喷嘴端部到模具型腔的边界之间的区域的温度场分布是可以从上面的方程中计算得出的。

III 温度场的数值仿真分析

在视觉分析中,热流道的温度场分布是连续的,通过数值仿真分析可以看出,模型在时间和空间上的阈值都可以转换为有限离散点的温度在时间和空间上的域值。而这些离散点可以用来近似表示温度的连续分布,最终获得热流道的温度场分布。

数值分析方法:二维空间元素与有限元分析算法系统分别自动匹配,所采用的几何模型中热流道的网格与有限元分析算法系统的网格间距相等并且正交,同时网格线的间隔在同一坐标的方向上也是统一的。该网格的优点是在各个方向上网格空间都是固定的,但其缺点是固定分区的步骤很难确定,并且组件的形状比较复杂。大一点的网格会导致较大的畸变并且会原有的一些特点会丢失,那些复杂的几何特

征网格更是如此。热流道的温度分布是不均匀的,并且融化前后的温差比喷嘴融化前后温差要小。所有热流道上的网格是会扩大的,而喷嘴附近的空间网格可以和其他区域的网格一样保持不变。这种分区网格的的方法可以减少网格数量并保证计算精度。三角形态的颗粒会沿热流道的中心线成几何比例增长。其融化的原因如下:导热性差,流道内壁附近的温度变化很大,但流道中心的温差相对较小。形成的等比数列较方便计算出节点的坐标。

热流道的温度场的计算与共模干扰的计算方法一样,即采用所谓的步骤积分法。首先用不同代数是取代温度相对于时间的偏导数。然后从一个温度场某时刻的初始值到温度场变化的一瞬间,采取相同的时间间隔,分析数据。最后得到不同时间的温度分布状况。其主要步骤如下:

步骤一:建立热流道的内部几何模型,分析每个流道的长度和直径以及将数据存储在一台电脑上;

步骤二:输入塑料熔体的物理参数,如密度、导热系数,和相关的热流道注射模的初始信息,如流动时间和熔体初始温度;

步骤三:确定热流道几何模型的有限元网格,记录生成的单元分区信息和网格数据文件,并计算热流道几何模型的单元和节点的总数;

步骤四:计算每个节点的坐标、单元数和节点数,计算每个网格的面积,以获得所有单位信息,并将数据以不同的方式存储;

步骤五:分解单位信息,计算相关的中间参数值;

步骤六:根据初始参数计算节点在每一个单元的温度分布;

步骤七:把节点最初的温度作为初始值,使用分步计算法计算每个流道离散温度值;

步骤八:所有计算得到的节点的温度值以不同的颜色模式显示在电脑屏幕上。

视觉显示的设计:简单的框架表示方法不能有效的模拟热流道的温度场的三维空间的实际分布,因此采用变体颜色视觉法模式。温度

场的可视化模块、连续温度场与离散温度表示,使用仿真图形技术以及温度场的连续分布和变化趋势能把热流道的每个网格的几何模型上的温度信息表示成渐变颜色或过渡状态。几何图形的颜色的变化表示的是热流道温度场的温度变化。其中阴影部分说明了几何模型的可视距离,即它是可视化的。

温度场模拟可以提供基本的可视化操作,一个较容易操作的用户界面又使科学家和技术人员方便操作。采用适当的几何图形可用于显示各种类型的数据的分布并且可以在模型分析中实现图形转换。

IV 应用实例

将32腔的模具的流道设计作为一个例子,对热流道的温度场进行分析。首先建立热流道的几何模型,即模型内部的熔体结构。其几何数据用于选择模型和进行布尔运算。最后统计热流道的结构数据并结合几何模型,筛选相关的重要参数。图1是热流道的几何模型。

图1 32模腔的热流道模具几何模型

获得的几何模型导入到C AE分析模块中,并设置初始温度条件。相应的网格单元分区如图2所示。视觉分析展示的热流道的熔体温度分布如图3所示。

融体的温度变化与热流道的温度变化可以认为是一致的,但是温度会从流道到喷嘴逐渐减小。它在热流道和喷嘴之间有热损失。熔体受到摩擦后,温度随之变化。

图2 网格分区

图3 温度场模拟分析

V 结论

用一个合适的数学模型来分析热流道的温度场不仅可以为精确的温度控制提供科学的理论指导,而且浇道系统设计,还能帮助工程师分析热流道的几何模型。温度场的数值分析完成后,应该显示温度分布。视觉分析可以直接用来确定熔体的温度分布,这和热流道的温度分布是一样的,还能优化浇口直径和部分流道的大小。这种方法可以帮助设计工程师对热流道进行预测、评估、讨论,并分析热流道系

统的合理性及存在的问题,甚至能帮助设计注塑模具,然后提出了解决提高热流道设计水平的方法。

项目支持:浙江省自然科学基金支持项目(Y107428)。

作者简介:陈凤(1970.09-)女,1970年九月生,浙江绍兴人,硕士学位。浙江机械与电气工程学院副教授。从事的研究和教学的方向是加工制造技术、化工机械和流体机械。

参考文献

[1] 戴荣:稳定温度场的数值模拟与注塑模具冷却处理,《广西科技大学(2004),p.43-47。

[2] 石先章,田钟等。不稳定传热板的解析及冷却分析,《中国塑料》(2004),p.11-17。

[3] 石先章沈长宇等。数学建模在注塑冷却分析中的应用,化学工业与工程学报(中国,2006),p.175-179。

[4] 何玲浩,陈静波等。数值分析在注塑模具温度场的应用,中国塑料(2004),p.34-38.

