当前位置:文档之家› 车道被占用对城市道路通行能力的影响_2013年全国大学生数学建模大赛A题优秀论文

车道被占用对城市道路通行能力的影响_2013年全国大学生数学建模大赛A题优秀论文

车道被占用对城市道路通行能力的影响_2013年全国大学生数学建模大赛A题优秀论文
车道被占用对城市道路通行能力的影响_2013年全国大学生数学建模大赛A题优秀论文

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A

我们的参赛报名号为(如果赛区设置报名号的话):

所属学校(请填写完整的全名):吉林大学

参赛队员(打印并签名) :1. 高家兴

2. 张冠群

3. 孟伟彬

指导教师或指导教师组负责人(打印并签名):任长宇

日期: 2013 年 09 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

车道被占用对城市道路通行能力的影响

摘要:城市交通流具有密度大、连续性强等特点。因而偶然性突发性事件的发生,极易导致部分或全部车道被占用,降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。如处理不当,甚至出现区域性拥堵,对人们的生活造成不利的影响。在这种条件下,我们通过建立车道被占对道路交通通行能力影响的数学模型,正确地估算车道被占用对城市道路通行能力的影响程度,为交通管理部门的正确决策提供理论依据。

对于问题一,我们采用单位时间内可通过的最大标准车当量数来衡量道路的实际通行能力。要得出时发生时到撤离时间段内道路实际通行能力的变化情况,首先要对视频一进行处理,以发生交通事故的地点为横断面,考虑信号灯的周期60s,相位时间30s,就将视频以一个相位30s为时间间隔,统计在标准化后单位时间内从上游经过事故发生路段横断面的车流量,并换算成标准车当量数,我们建立了密度模型和实际通行能力模型,并将视频1中的统计数据用matlab绘制成图像,直观地展示了通行能力变化的过程。对于问题二,我们重复利用问题一的分析方法对视频二进行分析。对比可知,虽然视频二中发生事故的路段和所占的车道数与视频一中相同,但是道路实际的通行能力却要比视频一中通行能力要高,造成这个差异主要是因为视频二中所占车道是右转车道和直行车道,占总共车流量65%,视频一发生事故的两辆车占左转和直行车道共占总车流的79%。

对于问题三,我们运用交通流与流体动力学的相似性,在研读交通波理论的基础上建立了交通波理论模型,路段通行能力与自由流车速和堵塞密度模型,排队论模型,并参考了格林希尔茨模型,建立并分析了车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

对于问题四,我们发现问题四其实是问题三模型的实际运用,是在限制了事故初始排队长度和事故持续性地基础上,运用已知排队长度反求解持续时间的过程。我们首先求出了交通波的移动速度,然后代入问题三的模型,即可。

关键词:道路交通基本通行能力实际通行能力交通波理论模型排队论

一、问题重述

1.1背景

车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

现给视频1、视频2、视频1中交通事故位置示意图、上游路口交通组织方案图和上游路口信号配时方案图。注意到视频1和视频2中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

1.2问题

通过查阅和参考资料,进行分析建模,研究解决下面的问题:

(1)根据视频1,描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

(2)根据问题1所得结论,结合视频2,分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

(3)构建数学模型,分析视频1中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

(4)假如视频1中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

二、问题分析

2.1问题1的问题分析

这道题是要做一个针对于道路通行能力的模型,对道路的通行能力变化过程进行描述。道路的通行能力涉及信号灯周期、绿灯时长、事故等各方面因素。视频中的事故所处横断面的实际通行能力在事故发生前后变化明显,可以通过视频中一段区域内的车辆数和时间变化分析得出通行能力变化的原因。

本题的步骤是:

1、通过视频中120米内单位时间内通过的车辆数来统计道路的车辆通行量;

2、分析出道路通行能力变化的周期;

3、通过变化周期分析影响通行能力变化的因素;

4、描述视频中道路通行能力变化的过程。

2.2问题2的问题分析

这道题属于数据的分析处理与对比问题,要求对视频二中的数据进行分析,并结合问题1中的已有结论,说明所占车道不同对道路实际通行能力的影响差异。具体的数据处理方法与问题1相似,因此问题2即为问题1的模型推广。本文先将问题1中的模型应用到问题2中绘制数据分析图像,再与问题1中的数据分析图像进行对比,从而得到所占车道不同对道路实际通行能力的影响差异。

2.3问题3的问题分析

这道题是一道模型建立与求解问题,要求针对车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系建立数学模型。本文将视频一和视频二中所统计出的结果、问题1和问题2中的已有结论以及附件三、附件四和附件五中所给信息综合起来,将事故横断面实际通行能力、事故持续时间、路段上游车流量定为自变量,

运用交通波理论模型、路段通行能力与自由流车速和堵塞密度模型、线形u一k模型下的交通波方程、停车波模型和排队论模型建立并分析车辆排队长度与这三者的关系。2.4问题4的问题分析

问题四是模型的实际运用,要求我们将问题3的模型关系代入具体的情况中分析应用。本文通过分析视频数据,统计事故段车流量,计算道路堵塞密度,进而运用问题三的模型,将问题四数据代入,得出所需要的结论。

