当前位置:文档之家› 01.02.γ辐射的能量和强度测量

01.02.γ辐射的能量和强度测量

01.02.γ辐射的能量和强度测量
01.02.γ辐射的能量和强度测量

γ辐射的能量和强度测量

1. 实验目的

(1) 了解NaI(Tl)闪烁谱仪的组成,基本特性和使用方法;

(2) 掌握测量γ射线的能量和强度的基本方法。

2. 实验原理

2.1 γ射线与物质的相互作用

γ射线与物质的相互作用主要是光电效应、康普顿散射和正负电子对产生三种过程。

(1) 光电效应:入射γ光子把能量全部转移给原子中的束缚电子,将其打出形成光电子。由于电子束缚能一般远小于入射γ光子的能量,所以光电子动能近似等于入射γ光子的能量。

(2) 康普顿散射:入射γ光子与核外电子发生非弹性散射。设入射γ光子能量为hν,散射光子能量为hν′,则反冲康普顿电子的动能E e为

E e=hν?hν′

康普顿散射后散射光子能量与散射角θ的关系为

hν′=

1+α(1?cosθ)

(1)

其中α=hν

m e c2

为入射γ射线能量与电子静止质量之比。由(1)式可得,当θ=0时,hν=hν′,这时E e=0,即不发生散射;当θ=180°时,散射光子能量最小,为hν/(1+2α),这时康普顿电子的能量最大,为

E e max=hν·2α

1+2α

(2) 所以康普顿电子能量在0至E e max之间变化。

(3) 正负电子对产生:当γ射线能量超过2m e c2(1.022MeV)时,γ光子受原子核或电子的库仑场的作用可能转化为正负电子对。入射γ射线能量越大,产生正负电子对的几率也越大。在物质中正电子的寿命很短,当它在物质中耗尽自己的动能,便同物质原子中的轨道电子发生湮灭反应而变成一对能量各为0.511MeV的γ光子。

2.2 闪烁谱仪结构与工作原理

NaI(Tl)闪烁谱仪由探头,高压电源,线性放大器,多道脉冲幅度分析器及部分组成。射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。带电粒子通过闪烁体时,将引起大量的分子或原子的激发或电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正负电子对,然后这些电子使闪烁体内的分子或原子激发和电离而发光。闪烁体发出的光子被闪烁体外的光反射层反射,汇聚到光电倍增管的光电阴极上,打出光电子。光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度与粒子在闪烁体内消耗的能量成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。利用脉冲幅度分析器可以测定入射射线的能谱。

2.3 闪烁谱仪的能量分辨率

由于形成阳极电流脉冲之前的各种过程的统计性质,对应于某一定能量的粒子,光电倍增管的输出脉冲仍有起伏,通常把脉冲计数率随脉冲幅度分布的半宽度ΔU 12

与计数率最大值

对应的脉冲幅度U 0之比定义为能量分辨率ε。由于粒子能量与脉冲幅度成正比,故有

ε=ΔU 12

U 0=ΔE E

(3)

2.4 闪烁谱仪的能量线性关系

利用闪烁谱仪做γ射线能量测定时,最基本的要求是在入射γ射线的能量和它产生的脉冲幅度之间有确定的关系;对于理想的闪烁谱仪,脉冲幅度与能量之间应呈线性关系;对于实际NaI(Tl)闪烁谱仪在较宽的能量范围内是近似线性的。这是利用该谱仪进行射线能量分析与判断未知放射性核素的重要依据。通常。在实验上利用系列γ标准源。测量相应全能峰处的脉冲幅度,建立γ射线能量及其对应峰位的关系曲线,这条曲线即能量刻度曲线。典型的能量刻度曲线为不通过原点的一条直线,即

E x p =Gx p +E 0

(4)

式中x p 为全能峰峰位(峰道址),E 0为直线截距,G 为增益(单位脉冲幅度对应的能量)。能量刻度曲线可以选用标准源Cs 137和Co 60来标定。

2.5 闪烁谱仪的探测效率

设γ源的发射强度为S ,则γ谱仪的探测效率η为

η=n S

(5)

式中n 为全能峰的总计数率。用这种方法定义的探测效率称为源峰探测效率。n 可用下式求得

n =N (6)

式中N 为全能峰的净计数,t 为计数时间。

2.6 γ辐射强度测量

在相同条件下,分别测得标准源的全能峰面积为N 0和待测样品的全能峰面积N x ,设标准源的强度为S ,待测样品的强度为S x ,则有

S x =N x N 0·S 0

(7)

3. 实验描述

3.1 实验仪器

实验采用NaI(Tl)闪烁谱仪,它由探头(包括闪烁体、光电倍增管、射极跟踪器),高压电源,线性放大器,多道脉冲幅度分析器及部分组成。

3.2 实验内容

(1) 检查实验装置,打开电源和相应软件,进入多道分析工作状态;

(2) 使用Cs 137标准源,测量γ谱仪的能量分辨率ε及探测效率η;

(3) 测量Co 60标准源的γ能谱;

(4) 测量Co 60待测源的γ能谱;

(5) 改变源的位置,重复(4)的测量;

(6) 测量结束,把高压降至0,关机。

4. 实验结果与分析

实验原始数据参见实验报告附的实验记录。

对于标准源Cs 137,其源强为S =66.6×103Bq ,特征γ辐射能量为E γ0=0.66MeV 。实验时间为t =100s 。测得全能峰道址为x 0=421,半高宽左道址为x ′=405,右道址为x ′′=442, 全能峰净计数为N =33550。则由(5)式,(6)式可得探测效率η为

η=N t S =0.504%

(8)

对于标准源Co 60,其源强为S 0=79.1×103Bq ,特征γ辐射右全能峰能量为E γ2=

1.33MeV 。实验时间为t =100s 。测得右全能峰道址为x 2=814,左全能峰净计数为N 0=4670。则由以上数据可以确定闪烁谱仪的能量刻度曲线为

E x =(1.705×10?3x ?0.05774)MeV

(9)

于是,由(3)式,可得闪烁谱仪对标准源Cs 137的能量分辨率ε为

ε=ΔE =E x ′′ ?E(x′)γ0

=9.6% (10)

对于待测Co 60样品,实验测得其左全能峰净计数为N x =4143,左全能峰道址为x x =728,则由(9)式可得其左全能峰能量E x 为

E x =1.18MeV

(11)

由(7)式可得该待测源强度S x 为

S x =N x N 0

·S 0=70.2×103Bq (12)

改变待测Co 60样品的位置,发现其全能峰道址没有发生移动,但全能峰的净计数发生了变化,这说明改变源的位置,样品的特征γ辐射能量不受影响,但仪器的探测效率会发生改变。

5. 实验思考题

(1) γ射线与物质有哪三种主要作用,各有什么特点?