模具设计热流道教程

热流道教程 一、热流道的过去现在和未来 二、热流道的原理及概念 三、热流道的优点 四、热流道组成 五、热流道的应用 六、热流道安装 本资料由贝斯特(MoldBest)热流道公司协助制作 https://www.doczj.com/doc/16635007.html, 一、热流道的历史、现在、未来 作为一项先进的注塑加工技术—热流道技术,在欧美国家的普及使用可以追溯到上个世纪的中期甚至更早,早在1940年12月,E.R.Knowles就取得了热流道技术的专利权。由于热流道具有许多优点,因此,在国外发展比较快,许多塑胶模具厂所生产的模具

50%以上采用了热流道技术,部分模具厂甚至达到80%以上,而在中国,这一技术在近几年才真正得推广和应用。随着模具行业的不断发展,热流道在塑胶模具中运用的比例也逐步提高。但总体不足10%,这个差距相当巨大。 近年来,热流道技术在中国的逐渐推广,这很大程度上是由于我国模具向欧美公司的出口量快速发展带来的。在欧美国家,注塑生产已经依赖于热流道技术。可以这样说,没有使用热流道技术的模具现在已经很难出口,这也造成了很多模具厂家对于热流道技术意识上的转变。 由于很多外国进口的热流道系统价格比较贵,国内很大一部分厂家接受不了,所以就出现了一些国产热流道系统元件。这对于热流道技术在中国的推广有很大的好处。虽然热流道技术已经开始推广,但有的公司使用率达20%以上,一般采用简单的尖咀、通咀。少数公司采用具有世界先进水平的高难度针阀式热咀,但总体上热流道的采用率达不到10%,与国外的50~80%相差太远。 返回 二、热流道的原理 冷流道是指模具入口与产品浇口之间的部分。塑料在流道内靠注塑压力和其本身的热量保持流动状态,流道作为成型物料的一部分,但并不属于产品。所以在我们设计模具的时候既要考虑填充效果,又要考虑怎样通过缩短、缩小流道来节省材料,理想情况是这样,但实际应用中则很难达到两全其美。 热流道又称无流道 是指在每次注射完毕后流道中的塑料不凝固,塑胶产品脱模时就不必将流道中的水口脱出。由于流道中的塑料没有凝固,所以在下一次注射的时候流道仍然畅通。

AltiumDesigner中的电路仿真

今天看了下Altium Designer的电路仿真功能,发现它还是蛮强大的,按着help里面的文档《TU0106 Defining & running Circuit Simulation 》跑了一下,觉得还行,所以就把这个文档翻译下。。。。。 其中包含了仿真功能的介绍,元件仿真模型的添加与修改,仿真环境的设置,等等。本人对SPICE仿真了解的不多,里面涉及到SPICE的文件如果有什么错误,欢迎提出! 一、电路仿真功能介绍 Altium Designer的混合电路信号仿真工具,在电路原理图设计阶段实现对数模混合信号电路的功能设计仿真,配合简单易用的参数配置窗口,完成基于时序、离散度、信噪比等多种数据的分析。Altium Designer 可以在原理图中提供完善的混合信号电路仿真功能 ,除了对XSPICE 标准的支持之外,还支持对Pspice模型和电路的仿真。 Altium Designer中的电路仿真是真正的混合模式仿真器,可以用于对模拟和数字器件的电路分析。仿真器采用由乔治亚技术研究所(GTRI)开发的增强版事件驱动型XSPICE仿真模型,该模型是基于伯克里SPICE3代码,并于且SPICE3f5完全兼容。 SPICE3f5模拟器件模型:包括电阻、电容、电感、电压/电流源、传输线和开关。五类主要的通用半导体器件模型,如diodes、BJTs、JFETs、MESFETs和MOSFETs。 XSPICE模拟器件模型是针对一些可能会影响到仿真效率的冗长的无需开发局部电路,而设计的复杂的、非线性器件特性模型代码。包括特殊功能函数,诸如增益、磁滞效应、限电压及限电流、s域传输函数精确度等。局部电路模型是指更复杂的器件,如用局部电路语法描述的操作运放、时钟、晶体等。每个局部电路都下在*.ckt文件中,并在模型名称的前面加上大写的X。 数字器件模型是用数字SimCode语言编写的,这是一种由事件驱动型XSPICE模型扩展而来专门用于仿真数字器件的特殊的描述语言,是一种类C语言,实现对数字器件的行为及特征的描述,参数可以包括传输时延、负载特征等信息;行为可以通过真值表、数学函数和条件控制参数等。它来源于标准的XSPICE代码模型。在SimCode中,仿真文件采

注塑模的热流道系统及其应用

引 言 注射模热流道是通过加热的 办法来保证流道和浇口内 的塑料保持熔融状态。由于在流道附近或中心设有加热圈和加热棒,从注射机喷嘴出口到浇口的整个流道都处于高温状态,使流道中的塑料始终保持熔融,每次开模取件的时不必将流道废料取出,而滞留在热流道系统中的熔料可以在下一次注塑时被注入型腔[1]。 热流道技术省去了冷流道,从而减少原料浪费,避免冷冻时间和后续加工过程,使得产品更加美观,生产效率以及经济效益都有所提高,是塑料注塑成型工艺发展的热点方向。它的应用和推广是推动热塑性塑料注射成型向节能、低耗、高效方向发展的强劲动力,随着塑料工业的发展,热流道技术正不断完善和加快其推广使用。 热流道系统的优缺点 热流道系统的优点 热流道系统与普通流道系统相比较具有如下特点[2]: (1)降低生产成本,提高生产效 率。普通浇注系统中要产生大量的浇注系 统凝料,在生产小制品时,浇注系统凝料 的重量可能超过制品重量。由于塑料在热 流道模具内一直是处于熔融状态,制品不 需修剪浇口,基本上是无废料加工,可节 约大量原材料,降低生产成本。同时在制 品成型后无需修剪,减少了二次加工,同 时也省去了凝料挑选、粉碎和重新染色回 收等工序,省工、省时、节能降耗。 (2)适用树脂范围广。由于热流道温 控系统技术的不断完善及发展,现在热流道 不仅可以用于熔融温度较宽的聚乙烯(PE)、 聚丙烯(PP),同时也能用于加工温度范围窄 的热敏性塑料,如聚氯乙烯(PVC)、聚甲醛 (POM)等,对易产生流涎的聚酰胺(PA),通过 选用阀式热喷嘴也能实现热流道成型。 (3)提高产品质量。流道内压力损 耗小,熔体流动性好,密度容易均匀,避 免注塑件变形、飞边以及尺寸不稳定和色 差等缺陷,改善制品表面质量。精确控制 塑料熔体温度,消除了材料的降解,合理 的控制保压时间,较小的保压压力损失, 使产品的质量得到全面提高。 (4)降低废品率。热流道系统有利于 压力传递,降低注射压力,减小塑件内应 力,增加产品强度和刚度,可以在一定程度 上克服了制件因补料不足而产生的凹陷、缩 孔等缺陷,达到降低废品率的目的。 (5)缩短注射成型周期。因为省去了 取出浇注系统凝料的工作,所以在操作上 与普通流道相比,缩短了开合模行程,不 仅制件的脱模和成型周期缩短,而且有利 于实现自动化生产。消除了废料带来的附 加热量,模具的冷却周期仅为产品的冷却 时间,缩短了加工周期,提高机器效率。 据统计,与普通流道相比改用热流道后模 具的成型周期一般可以缩短30%,从而提高 生产效率、生产利润和企业竞争能力。 (6)可成型较长尺寸的制品。由于 制品脱模时不再带有主流道和分流道,可 以缩短模具的开模距离和合模行程,因而 在同一设备上可以成型尺寸更长的制品。 同时由 于浇注系统塑料保持熔融,流动时 压力损失小,易实现多浇口、多型腔模具 以及大型制品的低压注射。 (7)优化大型薄壁制品的成型。在 注塑模的热流道系统及其应用 文/ 王金水 葛正浩 苏鹏刚 李竞洋 Hot Runner System and its Application in Injection Mould 摘 要:介绍了注塑模热流道技术的概念和优缺点,概述了热流道系统的结构特点,总结了应用热流道系统的关键技术,使用一个典型的热流道模具实例介绍了热流道系统的应用及设计中应该注意的问题,最后阐述了热流道技术的发展动态。 关键词:注塑模具 热流道 关键技术 应用 发展 Abstract: The concept, the advantages and disadvantages of hot runner technology in injection molding is introduced. The structure of the hot runner injection molding technology is summarized. The key technologies of using the hot runner system also mentioned. Used a typical hot runner mould to introduce in the hot runner system's application and some design questions. At last, elaborated the development tendency of hot runner technology. Keywords: Injection mould Hot runner Key technology Application Development