三、模型假设

3.1假设每个路口的右转、直行和左转比例均为附件三中给出的情况。

3.2假设对于小型四轮车,1veh=1pcu;中型四轮车,1veh=1.5pcu;大型四轮及四轮以上车,1veh=2pcu。

3.3假设事故发生时车辆初始排队长度为零,且事故持续不撤离。

3.4假设开车的司机在法定的速度内行驶。

3.5假设第一个小区路口(即小区的入口处)没有车辆驶出。

3.6假设视频一和视频二中的事故完全占用了两个车道。

3.7假设在事故中影响行车速度大小的原因只有交通事故。

四、定义与符号说明

注:其他未注明的符号在文章中说明。

五、模型的建立与求解

5.1问题1的模型

问题1中,要求我们描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程,因而我们必须对大量的数据进行分析统计,从而计算出道路的实际通行能力,进而定量的描述事故所处横断面的实际通行能力的变化过程。我们从视频一中事故发生开始到事故结束,对车流量,间隔时间,排队次数等数据进行了统计整理,具体结果见附录中的附表1—附表4。

5.1.1模型Ⅰ车辆密度模型

(一)模型的建立

对视频一进行统计分析,取单位时间为5s,观察交通事故所影响的路段(即为从事故点开始到向上120m之间的路段)中在各时间点存在的标准车当量数。取16:43:00-16:46:30这一时间段进行数据分析,绘制出下图所示曲线:

单位长度内的标准车当量数即为车辆密度,则有:

=

n

l

其中,n为标准车当量数,单位为pcu;l为交通事故所影响的路段长度,单位为m。(二)模型的求解

将上图所示的标准车当量数除以交通事故所影响的路段长度,由视频1可以看出l=120m,做商后得到车辆密度随时间的变换曲线:

5.1.2模型Ⅱ实际通行能力模型

(一)模型的建立

取单位时间为15s,观察单位时间内可能通过的最大标准车当量数,即为该路段单位时间内的实际通行能力。

Ⅰ.行车状态拥堵时,单位时间内通过事发点的标准车辆当数即可视为单位时间内可能通过的最大标准车当量数。取16:43:00-16:47:00这一时间段中拥堵的部分进行分析,拟合出下图所示曲线:

Ⅱ.行车状态通畅时,可以通过下述公式计算可能通过的最大标准车当量数:

α=0

0t T

其中,0T 为所取单位时间长度,单位为s ,0t 为一辆车在流量正常情况下通过事发点的所用时间,单位为s/pcu 。

(二)模型的求解

Ⅰ.行车状态拥堵时,由图像拟合可以粗略得出,该时间内拥堵状态下的可能通过的最大标准车当量数为4.8pcu 。

Ⅱ.行车状态通畅时,根据视频分析,取0T =15s ,0t =0.8s/pcu 。得出该时间内通畅状态下可能通过的最大标准车当量数为18.75pcu 。

综上所述,视频中交通事故发生至撤离期间, 信号灯控制的存在使得交通流在交叉口产生周期性的变化。上游路口红灯期间事故路段交通压力较小,没有形成排队,道路通行能力较高;当上游路口变为绿灯后,大量车辆进入事发路段,在被占用车道行驶的汽车需要并入可通行道路,因此造成道路秩序混乱;车流量增大以及混乱的交通秩序导致道路通行能力下降。如果道路通行能力过低则导致排队队伍过长,则会进一步影响下一红绿灯周期的通行。当上游路口指示灯为绿灯时,事故所处横断面实际通行能力由正常通行能力(单位时间内通过18.75pcu )开始逐渐降低(最低降至单位时间内通过4.8pcu )随后又逐渐升至正常通行能力,路面状况为拥堵;当上游路口指示灯为红灯时,基本维持该路段正常的通行能力,路面状况保持正常。 5.2问题1的模型在问题2中的推广

问题2中要求我们根据问题1所得结论,结合视频2,分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。因而我们要对视频二中的数据做相关的统计处理,并与问题1中所得结论作对比。对于视频二,选取30s 的周期对红灯时的流量、绿灯时的流量进行统计,并取二者的平均值作为最终的车流量具体的统计结果见附录中的附表5。

5.2.1模型Ⅰ 车辆密度模型的推广

对视频一进行统计分析,取单位时间为5s ,观察交通事故所影响的路段(即为从事故点开始到向上120m 之间的路段)中在各时间点存在的标准车当量数。

先取17:34:30-16:36:30这一时间段进行数据分析,绘制出下图所示曲线:

再取17:52:00-17:54:00这一段时间进行数据分析,绘制出下图所示曲线:

单位长度内的标准车当量数即为车辆密度,则有:

= l

n

其中,n 为标准车当量数,单位为pcu ;l 为交通事故所影响的路段长度,单位为m 。

故而可以看出,在事故发生初期,车流量密度仍保持一段时间的正常状态,而在事故发生后期,道路拥堵现象较为严重,出现这一状况的原因为事发后期是下班车辆高峰期。 5.2.2模型Ⅱ 实际通行能力模型的推广