γ射线与物质的相互作用主要是光电效应、康普顿散射和正负电子对产生三种过程。

1) 光电效应:入射γ光子把能量全部转移给原子中的束缚电子,将其打出形成光电子,光电子动能近似等于入射γ光子的能量。

2) 康普顿散射:入射γ光子与核外电子发生非弹性散射,康普顿电子能量在0至

E e max之间变化,其中E e max如(2)式所示。

3) 正负电子对产生:入射γ射线能量超过2m e c2时,γ光子受原子核或电子的库仑场的作用可激发正负电子对。入射γ射线能量越大,产生正负电子对的几率也越大。在物质中正电子的寿命很短,当它在物质中耗尽自己的动能,便同物质原子中的轨道电子发生湮灭反应而变成一对能量各为m e c2的γ光子。

(2) 何为全能峰?全能峰的计数主要来自于哪些作用的贡献?

γ光谱中由光电效应形成的光电峰能量与入射γ射线能量几乎相等,称为全能峰。其计数主要来源于光电效应,此外,多次康普顿散射的累计效应和两个湮没光子被全吸收时的电子对效应,对全能峰也有贡献。

(3) 当改变γ源与探头之间的距离时,探测效率有无变化?为什么?

有变化。γ源与探头之间的距离改变时,γ源对探头所张的立体角必然发生变化,γ光子被探头吸收的几率必然发生变化,从而引起探测效率的改变。

(4) 在对γ辐射进行能量测量时,样品的位置改变对测量结果有无影响?为什么?

没有。γ辐射的能量只取决于所用核素的种类,与样品位置的改变没有关系。

场强与功率的关系

概述 令狐采学 通常,工作在260MHz至470MHz工业、科学和医疗频段(ISM)的发射天线都非常小,只能辐射发射机功率放大器输出功率的一小部分。由此看来,对于发射功率的测量非常重要。具体的测量工作十分复杂,因为FCC规范的15.231部分规定了距离发射器3米处的场强(V/m)限制。另外,接收天线的放置以及测量中使用的接收单元都会影响辐射功率的测量。 本文将解释辐射功率与场强以及测量接收器的关系。表格中给出了260MHz至470MHz频段的FCC场强要求与辐射功率的对应关系,并给出了接收机测量的典型参数。通过上述关系可以了解一些转换因数,用户能够确定对接收器的测量结果是否表明发射器已接近其辐射功率的限制。 场强与辐射功率的关系 天线发射功率向四周(球形)扩展,如果天线具有方向性,功率沿着传播方向的变化符合其增益G(Θ, Φ), (Θ, Φ)表达式,在半径为R的球体上的任意一点,以瓦/平方米为单位的功率密度(PD)由式1给出: 这个等式简单地表示为发射功率除以半径为R的球面面积。增

益符号,GT,没有角度变化。因为在260MHz至470MHz ISM 频段使用的绝大多数天线与工作波长相比非常小,其模板不会随方向急剧变化。因为天线是效率很低的辐射体,增益非常小,基于这种原因,PT和GT相乘用来表示发射器和天线结合后的等效全向辐射功率(EIRP)。EIRP表示可以从理想的全向天线发射的功率。 距离发射器R处的功率密度同样可以表示为辐射信号场强E的平方除以η0表示的自由空间的阻抗(式2),η0的大小为120πΩ,或377Ω。 从上述两个等式可以得出EIRP,PTGT与场强E的关系,以 V/m为单位。 重新整理式3,用场强形式表示EIRP: 在FCC要求的3米距离处,这个关系为: 假设FCC对315MHz的平均场强限制是6mV/m,利用式5,可以得到平均辐射功率的限制为10.8μW,或-19.7dBm。从场强到EIRP的转换更加复杂,因为有些文档用对数或dB形式表示场强。在上面的例子中,场强大小6mV/m可以表示为15.6dBmV/m 或75.6dBμV/m。另外,FCC的辐射限制在260MHz到470MHz 的频带范围内随频率而变化,这种变化意味着对于每种频率,都需要按照FCC要求计算出场强大小,然后从一种计量单位转换到另一种。FCC规范的15.231部分规定260MHz的场强限制为3750μV/m,在470MHz处线性增加到12500μV/m。按照式1

预应力钢绞线参数及计算公式汇总

预应力钢绞线参数及计算公式汇总 参数:钢绞线抗拉强度标准值fpk=1860Mpa,弹性模量:Ep=1.95*105Mpa,松弛率为2.5%,公称直径¢s=15.2mm,钢绞线面积A=140mm2,管道采用预埋金属波纹管成孔且壁厚不小于0.3mm。预应力筋平均张拉力按下式计算: p p=(p(1-e-(kx+μ?)))/kx+μ? 式中:p p---预应力筋平均张力(N)。 p-----预应力筋张拉端的张拉力(N)。 X-----从张拉端至计算截面的孔道长度(m)。 ?-----从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。 K-----孔道每米局部偏差对摩擦的影响系数,参见附表G-8。 μ-----预应力筋与孔道比壁的摩擦系数,参见附表G-8。 注:e=2.71828,当预应力筋为直线时p p= p。 预应力筋的理论伸长值△L(mm)可按下式计算; △L =(p p *L)/A p*Ep 式中:p p-----预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见上式。 L-------预应力筋的长度(mm)。

A p-----预应力筋的截面面积(mm2)。 Ep------预应力筋的弹性模量(N/ mm2)。 附表G-8 系数K及μ值表 注意事项: 预应力筋张拉时,应先调整到初应力σ0该初应力宜为张拉控制应力σcom的10%~15%。伸长值应从初应力时开始量测。力筋的实际伸长值除量测的伸长值外,必须加上初应力以下的推算伸长值。对后张法构件,在张拉过程中产生的弹性压缩值一般可省略。 预应力张拉实际伸长值△L(mm)=△L1+△L2 式中:△L1-从预应力至最大张拉应力间的实测伸长值(mm)△L2-初应力以下的推算伸长值(MM),可采用相邻级的伸长值。