注塑模具热流道技术知识

此文来源于中国注塑财富网: https://www.doczj.com/doc/16635007.html, 标题:注塑模具热流道技术知识 热流道浇注系统可理解为注射成型机械的延伸。热流道系统的功能是绝热地将热塑性熔体送到成型模具附近或直接送入模具。热流道能够独立地加热,而在注塑模具中热绝缘,这样能够单独补偿因为与“冷”模具接触而造成的热量损耗。热流道模具已被成功地用于加工各种塑料材料,可以用冷流道模具加工的塑料材料几乎都可以用热流道模具加工。其零件最小的在0.1克以下,最大的在30公斤以上。热流道模具在电子、汽车、医疗、日用品、玩具、包装、建筑、办公设备等领域都有着到广泛的应用。 一个成功的热流道模具应用项目需要多个环节予以保障。其中最重要的有两个技术因素:一是塑料温度的控制;二是塑料流动的控制。一个典型的热流道系统由如下几部分组成: 1)热流道板(MANIFOLD); 2) 喷嘴(NOZZLE); 3) 温度控制器; 4)辅助零件。 热流道模具的优点: )缩短制件成型周期; 2)节省塑料原料; 3)减少废品,提高产品质量; 4)消除后续工序,有利于生产自动化; 5)扩大注塑成型工艺应用笵围。 同时也存在模具成本上升、制作工艺设备要求高、操作维修复杂等缺点。 在工业较为发达的国家和地区热流道模具生产极为活跃,热流道模具生产比例不断攀升,甚至有些10人以下的小模具厂都进行热流道模具的生产。但在我国热流道技术的研究才刚刚开始,应用范围局限在规模企业,设计能力相对空白,因而对该技术应用的研究具有极其重要的意义。 1 热流道系统的种类与应用 在应用热流道技术时,浇口型式的正确选择至关重要。浇口型式直接决定热流道系统元

热流道温控卡用户手册-2014-中性

热流道温控卡 用户手册 使用产品前,请仔细阅读本手册,以免在操作过程中出现失误

品质保证和责任声明 品质保证:a、产品自出厂后7天内如有生产质量问题,本公司提供免费调换服务; b、产品自出厂后18个月内,如有生产质量问题,本公司提供免费维 修服务; c、产品自出厂后,本公司提供终身维修服务,不在免费服务范围内的 项目,收取维修成本费用。 责任声明:a、尽管本公司已经在控制器中设计了多种保护措施,使用者仍旧应该在控制器应用系统中设置适当的保护装置,充分考虑到由于控制器 的可靠性可能带来的损失; b、本公司声明,除了控制器本身,不承担任何由于控制器的可靠性或 者其他原因引发的人身、财产等一切损失的赔偿责任。 使用说明 1. 接线 2. 技术规格: z电源输入电压:AC85V~250V, 50/60Hz,20A z温度传感器类型:J或K或E型热电偶 z温度设定范围:0~450℃(32~842℉) z温度测量误差:±0.5% z温度控制类型:PID控制 z控制输出类型:可控硅调压(PWM) 可控硅调功(SSR) z输出负载能力:20A,50~2200W(110V) 100~4400W(220V) z使用环境温度:0~55℃(32~131℉)

3. 操作面板说明: ○1电源开关键:船型翘板式开关,开启或关闭控制器。 ○2主显示窗,有三种显示模式: A、测量模式:显示实时测量到的温度值。 B、参数模式:显示被设置的参数名称。 C、报警模式:当被测传感器出现故障时,显示对 应的故障代码;详情请看“故障代码注释”。 ○3副显示窗,共有四种显示模式: A、目标值模式:在正常测量且自动控制模式下, 显示受控的目标温度值。 B、参数模式:显示被设置的参数数值。 C、报警模式:当加热器出现故障时,显示对 应的故障代码;详情请看“故障代码注释”。 ○4显示温度单位:摄氏度(C)或华氏度(F)。 ○5设定值累减键:用于减小被设定的数值;连续按 住该键,每3秒累减速度加快一倍。 ○6设定值累加键:用于增大被设定的数值;连续按 住该键,每3秒累加速度加快一倍。 ○7设定键:用于进入参数设定模式,或保存前一个 参数并进入下一个参数设定状态。 ○8控制模式选择键:每次按下该键1秒,即切换到下 一个控制模式;控制模式分别为Normal (PID控制模式)、Standby(待机模式)、 Manual(人工控制模式)和AT(自整定模式)。 注:当切换到AT模式时,在3秒内按SET键确认,仪表进入自整定模式,否则仪表自动切换回Normal模式。 ○9显示模式选择键:每次按下该键1秒,即切换到下一个显示模式;显示模式分别为PV-SV(普通显示模式,显示测量值与设定值)、Por-u(功率显示模 式,显示测量值与输出功率百分比值)、LoK-oN(锁定模式,禁止控 制模式切换);在蜂鸣器报警状态下,短时间按下该键可静音3分钟。○10AT指示灯:控制器在At(自整定)状态运行时点亮。 ○11Manual指示灯:控制器在Manual(人工控制)状态运行时点亮。 ○12Standby指示灯:控制器在Standby(待机)状态运行时点亮。 ○13Normal指示灯:控制器在Normal(PID控制)状态运行时点亮。 ○14Soft指示灯:控制器在Soft(软启动)状态运行时点亮。 ○15安装固定孔。