取单位时间为15s ,观察单位时间内可能通过的最大标准车当量数,即为该路段单位时间内的实际通行能力。

Ⅰ.行车状态拥堵时,单位时间内通过事发点的标准车辆当数即可视为单位时间内可能通过的最大标准车当量数。取17:52:00-17:54:00这一时间段中拥堵的部分进行分析,绘制出下图所示曲线:

由图像拟合可以粗略得出,该时间内拥堵状态下的可能通过的最大标准车当量数为5.1pcu 。

Ⅱ.行车状态通畅时,实际通行能力与问题一中的情况相似。

由此可以看出,占用第二车道和第三车道时对实际通行能力的影响要比占用第一车道和第二车道时的影响大,会造成相对严重的交通堵塞状况。 根据模型Ⅰ的推广,可以看出若事故占用了第一车道和第二车道,则在事故发生初期,车流量密度仍保持一段时间的正常状态,而在事故发生后期,道路拥堵现象较为严重。出现此种现象的原因可能为:视频二中发生的事故的时间是17:34:17,与视频一中发生事故的时间16:42:32相比,更加接近下班车辆高峰期,车流量增大;同时发现视频二中事故持续时间比视频一中要长,也使视频二中事故发生后期的车辆排队较长。

综上所述,同一横断面交通事故所占车道不同对该横断面实际通行能力影响的确存在差异,在视频一和视频二中具体表现为占用车道一和车道二时道路实际通行能力要比占用车道二和车道三时道路实际通行能力好。 5.3问题3的模型

5.3.1模型Ⅰ 交通波理论模型

在遇到的道路上交通事故中,往往会出现交通瓶颈,本文应用类似于流体波的交通波理论。如图所示,假设道路上有两个相邻的不同交通流密度区域(1k 和2k ),用垂直线S 分割这两种密度,称S 为波振面,设S 的速度为w ,并规定交通流按照图中箭头x 正方向运行。[1]

显然有交通流量守恒可知,在时间t 内通过界面S 的车辆数N 可以表示如下:

t k u t k u N r r 2211==

即:2211)()(k w u k w u -=-

整理得:)(121122k k w k u k u -=-

由车流量基本模型ku q =可知:11u k q =,22u k q = 代入上式,可以得到:

121

2k k q

q w --=

5.3.2模型Ⅱ 路段通行能力与自由流车速和堵塞密度模型

由交通流理论可知,交通量(q)、速度(u)和密度(k)三参数之间的关系为: ku q = (1)

其中,q 为路段的车流量,k 为路段车流密度,u 为路段行车速度。

当某一段公路上的交通量逐渐增大, 达到1=C q

时,道路上的车辆将开始产生拥挤,此

时所计算到的交通密度称为最大密度, 用j K

来表示,道路的交通堵塞密度可以由道路

的基本信息计算得到[2]。而j K

所对应的交通量就是路段通行能力C 。此时如果该路段的车辆仍不断增加, 将最终导致交通阻塞,从而使速度最后达到零,整个路段道路( 车道) 被车辆全部占据,我们称此时道路上的交通密度为交通阻塞密度(又称为最大密度max

K )对应的交通量显然为零。理论上通过该路段的时间为无限长, 这种规律关系见下图:

又由速度-密度的线性关系表达式可知

k k u u k u f f max

)(-

= (2)

其中,f u 为自由流行驶时的行车速度,

max

K 为路段拥堵到流量为0时的车流密度,其

它的同式(1)。

由 (1) 式和(2)式可知路段流量和路段车流密度之间的关系为

2

max

)(k k u k u k q f f -= (3)

上述表达式令0=dk dq ,可以得知,当 f u u 21=并且 max 2

1

k k =时,式(3)取最大值,我们

令最大值为C ,则有

max 4

1

k u C f = (4)

5.3.3模型Ⅲ 线形u 一k 模型下的交通波方程

对于车辆密度较大的交通拥挤状况,速度一密度模型一般采用格林伯(Greenberg)模型(即对数模型);对于较小密度的交通状况,速度一密度模型一般采用安德伍德(Underwood)模型(即指数模型);而对于一般交通流情况,都采用著名的格林希尔茨(Greenshields)模型,尽管该模型在研究高密度和低密度交通流情况时存在一些偏差,但其形式简单,便于计算,应用面广泛,因此在本文中速度——密度模型采用格林希尔茨模型。

根据格林希尔茨的车流速度一密度线形关系,即 )/1(j f k k u u -= (5)

其中u 为车速(km/h ),f u 为自由流车速(km/h),k 为事故点上游车流的车流密度(veh/km ),j k 为堵塞密度(veh/km)

)/1(j f k k u q -= (6)

将式(4-5)和式(4-6)代入到交通波理论式(4)中,可以得到交通波的另一种形式

???

?