紫外线辐射强度和杀菌效果的监测

紫外线辐射强度和杀菌效果的监测 紫外线照射杀毒是医院最普遍使用的方法之一,但紫外线杀菌灯具由于制造、使用方法和使用寿命等原因,造成紫外线消毒达不到规定的效果。为了确保紫外线发挥出最好的杀菌效果,对紫外线辐射强度和消毒效果进行常规监测是行之有效的方法。紫外线杀菌的关键因素是紫外线消毒器辐射253.7nm波长紫外线强度和其他保障措施,所以监测紫外线消毒效果有工艺监测、物理监测、化学监测和生物监测。 一、灯管选择及安装:紫外线杀菌灯已由原来的臭氧型发展为低臭氧型,紫外灯由石英玻璃抽真空制成,紫外灯的好坏决定灯管质量(有无气泡、气线)真空度和灯线灯头上工艺水平,紫外灯是不可见光,穿透力弱,直射,杀菌紫外线为c波段,中心波长为253.7A(nm),杀菌效果决定紫外线强度的照射时间。(一)选择合适的紫外线杀菌灯具 医院室内空气消毒常用40W和30W直管式热阴极低压汞灯,小型消毒柜和超净工作台内常选用20W和15W低臭氧直管紫外线消毒灯,特殊消毒器内经常使用H型高强度紫外线杀菌灯及其他专用紫外线杀菌灯具。 (二)正确的安装 紫外线消毒灯的安装位置和照射距离对杀菌效果至关重要,用于空气消毒的紫外线灯可以采用垂直正向照射、反向照射和侧向照射。吊装即将紫外线灯吊装在天花板距离地面2.0±0.2的高度,进行垂直正向照射;将带有反光罩的紫外线灯采用可升降式吊装进行反向照射或装在移动式灯具车上进行正反向照射;侧装即将紫外线灯装载墙壁上进行侧向照射。不管何种安装方式都必须保持灯管之间距离均匀,使得空间辐射强度分布均匀。 (三)达到规定的辐射强度 室内空气消毒需要安装紫外线灯的功率分布达到平均1.5W/m3即每20m3 安装30W紫外线灯1支。 (四)正确的使用和维护 紫外线消毒空气首先应照射足够的时间和频率,一般在常温下、相对湿度60%,每次照射30~60min,每天照射不少于2次或每次工作之前照射。紫外线消毒受相对湿度和空气中灰尘及灯管表面灰尘的影响,所以应注意对灯管表面的清洁和环境的条件。 二、紫外线辐射强度的监测 (一)物理监测法 采用紫外线辐射照度计检测紫外线消毒器辐射强度是比较方便而且又准确的方法,是《消毒技术规范》规定的方法。 1. 照度计检测原理根据紫外线消毒器特定波长(253.7nm),选择特异性光敏元件制作接受元件(受光器),当受光器受到紫外线照射时,把光信号转变为电信号,通过放大传输,在仪表上以电信号或数字信号显示出来。 2. 测试方法先将紫外线灯打开照射3~5min,将调试好的照度计受光盖打开置于紫外线灯中央下方垂直1m处照射直到仪表表针或数字不再上升即可读值。 3. 应用范围用于对新出厂的灯管检验,生产厂家可用照度计检验出厂各种紫外线灯管。按国家标准制定,新出厂30W紫外线灯管在下方中央垂直1m

EMI辐射发射测试

辐射发射测试 辐射发射(Radiated Emission)测试,是测量EUT通过空间传播的辐射骚扰场强。可以分为磁场辐射、电场辐射,前者针对灯具和电磁炉,后者则应用普遍。另外,家电和电动工具、AV产品的辅助设备有功率辐射的要求(称为骚扰功率)。 1. 辐射发射测试标准: a) 电场辐射:CISPR22,CISPR13,CISPR11,CISPR14-1,CISPR15(特定类别的玩具); b) 磁场辐射:CISPR15(工作电流频率超过100Hz的灯具),CISPR11(电磁炉); c) 骚扰功率:CISPR14-1(工作频率不超过9kHz的一部分设备除外),CISPR13(只对辅助设备)。 2. 辐射发射测试方法 1) 辐射发射测试仪器和设备: a) 电场辐射:接收机(1G以下)、频谱仪(1G以上)、电波暗室、天线(1G以下一般用双 锥和对数周期的组合或用宽带复合天线,1G以上喇叭天线); b) 磁场辐射:接收机、三环天线或单小环远天线; c) 骚扰功率:接收机、功率吸收钳。 接收机遵循CISPR16-1-1的要求,天线、场地遵循CISPR16-1-4的要求,吸收钳遵循CISPR16-1-3的要求。 2) 辐射发射测试测试布置: a)电场辐射:也是分台式与落地式,与传导发射相同(因为辐射发射结果与产品布置的关系 尤为密切,因此需要严格按照标准布置包括产品、辅助设备、所有电缆在内的受试样品); b)磁场辐射:不同尺寸的三环天线对能够测试的EUT最大尺寸是有限制的,以2m直径的环形三环天线为例,长度小于1.6m的EUT能够放在三环天线中心测试;在CISPR11中,超过1.6m的电磁炉用0.6m直径的单环远天线在3m外测量,最低高度1m; c)骚扰功率:分台式与落地式,台式设备放在0.8m的非金属桌子上,离其他金属物体至少0.8m(通常是屏蔽室的金属内墙,这个距离要求在CISPR14-1中是至少0.4m);落地式设备放在0.1m的非金属支撑上;被测线缆(LUT)布置在高0.8m、长6m的功率吸收钳导轨上,吸收钳套在线缆上,电流互感器端朝向被测设备。如果被测设备有其他线缆,在不影响功能的情况下能断开的断开,不能断开的用铁氧体吸收钳隔离。 3) 辐射发射测试频段:电场辐射一般是30MHz-1GHz(有些产品需要测超过1G,根据具体标准的规定),磁场9kHz-30MHz,骚扰功率30-300MHz。 4) 辐射发射测试限值:随不同标准,场地是3m、10m或其他尺寸,不同的产品分类(Group 1/2, Class A/B)而限值不同。 5) 辐射发射测试过程: a)30MHz-1GHz电场辐射:在半电波暗室中进行,EUT随转台360度转动,天线在1-4m高度 上下升降,寻找辐射最大值。结果用QP值表示。垂直、水平两种天线极化方向都测。 b)大于1G的电场辐射:工作频率超过108MHz的ITE设备、超过400MHz的ISM设备需要测试,是在3m场地,使用频谱仪测。ITE设备测试方法基本同30MHz-1GHz,结果用Peak与AV值表示。ISM的产品有点不同,需要在全电波暗室中测,天线同产品同高度,不升降,转台仍然转动以寻找辐射最大值; c)替代法:采用ERP(有效发射功率)来代替,再换算成场强数值。这个在RF测试中经常用到,常规EMC很少使用。替代法测试的目的是测试EUT的壳体辐射,需要拆除所有可拆卸电缆,不可拆卸的电缆上套铁氧体磁环。首先用天线A和接收机测量出EUT的最大骚扰值,然后用天线B替代EUT,调节信号发生器输出功率,直至测量接收机达到同样的值。记录替代天线B的输入端功率,即为EUT的壳体辐射功率。天线的选则根据测试频率来定; d)磁场辐射:采用三环天线的磁场辐射测试没啥好说的,样品放置在天线中心,X/Y/Z三个方向各测一组磁场辐射的结果。采用单小环天线时,天线垂直地面放置,最低部分高于地面1m,因为是近场测量,又考虑到了地面的反射,测量所得的值反映了EUT的水平和垂直的磁场分量; e)骚扰功率:对设备的所有长度超过25cm的电缆(也包括辅助设备的线缆)都需进行。因为在30-300MHz内不同频点的骚扰在被测线缆中呈驻波形式分布。因此在测量中需要沿导轨拉功率吸收钳以寻找每个终测频点骚扰功率最大的位置(大致在离设备半波长的距离处)。3. 辐射发射测试结果判定: 仍然是与限值线比较。低于PASS,高出FAIL。

紫外线辐射强度和杀菌效果的监测.