热流道的原理及应用

热流道的原理及应用 热流道系统(hot runner systems)起源于注塑工业中的无流道系统,作为一项先进的塑料注塑加工技术,在西方发达国家的普及使用可以追溯到上个世纪的中期甚至更早。热流道具有许多优点,因此,在国外发展比较快,许多塑胶模具厂所生产的模具50%以上采用了热流道技术,部分模具厂甚至达到80%以上。在中国,这一技术在近十年才真正得以全面推广和应用,随着模具行业的不断发展,热流道在塑胶模具中运用的比例也逐步提高,但总体上还未达到国外热流道模具的比例。近年来,热流道技术在中国的逐渐推广,这很大程度上是由于我国模具向欧美公司的出口量快速发展带来的。在欧美国家,注塑生产已经依赖于热流道技术。可以这样说,没有使用热流道技术的模具现在已经很难出口,这也造成了很多模具厂家对于热流道技术意识上的转变。 热流道的原理 冷流道是指模具入口与产品浇口之间的部分。塑料在流道内靠注塑压力和其本身的热量保持流动状态,流道作为成型物料的一部分,但并不属于产品。所以在我们设计模具的时候既要考虑填充效果,又要考虑怎样通过缩短、缩小流道来节省材料,理想情况是这样,但实际应用中则很难达到两全其美。 热流道又称无流道是指在每次注射完毕后流道中的塑料不凝固,塑胶产品脱模时就不必将流道中的水口脱出。由于流道中的塑料没有凝固,所以在下一次注射的时候流道仍然畅通。简要言之,热流道就是注塑机喷嘴的延伸。 热流道模具的特点 目的:解决常规注塑成型经常会有的不利因素a. 填充困难;b. 薄壁大制件容易变形; c. 浇道原材料的浪费; d. 多模腔模具的注塑件质量不一等。 ■缩短制件成型周期 因没有浇道系统冷却时间的限制,制件成型固化后便可及时顶出。许多用热流道模具生产的薄壁小零件成型周期可在5秒钟以下。 ■节省塑料原料 在全热流道模具中因没有冷浇道,所以无生产费料。这对于塑料价格贵的应用项目意义尤其重大。事实上,国际上主要的热流道生产厂商均在世界上石油及塑料原料价格昂贵的年代得到了迅猛的发展。因为热流道技术是减少废料降低原材料费用的有效途径。 ■减少废品,提高产品质量 在热流道模具成型过程中,塑料熔体温度在流道系统里得到准确地控制。塑料可以更为均匀一致的状态流入各模腔,其结果是品质一致的零件。热流道成型的零件浇口质量好,

热流道常见问题

与普通流道模具相比,热流道模具有省时省料、效率高、质量稳定等显著优点,但曾一度因在使用上易产生故障而影响其广泛应用。随着模具工业的技术进步,热流道模塑在流道熔体温度控制、结构可*性及热流道元件设计制造等方面都有了长足的进步,这使得热流道技术重新得到人们的重视和青睐。 在热流道模具的设计和应用中,有诸多值得考虑和重视的问题,这些问题解决得好坏,直接关系着热流道系统的成败和制品质量。因此,对热流道系统的故障及其成因进行探讨,了解热流道模塑应用中应注意的事项,无疑十分有助于热流道模塑技术的成功运用。 1热流道模塑常见故障分析及其对策 1.1浇口处残留物突出或流涎滴料及表面外观差 1.1.1主要原因 浇口结构选择不合理,温度控制不当,注射后流道内熔体存在较大残留压力。 1.1.2解决对策 (1)浇口结构的改进。通常,浇口的长度过长,会在塑件表面留下较长的浇口料把,而浇口直径过大,则易导致流涎滴料现象的发生。当出现上述故障时,可重点考虑改变浇口结构。热流道常见的浇口形式有直浇口、点浇口和阀浇口。 主流道浇口,其特点是流道直径较粗大,故浇口处不易凝结,能保证深腔制品的熔体顺利注射;不会快速冷凝,塑件残留应力最小,适宜成型一模多腔的深腔制品,但这种浇口较易产生流涎和拉丝现象,且

浇口残痕较大,甚至留下柱形料把,故浇口处料温不可太高,且需稳定控制;特点基本同,但在塑件上的残痕相对较小;的特点是塑件残留应力较小,冷凝速度适中,流涎、拉丝现象也不明显;可应用于大多数工程塑料,也是目前国内外热流道模塑使用较多的一类浇口形式,塑件 质量较高,表面仅留有极小的痕迹;具有残痕小、残留应力低,并不会产生流涎、拉丝现象,但阀口磨损较明显,在使用中随着配合间隙的增大又会出现流涎现象,此时应及时更换阀芯、阀口体。 浇口形式的选择与被模塑的树脂性能密切相关。易发生流涎的低粘度树脂,可选择阀浇口。结晶型树脂成型温度范围较窄,浇口处的温度应适当较高,如POM、PEX等树脂可采用带加热探针的浇口形式。无定型树脂如ABS、PS等成型温度范围较宽,由于鱼雷嘴芯头部形成熔体绝缘层,浇口处没有加热元件接触,故可加快凝结。 (2)温度的合理控制。若浇口区冷却水量不够,则会引起热量集中,造成流涎、滴料和拉丝现象,因此出现上述现象时应加强该区的冷却。 (3)树脂释压。流道内的残留压力过大是造成流涎的主要原因之一。一般情况下,注射机应采取缓冲回路或缓冲装置来防止流涎。 1.2材料变色焦料或降解 1.2.1主要原因 温度控制不当;流道或浇口尺寸过小引起较大剪切生热;流道内 的死点导致滞留料受热时间过长。 1.2.2解决对策 (1)温度的准确控制。为了能准确迅速地测定温度波动,要使热电