??+-

=j f k k k u 211ω (7) 5.3.4模型Ⅳ 停车波模型

当发生事故造成路段封闭断流,车流就从高速度低密度状态变成零速度高密度状态,即停车状态,形成集结波,这种集结波也可称为停车波,停车波沿停车队列的尾部向上游延伸的速度就是停车波的波速,根据交通波理论中波速的基本公式,代入j k k =2,到式(7)中,容易得到事故地点前停车波的波速为

j f stop k k

u 1-=ω (8)

根据式(5)可得到

j f k k u

u /1-= (9)

代入上式的停车波的波速为

k k q

j stop --

=ω (10)

5.3.5模型Ⅴ 道路交通阻抗的排队论模型

对一般交通网络的路段,假定车流到达服从参数为λ的泊松分布,行驶时间服从参数为μ/1的负指数分布,路段车流的最大容量为c ,该路段的基本通行时间为1t ,则车辆在该路段行驶的时间可分为两部分:一部分是由于拥挤造成的延误,另一部分是基本通行时间[3]。经推导可得到车辆经过该路段的平均时间公式:

1t c T +-=λ

μλ

γ

(11) 将流量表达式μλ/=f 带入其中,可得:

1t f

c f

T +-=γ

(12) 其中,c 为路段的最大通行能力,1t 为基本通行时间,γ为比例因子,且γ>0。 5.3.6模型的求解 在交通接警时间T 内,计算车辆排队长度||ω*T 的大小与交通事故点距离上游交叉口的长度x 的比较,其中长度x 由通过城市地理信息平台GIS 得到。 若||ω*1T

若||ω*1T >x ,则说明在接警时间1T 内,车流排队延伸至上游交叉口(若本模型作交叉口发生“多米诺”现象处理,即整个交叉口产生排队现象),计算出排队至交叉口的耗

||ωx t =

,在剩余时间t T -1内交通波由该交叉口向各个方向延伸开去,波速为各个路口的停止波速k

k q

j stop --

=ω, 其中q 为该交叉口某一进口路段交通流量,k 为该进口路段的车流密度,皆可以通过交通检测系统监测得到; j k 为该进口路段的交通堵塞密度,由道路的基本资料可以计算得到,向各个方向产生的排队长度为stop t T ω).(1-,若排队延伸至下个交叉口,重复上面计算过程,直到后面进行交通事故处理时间2T 内的车辆排队计算。

在交通接警时间2T 内,若在时间1T 内排队没有到达上游交叉口,则在排队长度1T ω的基础上车辆继续排队,此时的交通波为停止波,波速为k

k q

j stop --

=ω ,向上游交叉口延伸过去,遇到交叉口则产生“多米诺”现象,重新计算交叉口各个方向的停车波速stop ω,重复前面的计算步骤;若在时间1T 内排队到上游交叉口,则不改变波速,把时间2T 直接加到前面1T 时间内交通排队时间上。

若交通事故发生在交叉口,则直接在交叉口产生四个方向的停止波,波速由交通波公

式k k q

j stop --=ω可以得到,在21T T +时间内的向四周产生的车辆排队范围的计算方法同

前的重复循环计算方法。交通事故在时间内的影响范围为上述计算产生停止波的交叉口和越过交叉口的路段排队长度。

六、模型的实现与评价

6.1模型的实现

6.1.1模型的推广

将问题3的模型推广到问题4中,根据交通检测系统,监测事故点的通行能力、交通流速度、密度和上游的交通量、速度、密度等交通数据,以及路网的交通流数据,将得到的事故点交通数据带入交通波公式,计算出由交通事故导致的交通波速度w 。 在交通事故的接警时间1T 内,交通波的速度

)1(21j f k k

k u w +-=

其中,f u 为事故路段的自由流速度,即该路段的设计车速,可以通过城市地理信息平台GIS 得到道路基本资料;1k 为事故段的交通密度,由交通检测系统监测得到;2k 为事故点上游的交通密度,同样也是通过交通检测系统监测得到;j k 为该路段的交通堵塞密度,由道路的基本资料可以计算得到。

又由假设,事故发生时车辆初始排列长度为零,且事故持续不撤离。 在交通事故持续时间T 内,交通流波阵面S 向上游移动的距离为T w . 6.1.2模型的求解 上游路口长0l

假设,车辆的平均长度加上车车间距为d

故,d

k j 1000

=(pcu/km)

上游车流量为q ,

交通事故段的车流量为p ,

f

u q k =1

f

u p k =

T w l .=

代入,求得s T 330=

故而,若交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h ,则从事故发生开始,经过s T 330=的时间,车辆排队长度将到达上游路口。 6.2模型的评价 6.2.1模型的优点

本文的模型建立上有不少创新之处,其优点有:

(1)该模型结合了道路的实际通行状况与理论依据,充分的综合了多种相关道路交通的数学模型,因而具有较高的说服力与准确性。

(2)适用于较多种类的车道占用情况,具有形式简单,便于计算,应用面广泛等优点。

(3)考虑到题中涉及问题的特殊性,本文主要采用了交通波理论模型和排队论理论,而不是传统的统计模型,分析更有据,预测更精准。

(4)本题中用到的数据全部来自于视频一和视频二中的实际情况,数据真实可靠。 6.2.2模型的不足

尽管该题在运用和建立模型时充分的考虑了实际的情况并且根据实际情况对模型进行了改动,但是依然存在些许不足之处:

(1)模型处理时虽然形式简单,便于计算,而且也选取了真实可靠的数据,但是道路交通问题并不具有普遍性,此模型得出的结论只能反映车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的大致关系。

(2)由于缺少其他的路况资料和数据,本文无法进行模型的检验,模型选取的准确性和精确性无法确保。

6.2.3模型的优化

在模型的优化与改进部分,如果有更加充足的数据,可以通过使用SPSS软件对交通情况进行线性回归分析,而不是像本文中对于模型的结论与求解大多是通过对于简单数据图像的分析得来的。

七、参考文献

[1]臧华,彭国雄. 城市快速道路异常时间下路段行程时间的研究. 交通运输系统工程与信息,2003:3(2):57—59

[2]余斌. 道路交通事故的影响范围与处理资源调动研究. 2006

[3]段保群,奚宏生,周亚平. 排队系统性能分析及Maekov控制过程[M]. 合肥:中国科学技术大学出版社,2004.

八、附录

8.1附录—表格

附表 1.

附表 2.

附表 3.

附表 4.

附表 5.

8.2附录—程序代码及其结果

注:以下程序均在Matlab R2012a中运行。

程序代码 1.

a=0:5:295

b=[10,11,10,12,11,15,15,16,14,13,10,9,7,5,4,4,4,5,7,7,5,5,4,3,4,4,6,7,5,3,9,10,11,12,11,16,14, 16,14,13,11,10,7,5,5,4,4,5,7,7,5,5,4,3,4,4,6,7,4,3]

plot(a,b)

xlabel('时间')

ylabel('标准车当量数')

title('图5.1 标准车当量数变化曲线')

程序代码 2.

a=0:5:295

b=[10,11,10,12,11,15,15,16,14,13,10,9,7,5,4,4,4,5,7,7,5,5,4,3,4,4,6,7,5,3,9,10,11,12,11,16,14, 16,14,13,11,10,7,5,5,4,4,5,7,7,5,5,4,3,4,4,6,7,4,3]

plot(a,b/120)

xlabel('时间')

ylabel('车辆密度')

title('图5.2 车辆密度曲线')

grid

程序代码 3.

c=0:15:135

d=[6,3,6,5,5,4,4,5,5,5]

e=[4.8,4.8,4.8,4.8,4.8,4.8,4.8,4.8,4.8,4.8]

plot(c,d)

hold on

plot(c,e)

axis([0,135,0,10])

xlabel('时间')

ylabel('通过的标准车当量数')

title('图5.3 可能通过的最大标准车当量数曲线')

程序代码 4.

g=0:5:95

h=[2,2,2,6,13,16,14,13,10,7,7,6,4,4,8,8,10,11,10,8]

plot(g,h)

axis([0,100,0,17])

xlabel('时间')

ylabel('标准车当量数')

title('图5.4事故发生初期的标准车当量数变化曲线')

grid

程序代码 5.

h=[25,24,21,20,20,19,18,17,17,19,19,18,17,16,14,14,14,13,16,20,20,22,19,18,18] g=0:5:120

plot(g,h)

xlabel('时间')

ylabel('标准车当量数')

title('图5.5 事故发生后期的标准车当量数变化曲线')

grid

大学生数学建模竞赛组队方案

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):成都纺织高等专科学校 参赛队员(打印并签名) :1. XXX(机电XXX) 2. XXX国贸XXX) 3. XXX(电商XXX) 指导教师或指导教师组负责人(打印并签名): 日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

目录 一、问题的重述 (1) 1.1 背景资料与条件 (1) 1.2 需要解决的问题 (1) 二、问题的分析 (2) 2.1 问题的重要性分析 (2) 2.2问题的思路分析 (3) 三、模型的假设 (4) 四、符号及变量说明 (4) 五、模型的建立与求解 (4) 5.1建立层次结构模型 (4) 5.2构造成对比较矩阵 (5) 5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6) 5.4一致性检验 (7) 5.5层次分析模型的求解与分析 (8) 5.5.1 构造成对比较矩阵 (8) 5.5.2计算25优秀大学生的综合得 (9) 六、模型的应用与推广 (11) 七、模型的评价与改进 (12) 7.1模型的优点分析 (12) 7.2模型的缺点分析 (12) 7.3模型的进一步改进 (12) 八、参考文献 (13) 附件一 (14) 附件二 (16)