紫外线辐射强度和杀菌效果的监测 来源:本站原创作者:佚名发布时间:2009-08-13 查看次数:997 紫外线辐射强度和杀菌效果的监测 紫外线照射杀毒是医院最普遍使用的方法之一,但紫外线杀菌灯具由于制造、使用方法和使用寿命等原因,造成紫外线消毒达不到规定的效果。为了确保紫外线发挥出最好的杀菌效果,对紫外线辐射强度和消毒效果进行常规监测是行之有效的方法。紫外线杀菌的关键因素是紫外线消毒器辐射253.7nm 波长紫外线强度和其他保障措施,所以监测紫外线消毒效果有工艺监测、物理监测、化学监测和生物监测。 一、灯管选择及安装:紫外线杀菌灯已由原来的臭氧型发展为低臭氧型,紫外灯由石英玻璃抽真空制成,紫外灯的好坏决定灯管质量(有无气泡、气线)真空度和灯线灯头上工艺水平,紫外灯是不可见光,穿透力弱,直射,杀菌紫外线为c 波段,中心波长为253.7A (nm ),杀菌效果决定紫外线强度的照射时间。 (一)选择合适的紫外线杀菌灯具 医院室内空气消毒常用40W 和30W 直管式热阴极低压汞灯,小型消毒柜和超净工作台内常选用20W 和15W 低臭氧直管紫外线消毒灯,特殊消毒器内经常使用H 型高强度紫外线杀菌灯及其他专用紫外线杀菌灯具。 (二)正确的安装 紫外线消毒灯的安装位置和照射距离对杀菌效果至关重要,用于空气消毒的紫外线灯可以采用垂直正向照射、反向照射和侧向照射。吊装即将紫外线灯吊装在天花板距离地面2.0±0.2的高度,进行垂直正向照射;将带有反光罩的紫外线灯采用可升降式吊装进行反向照射或装在移动式灯具车上进行正反向照射;侧装即将紫外线灯装载墙壁上进行侧向照射。不管何种安装方式都必须保持灯管之间距离均匀,使得空间辐射强度分布均匀。

抗拉强度与伸长率测试方法与设备介绍

抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率,是指材料在拉断前承受的最大应力值与断裂时的伸长率。通过检 测能够有效解决材料抗拉强度不足等问题。Labthink 兰光研发生产的智能电子拉力试验 机系列产品,可专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、医用敷料、 保护膜、金属箔片、隔膜、背板材料、无纺布、橡胶、纸张等产品的抗拉强度与伸长率指 标测试。 抗拉强度与伸长率方法: 试样制备:宽度15mm ,取样长度不小于 150mm ,确保标距100mm ;对材料变形率较大试样,标距不得少于50mm 。 试验速度:500±30mm/min 试样夹持:试样置于试验机两夹具中,使试样纵轴与上下夹具中心连线重合,夹具松 紧适宜。 抗拉强度(单位面积上的力)计算公式: 拉伸强度计算公式σ=F/(b×d) σ:抗拉强度(MPa ) F :力值(N ) Labthink 兰光|包装检测仪器优秀供应商山东省济南市无影山路144号 b :宽度(mm ) d :厚度(mm ) 抗拉强度检测用设备——XLW(EC)智能电子拉力试验机: Labthink 兰光XLW(EC)智能电子拉力试验机专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、金属箔、 隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、 穿刺力、开启力、低速解卷力、拨开力等性能测试。 XLW(EC) 是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机;优于0.5级测试精度有效地保证了试验结果的准确性;系统支持拉压双向试验模式,试验 速度可自由设定;一台试验机集成拉伸、剥离、撕裂、热封等八种独立的测试程序,为用 户提供了多种试验项目选择;气动夹持试样,防止试样滑动,保证测试数据的准确性。 测试原理:

紫外辐射计UV-B说明书

UV—B型紫外辐照计 该仪器适用于杀菌、光刻、水处理、医疗、育种等领域的紫外辐照度测量工作。 u主要性能指标 * 波长范围及峰值波长:(光谱响应曲线见图1) (1)UV254探头 λ:(230~300)nm;λp=254nm (2)UV297探头 λ:(275~330)nm;λp=297nm * 辐照度测量范围: (0.1~199.9×103)μW/cm2 * 紫外带外区杂光: UV254:小于0.1% UV297:小于0.05% * 准确度: ±10% * 角度响应特性: 符合国家二级光照度计标准 * 响应时间: 1秒 * 使用环境: 温度(0~40)℃;湿度<85%RH * 尺寸和重量: 180mm×80mm×36mm;0.2kg * 电源: 6F22型9V积层电池一只 u结构: 仪器由紫外探头UV254(或UV297)和读数单元两部分组成,二者通过电缆用插头

和插座连接。读数单元左侧的各按键作用分别为: “电源”:按下此键为电源接通状态,抬起此键为电源断开状态。 “保持”:按下此键为数据保持状态,抬起此键为数据采样状态。(注:测量时应抬起此键)。 “UV254”:使用254探头测量时按下此键,(同时应将“UV297”键抬起)。 “UV297”:使用297探头测量时按下此键,(同时应将“UV254”键抬起)。 “×1” “×10”量程按键 “×100” “×1000” u操作: 进行紫外辐照度测量时,首先将“电源”键按下,再根据测量需要按下“UV254”(或“UV297”)键和所选定的量程键(注意:“UV254”和“UV297”两个键切勿同时按下),然后将相应的254探头(或297探头)插入读数单元的插孔内,打开探头盖,将探头光敏面置于待测位置,此时显示窗口上显示的数字与量程因子的乘积即为辐照度值(单位:μW/cm2)。如果欲将测量数据保持,可按下“保持”键(注意:不能在未按下量程键前按下“保持”键)。读数完成后应将“保持”键抬起,恢复到采样状态。测量完毕将电源键抬起(关)。 如果显示窗口的左端只显示“1”表明辐照度值超载,或表明在按下量程键前已误将“保持”键按下了,此时应按下更大的量程键或抬起“保持”键,正确操作。 当显示窗口左上方出现“LOBAT”或“←”符号时,应更换机内电池 u维护: 仪器长期存放应在温度(0~40)℃?湿度<85%RH的洁净环境中,避免仪器受强烈振动或摔打引起的损坏。 u保证: 仪器出厂一年内,如并非因使用和维护不当而产生故障,本厂免费修理或调换。对一年后需要复检或修理的仪器,本厂提供优惠服务。