多型腔热流道注射模的浇注平衡分析

多型腔热流道注射模的浇注平衡分析 作者:上海克朗宁技术设备有限公司王建华来源:现代塑料 在一模多腔的注塑成型中,保持塑料熔体在浇注系统中的流动平衡性十分重要。这直接影响到各型腔的填充时间、注射和保压压力,以至体积收缩率的均衡性,进而影响产品的质量。然而,对于冷流道模具的热流道改造,由于模具的模板尺寸、型腔布置和浇口位置都已经固定,要实现自然的平衡流道系统设计已不可行。因此,流道设计仍考虑为非平衡式流道布置,但这又势必会影响产品的质量。 如何在这种流道系统的设计中实现平衡浇注对于模具制造商而言非常关键。近年来,许多模具制造商开始应用热流道技术,并在模具设计中预先使用Moldflow软件进行模拟分析,极大地提高了模具设计的效率和准确性。 本文以克朗宁公司改造一具拥有18模腔的瓶盖热流道注射模为例,深入分析了Moldflow 软件在优化流道设计,尤其是改善浇注平衡方面的应用。针对该注射模从主流道到各型腔的流道长度均不相等的特点,克朗宁公司通过利用Moldflow软件优化流程中各段流道的直径,使塑料熔体从主流道进入各型腔的压力降保持相等,从而保证了熔体能够同一时间充满各型腔,实现了各个型腔制品的平衡浇注成型。 流道直径的初步设计 首先,根据各浇口位置和型腔的布局,确定了如图1所示的流道分布。然后,根据物料的特性、单个型腔的注射量和浇口位置等参数,确定相应的热流道分喷嘴的流道直径为6mm,并由此确定第二层分流道的直径也为6mm。

图1 热流道浇注系统的布置情况(其中,1-主流道喷嘴;2-第一层分流道;3-两层分流道间的中央连接流道;4-两层分流道间的两侧连接流道;5,6-第二层两侧分流道;7,8-第二层中间分流道;9-顶针式喷嘴 和浇口) 一般,在热流道模具中,熔体与流道壁面的热交换和流道截面所产生的摩擦热非常少,因此熔体因温度变化而导致的黏度变化相比冷流道系统也较小。因此,在流动分析中,按熔体在各流道中剪切应力不变的理论,可以得到各级流道直径的计算式(如下述方程所示): 式中,N——流道的分叉数;di——上游流道的直径,mm;di+1——下游流道的直径,mm。 根据流道的分支情况和分喷嘴流道的直径,可计算出第一层分流道的直径为10.9mm。考虑到实际加工和流道中熔体传输的压力损失,可适当增大这一分流道的直径,这里初步确定为12mm。由于两层间连接流道与主流道喷嘴之间的距离较近,流程较短,这时熔体的压力损失相对较小,因此可适当减小连接流道的尺寸,初步确定为8mm。其他各段流道的直径可参见表1。 Moldflow初步填充分析 完成初步设计及三维造型后,可利用Moldflow软件对流道进行填充分析。本次试验所采用的原料为HDPE,各工艺参数设定为:料温为220℃,模具温度为40℃,保压压力为注射压力的80%。 1、填充时间分析 如图2所示,由于主流道喷嘴至各型腔的流程长度不同,因此各型腔的填充时间亦不相同。经测算,流程最长的型腔完成填充需要0.2518s,而最短的流程仅为0.2081s,流动的不平衡性达到了17.3%。这势必会导致各型腔的压力分布不均,进而影响制品的质量。

热流道温度控制卡操作说明书.

热流道温度控制卡 操 作 说 明 书

TanRex系列简介 感谢您选购本公司TanRex系列高品质的温控器。本控制器具有如下特点: 1、在现有的热流道控制系统相容性上可容易达到维修与互换。 2、可同时显示温度设定点与温度实际值,以及温度输出功率、百分比和电流值。 3、内建分析操作情况,错误时出现错误显示,以方便维修。 4、可提供安全的软启动模式,经由向量比例方式控制输出电压(安全开机)。 产品说明 本控制器是以微电脑控制的“HOT-Runner”(热流道)系统控制模组为架构,提供温度控制与操作界面程式,控制一个温度区域是藉由一个J或K型热电偶型感测器的检测。 本控制器操作界面输入是经由一组4个按键输入,显示是经由两组LCD的七段显示器,前一组显示为三个文字显示器(显示实际温度),后一组是4个文字显示器(显示温度设定值),另外还有三个分离型LED指示灯,显示系统运转模式。 本控制器是由控制板及显示板组成的控制系统,一个是主控制板,另一个是操作面板,它可以完全的相容并存在于其它品牌的热流道模温控制系统上。 本控制器适用于工业环境中,操作简单方便。

面板说明 电源开关 状态指令说明

拨码开关说明 异常状态说明 当本系统正常开机时会自动检测其周边设备,如有发现任何错误会出现错误信息提示以告知。 当正常运转时若有异常发生时,亦会出现错误讯息藉以告知。 1、 :TC Open 表示温度感测器是呈现断路的状态,或是根本就没有接上。 2、 :TC Reverse 表示温度感测器线接反了。 3、 :Heater Open 表示加热器是呈现断路的状态,或是根本没接上。 4、 :Traic Latch 表示Traic 呈现短路状态。 开关操作模式 1、当本系统开机时会自动以安全模式 运转,待温度上升到120oC 时或20分钟后,便 跳至自动模式 运转 。 2、本系统正常开机运转时,按住 键便跳至自动模式运转,按住 键便跳 至手动模式运转。