2013全国数学建模大赛a题优秀论文

车道被占用对城市道路通行能力的影响 摘要 随着城市化进程加快,城市车辆数的增加,致使道路的占用现象日益严重,同时也导致了更多交通事故的发生。而交通事故发生过程中,路边停车、占道施工、交通流密增大等因素直接导致车道被占用,进而影响了城市道路的通行能力。本文在视频提供的背景下通过数据采集,利用数据插值拟合、差异对比、车流波动理论等对这一影响进行了分析,具体如下: 针对问题一,首先根据视频1中交通事故前后道路通行情况的变化过程运用物理观察测量类比法、数学控制变量法提取描述变量(如事故横断面处的车流量、车流速度以及车流密度)的数据,从而通过研究各变量的变化,来分析其对通行能力的影响。而视频1中有一些时间断层,我们可根据现有的数据先用统计回归对各变量数据插值后再进行拟合,拟合过程中利用残差计算值的大小来选择较好的模型来反应各变量与事故持续时间的关系,进而更好地说明事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。 针对问题二:沿用问题一中的方法,对视频2中影响通行能力的各个变量进行数据采集,同样使用matlab对时间断层处进行插值拟合处理,再将所得到的的变化图像与题一中各变量的变化趋势进行对比分析,其中考虑到两视频的时间段与两视频的事故时长不同,从而采用多种对比方式(如以事故发生前、中、后三时段比较差值、以事故相同持续时间进行对比、以整个事故时间段按比例分配时间进行对比)来更好地说明这一差异。由于小区口的位置不同、时间段是否处于车流高峰期以及1、2、3道车流比例不同等因素的影响,采用不同的数据采集方式使采集的变量数据的实用性更强,从而最后得到视频1中的道路被占用影响程度高于视频2中的影响程度,再者从差异图像的变化波动中得到验证,使其合理性更强。 针对问题三:运用问题1、2中三个变量与持续时间的关系作为纽带,再根据附件5中的信号相位确定出车流量的测量周期为一分钟,测量出上游车流量随时间的变化情况,而事故横断面实际通行能力与持续时间的关系已在1、2问中由拟合得到,所以再根据波动理论预测道路异常下车辆长度模型的结论,结合采集数据得到的函数关系建立数学模型,最后得出事故发生后,车辆排队长度与事故横断面实际通行能力、事故持续时间以及路段上游车流量这三者之间的关系式。 针对问题四:在问题3建立的模型下,利用问题4中提供的变量数据推导出其它相关变量值,然后代入模型,估算出时间长度,以此检验模型的操作性及可靠性。 关键词:通行能力车流波动理论车流量车流速度车流密度

道路通行能力计算

下面只是相关的计算方法只是要寻找更为专业只是还是要看专业书籍的。 道路通行能力 第3.2.1条路段通行能力分为可能通行能力与设计通行能力。 在城市一般道路与一般交通的条件下,并在不受平面交叉口影响时,一条机动车车道的可能通行能力按下式计算: Np=3600/ti(3.2.1-1) 式中Np——一条机动车车道的路段可能通行能力(pcu/h); ti——连续车流平均车头间隔时间(s/pcu)。 当本市没有ti的观测值时,可能通行能力可采用表3.2.1-1的数值。 不受平面交叉口影响的机动车车道设计通行能力计算公式如下: Nm=αc·Np(3.2.1-2) 式中Nm——一条机动车车道的设计通行能力(pcu/h); αc——机动车道通行能力的道路分类系数,见表3.2.1-2。

受平面交叉口影响的机动车车道设计通行能力应根据不同的计算行车速度、绿信比、交叉口间距等进行折减。 第3.2.2条一条自行车车道宽1m。不受平面交叉口影响时,一条自行车车道的路段可能通行能力按下公式计算: Npb=3600Nbt/(tf(ωpb-0.5))(3.2.2-1) 式中Npb——一条自行车车道的路段可能通行能力(veh/(h· m)); tf——连续车流通过观测断面的时间段(S); Nbt——在tf时间段内通过观测断面的自行车辆数(veh); ωpb——自行车车道路面宽度(m)。 路段可能通行能力推荐值,有分隔设施时为2100veh/(h·m);无分隔设施时为1800veh/(h·m)。 不受平面交叉口影响一条自行车车道的路段设计通行能力按下式计算: Nb=αb·Npb(3.2.2-2) 式中Nb——一条自行车车道的路段设计通行能力(veh/(h· m)); αb——自行车道的道路分类系数,见表3.2.2。 受平面交叉口影响一条自行车车道的路段设计通行能力,设有分隔设施时,推荐值为1000~1200veh/(h·m);以路面标线划分机动车道与非机动车道时,推荐值为800~1000veh/(h·m)。自行车交通量大的城市采用大值,小的采用小值。 第3.2.3条信号灯管制十字形交叉口的设计通行能力按停止线法计算。