辐射功率和场强测试

应用笔记3815 UHF ISM 波段发射器的辐射功率和场强测试 Oct 23, 2007 摘要:工作在工业、科学及医疗(ISM)波段,频率范围为260MHz 至470MHz 的近距离无线通信已广泛用于遥控无钥匙门禁系统(RKE)、家庭安防和遥控装置。无线发射器的一个关键参数是通过天线发射的功率,该功率必须足够大,以保证发射到接收链路的可靠性,但是,这个功率还必须限制在FCC 规范15.231部分规定的辐射功率以内。本文讨论了在260MHz 到470MHz 频率范围内,FCC 规范对场强的要求和接收机测试的典型指标,表格中列出了现场测试的数据。 概述 通常,工作在260MHz 至470MHz 工业、科学和医疗频段(ISM )的发射天线都非常小,只能辐射发射机功率放大器输出功率的一小部分。由此看来,对于发射功率的测量非常重要。具体的测量工作十分复杂,因为FCC 规范的15.231部分规定了距离发射器3米处的场强(V/m)限制。另外,接收天线的放置以及测量中使用的接收单元都会影响辐射功率的测量。 本文将解释辐射功率与场强以及测量接收器的关系。表格中给出了260MHz 至470MHz 频段的FCC 场强要求与辐射功率的对应关系,并给出了接收机测量的典型参数。通过上述关系可以了解一些转换因数,用户能够确定对接收器的测量结果是否表明发射器已接近其辐射功率的限制。 场强与辐射功率的关系 天线发射功率向四周(球形)扩展,如果天线具有方向性,功率沿着传播方向的变化符合其增益G(Θ, Φ)。表达式,在半径为R 的球体上的任意一点,以瓦/平方米为单位的功率密度(PD)由式1 给出: 这个等式简单地表示为发射功率除以半径为R 的球面面积。增益符号,GT ,没有角度变化。因为在260MHz 至470MHz ISM 频段使用的绝大多数天线与工作波长相比非常小,其模板不会随方向急剧变化。因为天线是效率很低的辐射体,增益非常小,基于这种原因,PT 和GT 相乘用来表示发射器和天线结合后的等效全向辐射功率(EIRP)。EIRP 表示可以从理想的全向天线发射的功率。 距离发射器R 处的功率密度同样可以表示为辐射信号场强E 的平方除以η0表示的自由空间的阻抗(式2),η0的大小为120πΩ,或377Ω。 从上述两个等式可以得出EIRP ,PTGT 与场强E 的关系,以V/m 为单位。 重新整理式3,用场强形式表示EIRP : 在FCC 要求的3 米距离处,这个关系为: 假设FCC 对315MHz 的平均场强限制是6mV/m ,利用式5,可以得到平均辐射功率的限制为10.8μW ,UHF ISM 波段发射器的辐射功率和场强测试-Maxim 2012年1月13日11:00

电磁辐射照射的场强单位及其换算

电磁辐射照射的场强单位及其换算 电磁干扰场强单位及其换算,是广大电磁兼容工作者经常遇到的、关切的问题之一。 电磁干扰场强既有电场强度、磁场强度和功率通量密度等基本单位,又有分贝制导出。在某些情况下,单位之间还可相互换算。本文将就这些单位的使用及换算作一简要的介绍。 一、电磁干扰场强的基本单位 高频、微波电磁干扰场强有三种基本单位:电场强度V/m、磁场强度A/m 和功率通量密度W/m2。 在测量电场时,若仪器的表头刻度用的是电场强度单位时,则用V/m单位表示之。所测干扰场强小于1V/m时,可用m V /m、μV/m单位。 当使用环天线、框天线或磁性天线等来测量磁场,且仪器的表头刻度按磁场强度单位A/m刻度时,则可用A/m、mA /m、μA/m单位表示之。 当电磁场频率高至微波段时,由于对电场、磁场的单独测量在技术上有一定困难;或者功率密度测量比电场、磁场测量要方便,所以可采用功率通量密度测量。功率通量密度的单位为W/ m2。国外生产的全向宽带场强仪、辐射险计,因其工频率范围极宽,从260KHZ~26GHZ、,故测试电路中实现|E|2、|H|2较为方便。因此,大多采用功率通量密度测量,并以mW /Cm2为表头刻单位。强场仪测得的功率通量密度是Poyn-ting向量模的时间平均值,亦代表电磁场的强度。它的单位W/m2和电场强度单位V /m、磁场强度单位A/m同为电磁干扰场强的基本单位。它们的地位是等同的。 二、电磁干扰场强单位间的相互换算 在一般情况下,V/m、A/m和mW /Cm之间不能相互换算。只有在被测场为平面波情况下,三者间才能相互换算。否则,只能“等效换算”。 何谓平面波?凡远离发射天线,在自由空间中传播的电磁波,皆为平面波。 根据电磁场理论,在平面波情况下,S=ZoH2=E2/Zo 在自由空间中,Z=120π≈376.7Ω,代入上式后可得:E单位为V/m2,S 单位为mW /C m2。

LCD产业中紫外光辐射的危害与防护

LCD产业中紫外光辐射的危害与防护 液晶显示器(LCD )的制造业是一种高新技术产业,紫外光应用技术在LCD的生产中发挥 重要作用。但是当液晶行业的工程技术人员在应用紫外光技术,取得满意效果的同时,不应忽视紫外辐射的防护问题。本文主要探讨在生产中应采取的紫外辐射防护措施是有意义的。 一、紫外光对人体的危害 紫外光对人体的健康有很大影响,资料表明,除了在人体皮肤中促进维生素D的合成,防 止佝偻病及杀菌外,尚未发现紫外线有其他的有益效应,但对其危害,已引起人们普遍关注。 1紫外光对眼睛的损伤 白内障被认为过量紫外光辐射的主要原因,经紫外光照射后,射线大部分被角膜上皮细胞核蛋白吸收,导致细胞核膨胀,碎裂和细胞死亡,以至损伤眼角膜和晶状体,导致浑浊。总的说来,紫外光辐射增加,人类的白内障患者增加。 2、紫外光对人皮肤的损伤 紫外光的影响有积累作用,它的主要机理:蛋白质受紫外光照射后,形成光解产物,此 外,其溶解度和粘度,对热变性的敏感性及荧光等物理化学和光学性质均有显著的改变。紫外光对皮肤的作用分为急性作用和慢性作用。急性作用表现为红斑效应,其症状为水肿脱皮,全身症状有寒战,发烧,恶心,罕见循环衰竭。慢性作用如致皮肤老化,色素沉着,加速老化,甚至引起肿瘤。轻者皮肤出现水肿性红斑,重者会出现水疱或大疱,还可伴有休克,发热,畏寒,恶心,心悸和头昏等症状。 3、紫外光对其他部位的损伤 紫外光辐射对免疫系统的影响,免疫系统的一些成分存在于皮肤中,皮肤暴露在紫外光 下,使得免疫系统受紫外光辐射,使其功能受到干扰。研究表明,紫外光辐射的免疫抑制作用可导致皮肤癌,同时引起一些传染病和其他一些疾病。 LCD行业对紫外光辐射的防护措施