仿真分析步骤

例2:以P214例3.2.1说明仿真过程。 仿真分析步骤(P214例3.2.1) 1、选择菜单:放置(Place)\元件(Component)… 数据库(Database):主数据库(Master Database)组(Group):电源(Sources) 系列(Family):电源(POWER_SOURCES) 元件(Component):直流电压源(DC_POWER),单击OK按钮。 Ctrl+M设置属性后放置(或放置后,双击该元件设置属性): 在参数(value)属性页中V oltage(V)选2V,单击OK(确定)按钮。 同法放置接地:GROUND, 同法放置直流电压源:DC_POWER为4V。 在value属性页中V oltage(RMS)选4V。 同法放置直流电流源:系列(Family):电源(SIGNAL_CURRENT_SOURCES) 元件(Component):DC_CURRENT为3A。 双击该元件,在参数(value)属性页中Current(A)选2V,单击OK(确定)按钮。 同法放置直流电流源:DC_CURRENT为2A。 2、选择菜单:放置(Place)\元件(Component)… 数据库(Database):主数据库(Master Database)组(Group):Basic 系列(Family):RESISTOR 元件(Component):1Ω,单击OK按钮。 Ctrl+M设置属性后放置(或放置后,双击该元件设置属性): 在参数(value)属性页中Resistance选2Ω(Ohm),单击OK(确定)按钮。 按Ctrl+R旋转900。 同法放置其余电阻。 3、选择菜单:放置(Place)\导线(Wire) 连线如图所示,在需要的地方放置节点:放置(Place)\节点(Join)。 4、选择菜单“仿真(Simulate)/分析(Analyses)/ 直流工作点分析(DC Operation Point Analysis)”,弹出图3.2.5 所示分析参数设置对话框,“输出(Output variables)”用于选择所 要分析的结点、电源和电感支路。“电路变量(Variables in circuit)”栏中列出了电路中可以

热流道温控卡的详细信息

热流道温控卡的详细信息 1.适用于电压AC85-250V AC,60HZ/50HZ,15A. 2.带输出线跟感温线接反保护功能,避免烧感温线。 3.微电脑P.I.D自动控制+FUZZY控制,确保控制之温度精确. 4.输出功能选择:自动/手动/待机 5.软启动功能,开机自动调整功率输出,防止瞬间烧坏发热线. 6.侦测控制器内部测量环断否. 7.可由按键切换手动设定功率输出百分比(%). 8.温度测量精度达正负0.5摄氏度 9.控制输出型式:双向可控硅15A220V AC . 10.可设定K/J型两种热电偶传感器信号,精确的温度非线性化处理与集成的冷端补偿. 11.国际通用标准结构,坚固的铝合金,适用于任何标准机箱 1、适用于电压AC85-250V AC,60HZ/50HZ,15A。 2、微电脑P.I.D自动控制+FUZZY控制,确保控制之温度精确。 3、能由面板切换自动/手动/自动微调/standby之输出功能。 4、具开机时微电脑自动调整功率输出,防止瞬间烧毁电热。 5、具热电偶(开路/短路/反向),电热开路,可控硅及保险管侦测功能。 6、可由按键切换手动设定功率输出百分比(%)。 7、温度控制精度达正负0.1摄氏度(显示为正负1度)。 8、控制输出型式:双向可控硅15A 220V AC 9、可设定K/J型两种热电偶传感器信号,精确的温度非线性化处理与集成的冷端补偿。 10、外形和安装方式采用国际标准结构,适用于任何标准机箱。其电源配线制式用负载连接方式均为标准结构。灵活的插入式指令舱。 采用专用微处理器作为主控单元,具有多重数字滤波、PID算法、干扰自动恢复、稳定、可靠适用性广1、基本误差:≤±0.5%F.S±1个字;≤±1%F.S±1个字2、冷端补偿范围:0℃~50℃;冷端补偿误差:≤±2℃ 3、温度系数:在0℃~50℃偏离20℃±2℃时≤0.05%/℃ 4、报警输出回差(不灵敏区):2或2.0 5、继电器触点输出:AC250V/5A(阻性负载)6、驱动可控硅脉冲输出:幅度≥3V,宽度≥40μS的移相或过零触发脉冲,带软启动的时间35S±5S 7、使用电源:默认值220V±15%50Hz±1Hz 8、工作环境:温度-5℃~50℃此产品已在上海、北京、天津、深圳、东莞、浙江杭州、黄岩、宁波、江苏南京、无锡、苏州、昆山、太仓、吴江、江阴、常熟、南通、连云港、山东青岛、烟台、威海、济南、河北唐山、石家庄、辽宁沈阳、大连、吉林长春、哈尔滨、河南郑州、安徽合肥、芜湖、湖北武汉,陕西西安,滨海开发区等地得到众多模具企业和注塑企业的应用。

Protel98电路仿真的基本步骤

Protel98电路仿真的基本步骤 黄康才 以基本放大器的时域(暂态)分析为例 1、添加仿真元件库 本例添加的仿真元件库路径在:\Client98\Sch\Library\Symbols.lib 2、放置仿真元器件 方法和绘制Sch原理图一样 3、放置电源或信号源 方法1:用菜单Simulate\Source下的命令 执行菜单命令(方法2:用仿真电源工具条中的命令 、10K+12V的电源和View\Toolbars\Simution Sources命令来切换) 。本例用1mV的正弦信号。 4、设置节点命令;1方法、用Place\Net Label 执行菜单命令(、用画线工具条中的Net命令2方法 )。命令来切换 View\Toolbars\Wrings Tools最好,电路如下: 5、启动仿真 本例进行时域(暂态)模拟,所以执行Simulate\Setup Simulator\Transient 命令,即

6、进行仿真设置。在上一步骤中弹出“时域分析对话框”: 其中: Duration(s):指时域分析结果显示的时间长度。一般显示信号三、四个周期的波形比较合适。 Display(s):指相邻显示点的时间间隔。 Start(s):显示起始时间,缺省为0。 Run:单击该按钮,程序开始进行时域分析。 最后得到仿真结果: 如何设置直流仿真激励源 黄康才 引言: Protel98可在原理图的基础上进行模拟。模拟前要在进行模拟的原理图上放置激励源。直流仿真电源用于产生直流电压和电流。包括VSRC(直流电压)仿真电源和ISRC(直流电流)(如图1所示)。

图1 如图3中,模拟激励源工具栏提供了四种电压的直流源,它们分别是+12V、 -12V、+5V和-5V四种,这四种是最常用到的直流激励源。如果你所放置的直流源的幅度与这些不同,可在属性对话框中修改。 例题: 在原理图上放置一个名称为VCC的+5V直流源。 重点: 属性的设置。 过程: 1、新建一个SCH文件。 2、在新建的原理图上放置一个+5V的直流源。 方法1:用菜单Simulate\Source\+5 Volts DC 命令: 图2 方法2:用仿真电源工具条 图3 中的命令(执行菜单命令View\Toolbars\Simution Sources命令来切换) 。单击+5V工具栏上的图标。 ,Designator3、打开“直流源属性”对话框,将其中的设置成VCC