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

影响城市道路通行能力因素分析

影响城市道路通行能力的因素主要取决于道路条件、交通条件及服务水平等因素。道路条件一般指道路分类、道路横断面、车道宽度、道路线型、交叉口形式、路面抗滑能力等;交通条件指大型车辆、公共交通、自行车的混入、超车、车道分布、交通量的变化、交通管理、交通管制等;而服务水平则是指道路使用者根据交通状态从速度、舒适、方便、经济和安全等方面所能得到的服务程度。 一、道路条件影响因素 1 道路分类(路网结构) 2 道路横断面 城市道路横断面形式有:单幅路、双幅路、三幅路及四幅路。 (1)单幅路 将所有的车辆(机动车、非机动车)组织在一条道上混合行驶。道路上,由于机动车与非机动车混行,因此互相间的干扰势必就大,通行能力受到很大程度的影响,更重要的是双方都有一种不安全感,其通行能力难以提高。 (2)双幅路 利用中央分隔带(或防撞墙)将机动车道按上下行方向隔离。由于双幅路将机动车道的双向进行了分隔,减少了对向车流的干扰,道路通行能力比单车幅路有所提高。但由于其在一个方向上机非混行,机非之间的干扰还是存在,道路的通行能力还是受到制约。 (3)三幅路 利用机非分隔带将机动车道与非机动车道分离。由于三幅路的组成将机动车道与非机动车进行分隔,避免了机非之间的干扰,从而很大程度上提高了道路的通行能力。但由于其没有将机动车道上、下行分隔,机动车道对向车流的干扰同时存在。 (4)四幅路 利用中央分隔带(或防撞墙)、机非分隔带将机动车道双向、机动车道与非机动车道之间分隔。四幅路彻底避免了机非之间、对向车流之间的干扰,从而大大提高了道路的通行能力,是最理想的道路横断面型式,缺点是路幅宽占地多。 3 道路宽度 当计算行车速度40km/h,车道宽度为3.75m,而当行车速成度<40km/h,车道宽为3.5m。可见速度越大,要求车道宽度越宽,通行能力越大。当车道宽<3.5m时,就应考虑采用车辆通行能力的折减系数。 4 道路线型 道路平面线型由直线段和平面曲线段组成。道路纵断面线型由上坡、下坡的直线和竖曲线组成。 (1)道路曲线半径 (2)道路纵坡 5 道路交叉口形式 城市道路交叉口形式通常分:平面交叉和立体交叉。 城市道路平面交叉口的形式有十字形、T形、Y形、x形、环行交叉、多路交叉、错位交叉、畸形交叉等。通常采用最多的是十字形交叉,十字交叉以正交为宜,斜交时交叉角应大于45°。规范规定应避免错位交叉、多路交叉和畸形交叉。平面交叉口的特点是:交叉路口的冲突点和交织点多,视线盲区大,交通流量大,各方面的车辆均在此实现合流分流,相互交织、冲突的机会增多。 提高平面交叉口通行能力的方法有:将路口进行渠化,对车流进行有效引导,增设交叉口进口的车道数等城市道路立体交叉分为分离式和互通式两类。 互通式立体交叉又分完全互通式、不完全互通式和环形式三种。由于平面交叉口制约了道路通行能力,因此,现在很多城市在道路与铁路,高速公路现各级道路,快速路与陕速路、主干路,主干路与主干路等交通量较大的交叉口等均采用立体交叉。采用立体交叉可以减少或消除交叉口的冲突点,从而从根本上提高道路的通行能力。

全国大学生数学建模竞赛的准备方法

全国大学生数学建模竞赛的准备方法 全国大学生数学建模竞赛于每年9月上旬(今年是9月7日)举行。但是在此之前,需要做好哪些准备,让各个参赛队员在竞赛中做到有备无患呢?在总结过去多年培训指导各种数学建模竞赛的基础上,仅就个人观点,介绍一些关于如何准备数学建模竞赛的经验和体会,仅供参考。在这里主要向大家介绍竞赛的基本情况,包括如何组队、如何选题以及在竞赛中如何合理分配时间。通过本次学习,希望大家能够了解数学建模竞赛的基本情况,为全国大学生数学建模竞赛以及其他各类数学建模竞赛做好准备。 一、如何组建优秀数学建模队伍 进入大学阶段参加各种科技竞赛,可以体会到一种和中学竞赛不同的感受,这种感受来自团队合作。以前的各项赛事都是以个人为单位参加竞赛,它们都是考查个人的能力。但是在大学中,由于难度和任务量的加重以及对团队合作精神的关注,因此大部分的赛事都是以团队为单位参加的。竞赛在考查个人能力的同时,还考查团队成员的合作精神。在数学建模竞赛中,团队合作精神是能否取得好成绩的最重要的因素,一队三个人要分工合作、相互支持、相互鼓励。从历年的统计数据可以看出,竞赛成绩优秀的队员往往并不是每个人在各个方面都特别擅长的队伍,而是团队相处得最融洽的队伍。从这一点也可以看出团队合作的重要性。 在竞赛的过程中,切勿自己只管自己的那一部分,一定要记住这是一个集体的竞赛。很多时候,往往一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚。因此无论做任何事情,三个人一定要齐心才行,只靠一个人