辐射发射(RE)测试

辐射发射(RE) 1.辐射发射(RE)测试概述 辐射发射(Radiated Emission)测试是测量EUT通过空间传播的辐射骚扰场强。可以分为磁场辐射、电场辐射,前者针对灯具和电磁炉,后者则应用普遍。另外,家电和电动工具、AV产品的辅助设备有功率辐射发射的要求(称为骚扰功率)。 2. 辐射发射(RE)测试标准: a) 电场辐射:CISPR22/EN55022(信息技术产品),CISPR13/EN55013(音频类产品),CISPR11/EN55011(工科医),CISPR14-1,CISPR15/EN55015(灯具); b) 磁场辐射:CISPR15(工作电流频率超过100Hz的灯具),CISPR11(电磁炉); c) 骚扰功率:CISPR14-1(工作频率不超过9kHz的一部分设备除外),CISPR13(只对辅助设备)。 3. 辐射发射(RE)测试方法: 1) 辐射发射测试仪器和设备: a) 电场辐射:接收机(1G以下)、频谱仪(1G以上)、电波暗室、天线(1G以下一般用双 锥和对数周期的组合或用宽带复合天线,1G以上喇叭天线); b) 磁场辐射:接收机、三环天线或单小环远天线; c) 骚扰功率:接收机、功率吸收钳。 接收机遵循CISPR16-1-1的要求,天线、场地遵循CISPR16-1-4的要求,吸收钳遵循CISPR16-1-3的要求。 2) 辐射发射测试场地布置:

b)磁场辐射:不同尺寸的三环天线对能够测试的EUT最大尺寸是有限制的,以2m直径的环形三环天线为例,长度小于1.6m的EUT能够放在三环天线中心测试;在CISPR11中,超过1.6m的电磁炉用0.6m直径的单环远天线在3m外测量,最低高度1m; c)骚扰功率:分台式与落地式,台式设备放在0.8m的非金属桌子上,离其他金属物体至少0.8m(通常是屏蔽室的金属墙,这个距离要求在CISPR14-1中是至少0.4m);落地式设备放在0.1m的非金属支撑上;被测线缆(LUT)布置在高0.8m、长6m的功率吸收钳导轨上,吸收钳套在线缆上,电流互感器端朝向被测设备。如果被测设备有其他线缆,在不影响功能的情况下能断开的断开,不能断开的用铁氧体吸收钳隔离。 3) 辐射发射测试频段:电场辐射一般是30MHz-1GHz(有些产品需要测超过1G,根据具体标准的规定),磁场9kHz-30MHz,骚扰功率30-300MHz。 4) 辐射发射测试限值:随不同标准,场地是3m、10m或其他尺寸,不同的产品分类 (Group 1/2, Class A/B)而限值不同。 5) 辐射发射测试过程: a)30MHz-1GHz电场辐射:在半电波暗室中进行,EUT随转台360度转动,天线在1-4m高度 上下升降,寻找辐射最大值。结果用QP值表示。垂直、水平两种天线极化方向都测。 b)大于1G的电场辐射:工作频率超过108MHz的ITE设备(信息技术类设备)、超过400MHz的ISM 设备(工科医类设备)需要测试,是在3m场地,使用频谱仪测。ITE设备测试方法基本同30MHz-1GHz,结果用Peak与AV值表示。ISM的产品有点不同,需要在全电波暗室中测,天线同产品同高度,不升降,转台仍然转动以寻找辐射最大值; c)替代法:采用ERP(有效发射功率)来代替,再换算成场强数值。这个在RF(射频)测试中经常用到,常规EMC很少使用。替代法测试的目的是测试EUT的壳体辐射,需要拆除所有可拆卸电缆,不可拆卸的电缆上套铁氧体磁环。首先用天线A和接收机测量出EUT的最大骚扰值,然后用天线B替代EUT,调节信号发生器输出功率,直至测量接收机达到同样的值。记录替代天线B的输入端功率,即为EUT的壳体辐射功率。天线的选则根据测试频率来定; d)磁场辐射:采用三环天线的磁场辐射测试没啥好说的,样品放置在天线中心,X/Y/Z三个方向各测一组磁场辐射的结果。采用单小环天线时,天线垂直地面放置,最低部分高于地面1m,因为是近场测量,又考虑到了地面的反射,测量所得的值反映了EUT的水平和垂直的磁场分量; e)骚扰功率:对设备的所有长度超过25cm的电缆(也包括辅助设备的线缆)都需进行。因为在 30-300MHz不同频点的骚扰在被测线缆中呈驻波形式分布。因此在测量中需要沿导轨拉功率吸收钳以寻找每个终测频点骚扰功率最大的位置(大致在离设备半波长的距离处)。 4. 辐射发射(RE)测试结果判定: 检波测量仪测量值与限值线比较。低于PASS,高出FAIL。 5. 辐射发射(RE)测试注意事项: 测试布置仍然是测试最需要的环节。另外,因为是高频测试,场地、设备等都是很重要的会影响最终结果的因素。 6. 辐射发射(RE)测试围: 30MHz-18.5GHz

紫外线辐射会引起哪些职业病

紫外线辐射会引起哪些职业病 紫外线是一种波长10-400纳米的辐射线,会造成职业性电光性眼炎(紫外线结膜角膜炎)和职业性白内障。孕妇尤其要注意,会致使胎儿发育不正常,上了年纪以后会出现一些奇怪的病症。最重要的是可能会是基因发生变异,从而遗传给后代。 电光性眼炎是因眼睛的角膜上皮细胞和结膜吸收大量而强烈的紫外线所引起的急性炎症,可由长时间在冰雪、沙漠、盐田、广阔水面作业,行走时未带防护眼镜而引起,或太阳、紫外线灯等强烈紫外线的照射而致。潜伏期6-8小时,两眼突发烧灼感和剧痛,伴畏光、流泪、眼脸痉挛,头痛,眼睑及面部皮肤潮红和灼痛感,眼裂部结膜充血、水肿。 电光性眼炎的典型症状是,发病急聚,有明显的异物感,轻者自觉眼内沙涩不适,灼热疼痛;重者疼痛剧烈,畏光羞明,胞睑紧闭难睁,泪热如汤,视物模糊,眼睑红肿或有小泡,或有出血点,白睛红赤,检查可见黑睛呈弥漫浅层点状着色,瞳神缩小,眼睑皮肤呈现红色。重复照射者可引起慢性睑缘炎、结膜炎、角膜炎,造成严重的视力障碍。 职业性白内障主要是指劳动者在生产劳动过程及其他职业活动中,接触化学毒物、辐射线以及其他有害的物理因素所引起的以眼晶状体混浊为主的疾病。职业性白内障的诊断要有明确的化学、物理等职业性有害因素接触史,以眼晶状体混浊为主要临床表现,参考作业环境调查和空气中化学物质浓度测定及辐射剂量的测量资料,综合分析,排除其他非职业因素所致眼晶状体改变,方可诊断。 案例:吉林省某人参保鲜厂,在生产中采用紫外线空气灭菌。由于厂方缺乏卫生常识,工人无任何防护措施,在60瓦紫外线灯的照射下,工作7小时,致使在岗的28名工人发生不同程度的皮肤及眼部损伤。 a.定义 位于电磁波谱紫色光之外,波长从160~400nm的辐射线,叫紫外线,其辐射为紫外辐射。 b.危害 (1).皮肤 不同波段的紫外线,容易被不同皮肤层所吸收,如290nm的紫外线易被皮肤表层吸收。波长297nm的紫外线对皮肤影响能力最强,能使皮肤产生红斑、水疱和光感性皮炎等。全身症状可有头痛、乏力等。 (2).眼睛 波长250~320nm的紫外线可引起角膜炎、结膜炎。波场288nm的紫外线对角膜的危害最严重。 c.防护 电焊工作人员应备有绿色防护玻璃片的防护面盾,辅助焊接人员应备有透光较好的黄绿色眼镜。对上肢和脚部的皮肤暴露部位,应佩用长筒皮制手套和帆布脚面盖布,以避免紫外线对皮肤的直接照射。 来自: 职业病危害预评价(https://www.doczj.com/doc/10505585.html,) 详细出处参考:https://www.doczj.com/doc/10505585.html,/html/zyjk/zybfz/725.html