热流道技术Hasco English

HASCO Z标准件系列 Z00 导柱Guide pillar Z01 导柱Guide pillar Z011 导柱Guide pillar Z012 导柱Guide pillar Z013 导柱Guide pillar Z014 导柱Guide pillar Z0141 导柱连接端End piece Z0142 导柱连接端End piece Z015 导柱Guide pillar Z0151 导柱连接端(Z015/…专用)Pillar adapter Z0152 导柱连接端Pillar adapter Z02 顶杆Ejector rod Z022 导管Guide sleeve Z03 导柱Guide pillar Z05 圆锥形管精定位Locating unit, round Z055 圆形垫片Spacer Z056 圆形垫件Spacer Z06 平锥形导块Locating unit Z07 长方形导块Square guide bar Z08 直身方形管位导块Pre-centering unit Z081 方形垫片Spacer disc Z091 方形定位锁块(公)Square interlock Z092 方形定位锁块(母)Square interlock Z093 方形定位锁块(母)Square interlock Z10 导套Guide bush Z10W 自润滑导套Guide bush Z11 导套Guide bush Z11W 自润滑导套Guide bush Z12 滚珠导套Ball guide bush Z13W 自润滑导套Self lubricate. Guide bush Z15W 自润滑垫片Self lubricate. Flat stock Z16W 自润滑垫片Self lubricate. Guide rail Z17 长方形导块(Z07/...专用)Guide retainer Z20 定板导套Centering sleeve Z25 定位销Dowel pin Z26 定位销Dowel pin Z28 六角螺母Hexagon nut Z281 六角螺母Hexagon nut Z282 六角螺母Hexagon nut Z285 螺母Nut for T-slots Z286 螺母Nut for T-slots Z30 胚头内六角螺丝Socket head cap screw

热流道模具常见问题的解决措施和注意事项

1、交口处光圈 原因:浇口周围温度过高 解决方案:改变喷嘴温度及/或者改变浇口冷却水路的温度,从而达到最佳的温度,对PC而言,浇口区域温度在110--130度之间为佳,对PMMA而言90—110度为佳; 试模过程中的检测:测量浇口周围的实际温度,适时调整,保证生产稳定; 2、产品表面有明显的浇口痕迹 原因:阀针过短、浇口温度过低、保压压力过大或者时间过长、过长的注塑时间; 解决方案:检测阀针长度,与喇叭口的配合情况;检测喷嘴嘴芯与模具之间的距离;升高喷嘴温度,同时(或者)优化冷却水路温度;在保证产品外观无缩水,尺寸合格的基础下,减少保压的压力值和时间; 试模过程中的检测:当试模过程中如上情况发生时,第一步应该检测阀针是否完全突出模具;要求阀针封闭后,突出模具定模型腔面0.2~0.3mm,并且前端带有0.1mm的弧度; 如果阀针的位置正确,问题有可能归因于保压(压力过大,或者时间过长)或者气缸的压力太小。 如果阀针在浇口后面,有可能是机械问题(阀针过短)或者感温不准,浇口温度过低,浇口锥形部分附着一层冷料薄膜,阀针无法到达底部,在这种情况下,浇口必需用火加热并且手动开关阀针。 如果阀针在正确的位置运动表明阀针长度合适,不然需要调整阀针长度。重新开始试模时,在正确的温度条件下。 如果生产几模后又出现同样的问题,表明浇口的锥形部分的尺寸和阀针不匹配(阀针口部锥面和胶口锥度配合有问题),形成冷料薄膜引起飞边。由于飞边的存在,阀针无法到达正确的位置。在这种情况下,需要拆模并且严格配模。用热风式加热枪清除浇口冷料薄膜后,肉眼就可以核实该问题。 如果浇口区域温度过低:这种情况只要升高喷嘴或模具的温度就可以解决

模具热流道技术

模具热流道技术 我国的模具产品水平已达到国际20世纪90年代中期水平,汽车模具等生产也将进入自主开发时代,但是对于热流道系统,我国目前却还停留在初期阶段。 热流道技术是应用于塑料注塑模浇注流道系统的一种先进技术,是塑料注塑成型工艺发展的一个热点方向。它于20世纪50年代问世,经历了一段较长时间地推广以后,其市场占有率逐年上升。80年代中期,美国的热流道模具占注射模具总数的15%~17% ,欧洲为12%~15% ,日本约为10% 。但到了90年代,美国生产的塑料注射模具中热流道模具已占40%以上,在大型制品的注射模具中则占90%以上。 1什么是热流道? 热流道是通过加热的办法来保证流道和浇口的塑料保持熔融状态。由于在流道附近或中心设有加热棒和加热圈,从注塑机喷嘴出口到浇口的整个流道都处于高温状态,使流道中的塑料保持熔融,停机后一般不需要打开流道取出凝料,再开机时只需加热流道到所需温度即可。因此,热流道工艺有时称为热集流管系统,或者称为无流道模塑。 热流道技术的优、缺点 热流道技术与常规的冷流道相比有以下的好处: 1、节约原材料,降低成。 2、缩短成型周期,提高机器效率 3、改善制品表面质量和力学性能。 4、不必用三板式模具即可以使用点浇口。 5、可经济地以侧浇口成型单个制品。 6、提高自动化程度。 7、可用针阀式浇口控制浇口封冻。 8、多模腔模具的注塑件质量一致。 9、提高注塑制品表面美观度。 但是,每一项技术都会有自身的缺点存在,热流道技术也不例外: 1、模具结构复杂,造价高,维护费用高。 2、开机需要一段时间工艺才会稳定,造成开价废品较多。 3、出现熔体泄露、加热元件故障时,对产品质量和生产进度影响较大。 上面第三项缺点,通过采购质量上等的加热元件、热流道板以及喷嘴并且使用时精心维护,可以减少这些不利情况的出现。 2热流道系统的结构 热流道系统一般由热喷嘴、分流板、温控箱和附件等几部分组成。热喷嘴一般包括两种:开放式热喷嘴和针阀式热喷嘴。由于热喷嘴形式直接决定热流道系统选用和模具的制造,因而常相应的将热流道系统分成开放式热流道系统和针阀式热流道系统。分流板在一模多腔或者多点进料、单点进料但料位偏置时采用。材料通常采用P20或H13。分流板一般分为标准和非标准两大类,其结构形式主要由型腔在模具上的分布情况、喷嘴排列及浇口位置来决定。温控箱包括主机、电缆、连接器和接线公母插座等。热流道附件通常包括:加热器和热电偶、流道密封圈、接插件及接线盒等。 热流道系统的分类 一般说来,热流道系统分为单头热流道系统、多头热流道系统以及阀浇口热流道系统。单头热流道系统主要由单个喷嘴、喷嘴头、喷嘴连接板、温控系统等组成。 单头热流道系统塑料模具结构较简单。将熔融状态塑料由注塑机注入喷嘴连接板,经喷嘴到达喷嘴头后,注入型腔。需要控制尺寸d、D、L和通过调整喷嘴连接板的厚度尺寸,使定模固定板压紧喷嘴连接板的端面,控制喷嘴的轴向位移,或者直接利用注塑机喷嘴顶住喷嘴连接板的端面,也可达到同样目的。在定模固定板的合适位置设置一条引线槽,让电源线从模具内引出与安装在模具上的接线座连接。

热流道有哪些品牌_世界热流道品牌排行榜

热流道有哪些品牌_世界热流道品牌排行榜本文档由深圳机械展SIMM整理,世界热流道品牌排行榜。 1.北美洲知名热流道品牌(英文名-中文名-国家) MOLD-MASTERS(马斯特)加拿大品牌:全球市场占有率最高DMEINCOE(英柯欧)美国品牌:北美标准的先行者 HUSKY(赫斯基)加拿大品牌 CACO 美国品牌 FASTHEAT 美国品牌 HASCO(哈斯高) 德国品牌 2.欧洲知名热流道品牌 SYNVENTIVE(圣万提)荷兰品牌 EWIKON 德国品牌 GUNTHERMASTIP(坤特)德国品牌:专攻瓶胚模热流道 SPEAR 德国品牌 PLASTHING 英国品牌 UNITEMP 瑞典品牌 THERMOPLY 意大利品牌 3.亚洲知名热流道品牌 FISA(菲莎)日本品牌:世界第一家弹簧自锁针阀热流道企业 SEIKI 日本品牌 HOTSYS 南韩品牌 YUDO 柳道万和:亚洲市场占有率前列 HOTSYS信好(哈希斯)韩国 SINO(先锐)中国(YUDO子公司) MOULD-TIP(麦士德)中国深圳 ANNTONG(映通)中国台湾 KLN(克朗宁)中国上海 ANOLE 阿诺立 NISSEN-TIP 宁塑 MOZOI 默作(弹簧自锁针阀) CORETOR(格润泰)中国江苏 4.澳洲知名热流道品牌 MASTIP 新西兰品牌

DME(北美的标准)是全球最大的模具标准配件供应商之一,拥有五十年的丰富经验,历史悠久。HUSKYFISA(第一家弹簧自锁针阀) 最大特点,依靠弹簧和注射压力的平衡控制针阀开关,装配调试和维护简单,模具精度不高,日本国内客户基本自己有维护能力,广泛应用在家电、汽车饰件、精密多腔模具中。GUNTHERMASTIP(专攻瓶胚模热流道) MOLD-MASTER(世界上占有率最高) 其中MOLD-MASTER堪称热流道中的劳斯莱斯—-加热部分在喷嘴上。他们中的很大成本在调试和维护上,客户基本不能自己维护。YUDO(亚洲市场占有率前列) 国外热流道在模具中的使用已达到80~90%,而国内模具热流道的使用在30%左右。但尽管如此,随着人民生活水平的提高,对产品使用要求越来越高,模具热流道的使用将会是越来越普遍。热流道模具的流行和普及也是为了提高原材料利用率真和产品品质,在模具设计的时候和热流道设计一起实行,这样肯定可为企业带来效益的。 热流道发展这么多年,尤其国内,近些年最为迅速,涌现出了不少实力制造商家。 目前国内比较知名的品牌有:贝斯特、麦士德、格瑞泰、克朗宁、先锐、阿诺立、索克、好特斯、墨作、南丰等等。 弗伦克FRENK,珠江西岸最具影响力的热流道供应商,湖南工程学院产学研基地 硬壳英柯欧INCOE 1958年成立,2006年设上海公司,全球首屈一指的热流道系统制造商,从单喷嘴至高腔数的一体化系统,用于生产汽车,电子,通讯,办公用品,个人保健,玩具,INCOE?遍布超过35个国家 阿诺立 注册资金880万,年生产热流道喷嘴30000多点,是中国热流道系统的主要生产厂家,Anole 热流道远销欧洲、东南亚、南美等30多个国家 模懋 2000年注册的台湾领导品牌MOLDMAX,2001年进入东莞,2006年成立昆山模倍速公司,产品有:热流道系统、温度控制系统、时间控制系统、模具及热流道加热组件 思纳克 注册资本750万元,ISO和CE认证、多项专利,自行开发多点细浇口针阀系统、单点不偏心针阀系统、连体式时序控制油缸针阀系统等产品,与苏州、大连、青岛等地400多家模塑企业合作,制定了企业标准,填补热流道行业标准空白,解决上百种特殊方案,专用深孔钻和抛光设施领先,一年内免费维护 先锐SINO 2002年注册,借鉴韩国先进技术研制出SINO先锐牌热流道系统,19个专利,在昆山、南京、宁波、台州、天津、青岛、中山、厦门、重庆、越南等地设立了分公司或办事处,服务海尔、

热流道注射模应用

浅谈热流道注射模的应用 摘要:本文针对热流道注射模的结构说明,阐述了热流道模具在注射成型中的优缺点,为设计热流道模具的工作人员提供参考。 关键词:热流道注射模;注射成型;优缺点;参考 on the application of hot runner injection mold xu yonglin abstract: this paper describes the structure of hot runner injection mold, hot runner mold described the advantages and disadvantages in the injection molding, hot runner mold design staff to provide reference. key words: hot runner injection mold;injection molding;advantages and disadvantages;reference 引言: 热流道注射成型技术在塑料成型上算是一项重大的技术革新,它合理的将注塑机喷嘴到模具型腔这段流道的塑料熔体保持了一 定的温度,塑料保持着溶融状态,使反复成型塑件的过程中避免废料的形成,大大的节约了生产成本,提高生产效率。 一、热流道模具在我国的发展现状 作为一项先进的注塑加工技术,热流道技术在欧美国家的普及使用可以追溯到上个世纪的中期甚至更早。而在我国,这一技术的真正推广不过是近十来年时间。近些年来,随着一些欧美公司到我国来采购模具,带动了热流道技术在我国的逐渐推广,曾经在第六

相关主题
文本预览
相关文档 最新文档