太阳辐射的特性

太阳辐射的特性 昼夜是由于地球自转而产生的,而季节是由于地球的自转轴与地球围绕太阳公转的轨道的转轴呈23°27′的夹角而产生的。地球每天绕着通过它本身南极和北极的“地轴” 自西向东自转一周。每转一周为一昼夜,所以地球每小时自转15°。地球除自转外还循偏心率很小的椭圆轨道每年绕太阳运行一周。地球自转轴与公转轨道面的法线始终成23.5°。地球公转时自转轴的方向不变,总是指向地球的北极。因此地球处于运行轨道的不同位置时,太阳光投射到地球上的方向也就不同,于是形成了地球上的四季变化(见下图)。每天中午时分,太阳的高度总是最高。在热带低纬度地区(即在赤道南北纬度23°27′之间的地区),一年中太阳有两次垂直入射,在较高纬度地区,太阳总是靠近赤道方向。在北极和南极地区(在南北半球大于90°~23°27′),冬季太阳低于地平线的时间长,而夏季则高于地平线的时间 长。 由于地球以椭圆形轨道绕太阳运行,因此太阳与地球之间的距离不是一个常数,而且一年里每天的日地距离也不一样。众所周知,某一点的辐射强度与距辐射源的距离的平方成反比,这意味着地球大气上方的太阳辐射强度会随日地间距离不同而异。然而,由于日地间距离太大(平均距离为1.5 x 108km),所以地球大气层外的太阳辐射强度几乎是一个常数。因此人们就采用所谓“太阳常数”来描述地球大气层上方的太阳辐射强度。它是指平均日地距离时,在地球大气层上界垂直于太阳辐射的单位表面积上所接受的太阳辐射能。近年来通过各种先进手段测得的太阳常数的标准值为1353w/m2。一年中由于日地距离的变化所引起太阳辐射强度的变化不超过上3.4%。 2.2 到达地面的太阳辐射 太阳照射到地平面上的辐射或称“日射”由两部分组成——直达日射和漫射日射。太阳辐射穿过大气层而到达地面时,由于大气中空气分子、水蒸气和尘埃等对太阳辐射的吸收、反射和散射,不仅使辐射强度减弱,还会改变辐射的方向和辐射的光谱分布。因此实际到达地面的太阳辐射通常是由直射和漫射两部分组成。直射是指直接来自太阳其辐射方向不发生改变的辐射;漫射则是被大气反射和散射后方向发生了改变的太阳辐射,它由三部分组成:太阳周围的散射(太阳表面周围的天空亮光),地平圈散射(地平圈周围的天空亮光或暗光),及其他的天空散射辐射。另外,非水平面也接收来自地面的反射辐射。直达日射、漫射日射和反射日射的总和即为总日射或环球日射。可以依靠透镜或反射器来聚焦直达日射。如果聚光率很高,就可获得高能量密度,但却损耗了漫射日射。如果聚光率较低,也可以对部分太阳周围的漫射日射进行聚光。漫射日射的变化范围很大,当天空晴朗无云时,漫射日射为总日射的10%。但当天空乌云密布见不到太阳时,总日射则等于漫射日射。因此聚式收集器采集的能量通常要比非聚式收集器采集的能量少得多。反射日射一般都很弱,但当地面有冰雪覆盖时,垂直面上的反射日射可达总日射的40%。 到达地面的太阳辐射主要受大气层厚度的影响。大气层越厚,对太阳辐射的吸收、反射和散射就越严重,到达地面的太阳辐射就越少。此外大气的状况和大气的质量对到达地面的太阳辐射也有影响。显然太阳辐射穿过大气层的路径长短与太阳辐射的方向有关。参看下图,A为地球海平面上的一点,当太阳在天顶位置S时,太阳辐射穿过大气层到达A点的路径为OA。城阳位于S点时,其穿过大气层到达A 点的路径则为0A。 O,A与 OA之比就称之为“大气质量”。它表示太阳辐射穿过地球大气的路径与太阳在天顶方向垂直入射时的路径之比,通常以符号m表示,并设定标准大气压和O℃时海平面上太阳垂

螺栓抗拉承载力计算

螺栓抗拉承载力计算 首先,纠正一下,楼主的问题应当是:螺栓抗拉承载力计算。 简单说,强度是单位面积的承载力,是一个指标。 公式: 承载力=强度x 面积; 螺栓有螺纹,M24螺栓横截面面积不是24直径的圆面积,而是353平方毫米,称之为有效面积. 普通螺栓C级(4.6和4.8级)抗拉强度是170N/平方毫米。 那么承载力就是:170x353=60010N. 换算一下,1吨相当于1000KG,相当于10000N,那么M24螺栓也就是可以承受约6吨的拉力。 螺栓有效面积可以从五金手册或钢结构手册查,强度指标可以从相关钢结构手册或规范查。当然这些也可以从网上查. 焊缝的抗拉强度计算公式比较简单 许用应力乘焊接接头系数在乘焊缝面积除以总面积,这就是平均焊接抗拉强度 抗拉强度与伸长率计算 公称直径为$7.0mm,其最大拉伸力为22。4KN,其断后标距为76.10mm,计算它的抗拉强度与身长率~!] 抗拉强度=拉力值/实际横截面面积 伸长率=(断后标距-标距)/标距*100% 抗拉强度Rm=22.4/(3.14*3.5*3.5)*10000=713.38MPa,修约后=715MPa 延伸A=(76.1-70)/70=8.71% ,修约后=8.5% 修约规则<0.25 约为0 ≥0.75约为1 ≥0.25且小于0.75约为0.5 请问抗拉强度和屈服强度有什么区别? 抗拉强度: 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度

电磁波辐射强度标准

以电磁波辐射强度及其频段特性对人体可能引起潜在性不良影响的阈下值为界,将环境电磁波容许辐射强度标准分为二级。 1.3.1 一级标准 为安全区,指在该环境电磁波强度下长期居住、工作、生活的一切人群(包括婴儿、孕妇和老弱病残者),均在会受到任何有害影响的区域;新建、改建或扩建电台、电视台和雷达站等发射天线,在其居民覆盖区内,必须符合“一级标准”的要求。 1.3.2 二级标准 为中间区,指在该环境电磁波强度下长期居住、工作和生活的一切人群(包括婴儿、孕妇和老弱病残者)可能引起潜在性不良反应的区域;在此区内可建造工厂和机关,但在许建造居民住宅、学较、医院和疗养院等,已建造的必须采取适当的防护措施。 超过二级标准地区,对人体可带来有害影响;在此区内可作绿化或种植农作物,但禁止建造居民住宅及人群经常活动的一切公共设施,如机关、工厂、商店和影剧院等;如在此区内已有这些建筑,则应采取措施,或限制辐射时间。 2 卫生要求 环境电磁波许辐射强度分级标准见下表。 波长 单位容许场强 一级(安全区) 二级(中间区) 长、中、短波V/m 〈10 〈25 超短波V/m 〈5 〈12 微波μW/cm2 〈10 〈40 混合V/m 按主要波段场强;若各波段场分散,则按复合场强加权确定 3 监测检验方法

本标准环境电磁波容许辐射强度监测检验方法见附录A。 4 监督执行 各级卫生防疫站或各级环境卫生监测站负责监督本标准的执行。 附录A 环境电磁波测量规范 (补充件) A.1 适用范围 本规范适用于放辐射源所产生的环境电磁波,其频率覆盖范围:长、中、短波(100kHz~30MHz),超短波(30MHz~300MHz),及微波(300MHz~300GHz)。 A.2 规范内容 A.2.1 测量方式 根据不同需要与目的,应用不同的测量方式,对已建台和扩建台,为调查辐射源周围环境电磁波辐射强度,及其分布规律,常以辐射源为中心,在不同方位取点的方式进行测量,简称点测;为全面调查某地区环境电磁波的背景值及按人口调查居民人群所受辐射强度的测量简称面测。 A.2.1.1 点测时以辐射源为中心,将待测区按5°~10°角度划线,呈扇形展开。随此划线,近区场以每隔5~20min定点测量,远区场以每隔50~100m定点测量,或按特殊需要选点测量。 A.2.1.1.1 简易测量:一般用各向同性探头的宽频段场强仪测定之,如探头为非各向同性者,则分别测定各不同极化方向的场强值,取其矢量和。

紫外线辐射有什么危害

紫外线辐射有什么危害 文章目录*一、紫外线辐射有什么危害*二、紫外线辐射幅度受什么因素影响*三、紫外线的作用 紫外线辐射有什么危害1、紫外线辐射有什么危害 报告中称,全球每年多达六万人的死亡是过度暴露于紫外线 辐射之中的结果,其中约四万八千人死于恶性黑素瘤,另外一万 二千人死于皮肤癌。 除了上述致命疾病之外,紫外线辐射导致的健康问题还包括 日灼、皮肤光老化、皮质性白内障、翼状胬肉、嘴唇庖疹复发、以及罕见的眼部鳞状细胞癌等等。 2、紫外线对眼睛造成的伤害 日光性角膜炎:波长为280毫微米的紫外线对角膜损伤力最大,能引起剧烈疼痛、角膜混浊而致视力下降,造成日光性角膜炎。 白内障:波长为290-400毫微米的紫外线,能使晶状体可溶 性蛋白交联凝聚,使晶状体老化或变得不透明,最终发生白内障。紫外线对晶体的影响是可累积的,在紫外线较强的高原地区尤其 明显。有研究表明,每天多晒1个小时的太阳,患白内障的危险会增加10%。 视网膜病变:紫外线尤其是长波紫外线UVA,可穿透到眼内深部,直达眼底而引起黄斑变性等视网膜病变。黄斑是视网膜上视 觉最敏锐的部分,此处的病变能严重影响视力。 翼状胬肉:紫外线损伤角膜前弹力层,使结膜下结缔组织增

生,并形成纤维血管组织向角膜中央侵入,从而引起翼状胬肉。 3、眼睛怎么防护紫外线的辐射伤害 3.1、紫外线防护眼镜的颜色选择以灰色和褐色为宜,如果仅佩戴不能阻挡紫外线的一般彩色镜片,会因为进光量减少而使瞳孔放大,不但无法有效过滤紫外线,反而会使进入眼球的紫外线更多,这将比不戴眼镜造成更大的伤害。 3.2、配戴宽边镜腿的眼镜,可提供99%至100%防紫外线A和紫外线B能力。 3.3、在户外时要始终佩戴眼镜,不要因为多云和阴天放松对眼睛的保护。 3.4、对于不习惯戴眼镜的人,使用防紫外线的遮阳伞或宽边太阳帽,可以挡住约30%的紫外线。 紫外线辐射幅度受什么因素影响1、季节:夏季(5月至9月)时因为距离太阳的距离更近,所以依不同区域紫外线的强度会增加至少10%至20%不等。 2、纬度:愈接近赤道的地方紫外线强度愈强。 3、时间:每天接近中午的时间(约为上午10:00至下午2:00)是紫外线强度最强的时候。 4、海拔:海拔高度每增加1000英尺,紫外线强度会增加5%。

徐州地区太阳辐射强度的计算..

徐州地区太阳辐射强度的计算 1.1 太阳辐射强度的计算基础知识 1.1.1 日地相对运动与赤纬角 贯穿地球中心与南北两极相连的线称为地轴。地球除了绕地轴自转以每天(24h)为一个周期外;同时又沿椭圆形轨道围绕太阳进行公转,运行周期约为一年。太阳位于椭圆形的一个焦点上。该椭圆形轨道称为黄道,在黄道平面内长半袖约为152 。 短半轴约为 ;椭圆偏心率不大,1月l 日为近日点,日地距离约 ;7月1日为远日点时 ,相差约3%。 一年中任一天的日地距离可以表示为: 81.510[10.017sin(2(93)/365)]R n km π=?+- 式中 R --- 日地距离 ; n --- 为1月1日算起,一年中的第几天 ; 地球的赤道平面与黄道平面的夹角称为赤黄角,它就是地轴与黄道平面法线间的夹角,在一年中的任一时刻皆保持为23.45°。太阳、地球的相对运动如图所示 以太为中心的日-地俯视图

以地球为中心的俯视图 在地球上任一位置观察太阳在天空中每天的视运动是以年为周期性变化的,并取决于太阳赤纬角的大小。赤纬角δ即正午时的太阳光与地球赤道平面间的夹角。取赤道向北为正方向,而向南为负方向,用δ表示。赤纬角δ从+23.45°到-23.45°变化,它导致地球表面上太阳辐射入射角的变化,使白天的长短随季节性有所不同。在赤道地区,从太阳升起到日落的持续时间为12h。但在较高纬度地区,不同季节其昼长就有相当大变化。赤纬角δ是地球围绕太阳运行规律造成的,它使地球上不同的地理位置所接受到的太阳入射光线方向不同,从而形成地球上一年有四季的变化。一年中有四个特殊日期,即:夏至、冬至、春分、秋分。北半球夏至(6月21日或22日)阳光正射北回归线赤纬角δ=23.45°;北半球冬至(12月22日或21日),太阳光线正射南回归线,δ=-23.45°;春分(3月20日或21日)和秋分(9月22日或23日)太阳正射赤道,赤纬角都为零,地球南北半球昼夜长度相等。 赤纬角的日变化可用如下近似表达式计算: δ=+ n 23.45sin[360(284)/365] 式中 n---从1月1日算起一年中的第几天的天数 ; 一年中赤纬角(δ)的变化范围23.45 ±°之间 ; 1.1.2 太阳时和时差

相关主题
文本预览
相关文档 最新文档