的力量,要在3天之内写出一篇高水平的论文几乎是不可能的。让三人一组参赛一方面是为了培养合作精神,其实更为重要的原因是这项工作确实需要多人合作,因为一个人的能力是有限的,知识掌握也往往是不全面的。一个人做题,经常会走向极端,得不到正确的解决方案。而三个人相互讨论、取长补短,可以弥补一个人所带来的不足。 在队伍组建的时候,需要强调“队长”这个名词概念。虽然在全国大学生数学建模竞赛中并没有设立队长,作为队长在获得的证书上也没有特别标注。但是在队内设立“队长”是非常有必要的。因为在比赛中可能会碰到各种突发状况,队长是很重要的,他的作用就相当于计算机中的CPU,是全队的核心。如果一个队的队长不得力,往往影响一个队的正常发挥。竞赛是非常残酷的,在3天3夜(72h)的比赛中,大家睡眠时间都得不到保障,怎样合理安排团队时间就是队长需要做的事情。在比赛过程中,由于睡眠不足,大家脾气都会很急躁。在这种情况,往往会为了一些小事而发生争吵,如果没有适当的处理,有些队伍将会放弃比赛,而队长就应该在这个时候担起责任。 在明确“队长”这个概念后,接下去谈谈怎样科学选择队友。在数学建模竞赛中,题目要求完成的工作量是很大的,因此这项任务是必须分工完成的,各有侧重、相互帮助,这样才能获得好成绩。而科学地选择队友则显得非常重要,也是走向成功的第一步。一般情况下选择队友可以从以下几个方面考虑着手: 1. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。

2013年全国大学生数学建模竞赛A题

车道被占用对城市道路通行能力的影响 摘要 在城市道路常会发生交通异常事件,导致车道被占用,事发地段的通行能力也会因此受到影响。当交通需求大于事发断剩余通行能力时,车辆排队,产生延误,行程时间增加,交通流量发生变化。根据这些特点,我们以城市道路基本路段发生交通事故为例,主要分析了交通事故发生后道路的通行能力的变化,以及不同时间段事故点及其上下游路段交通流量的变化,用于以后进一步突发事件下交通流的预测。 针对问题一,根据道路通行能力的定义,考虑到车身大小不同,我们把所有车辆进行标准化。运用统计估算模型对视频一的车辆进行分段统计,得出未发生事故前道路通行能力2555(辆/h )。因为车辆所占车道未达到数学理论计算要求,所以我们利用修正过后城市干道通行能力的数学计算模型,计算出交通事故发生至撤离期间的理论通行能力为1356(辆/h ),进而与实际数据对比,得出相对误差。 针对问题二,我们基于问题一的模型,以及附件三数据分析所得,不同车道的通行流量比例不同,对视频二的车辆各项数据的分段统计分析,得到道路实际通行能力。再根据修正的理论数学计算模型,得出理论通行能力。得到的结果与问题一的结果相比较,得出结论:在同一横断面上的实际通行能力与交通事故所占车道的车流量呈负相关性。 针对问题三,我们运用了两种模型,一种结合层次分析与线性回归模型,得到理想化的函数关系式。基于层次分析模型,我们将进行问题分解,把车辆长度作为目标层,其他三个量作为准则层。通过查阅资料对各因素进行打分,计算出事故持续时间、车道通行能力、上游车流量对车辆排队长度的权重。层次分析模型得到各个指标对目标层的影响关系的大小,然后我们用线性回归模型求出各指标与目标层的具体的函数关系式为130.0430.09263.623y x x =-+-。第二,我们运用车流波动相关理论,得到理论模型,继而得出它们之间的关系。 针对问题四,我们首先考虑的是上游来车在红绿灯下的时间间断问题,所以把来车的情况作周期性分析,假设来车是间隔相同的时间连续的到来,求出一个周期能通过的最大车流量数。然后运用等待制排队模型,当累计车辆排队长度到达上游路口后,可以通过排队论计算出时间15min 。 关键词:通行能力 统计估算 层次分析 非线性回归方程 SPSS 软件 排队论 车流波动 一、问题重述

全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范 ●本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。(全国评奖时,每个 组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每道题参赛队比例分配。) ●论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。 ●论文第一页为承诺书,具体内容和格式见本规范第二页。 ●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规 范第三页。 ●论文题目、摘要和关键词写在论文第三页上,从第四页开始是论文正文,不要目录。 ●论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 ●论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 ●论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字, 左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。打印文字内容时,应尽量避免彩色打印(必要的彩色图形、图表除外)。 ●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重 要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 ●论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。 ●在论文纸质版附录中,应给出参赛者实际使用的软件名称、命令和编写的全部计算机源程序(若 有的话)。同时,所有源程序文件必须放入论文电子版中备查。论文及程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。 ●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方 式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: ●[编号] 作者,书名,出版地:出版社,出版年。 ●参考文献中期刊杂志论文的表述方式为: ●[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 ●参考文献中网上资源的表述方式为: ●[编号] 作者,资源标题,网址,访问时间(年月日)。 ●在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加 其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 ●本规范的解释权属于全国大学生数学建模竞赛组委会。 ●[注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各 赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。 全国大学生数学建模竞赛组委会 2017年修订

最新道路通行能力计算

第二节道路通行能力 1 第3.2.1条路段通行能力分为可能通行能力与设计通行能力。 2 在城市一般道路与一般交通的条件下,并在不受平面交叉口影响时,一条机3 动车车道的可能通行能力按下式计算: 4 Np=3600/ti(3.2.1-1) 5 式中Np——一条机动车车道的路段可能通行能力(pcu/h); 6 ti——连续车流平均车头间隔时间(s/pcu)。 7 当本市没有ti的观测值时,可能通行能力可采用表3.2.1-1的数值。8 9 不受平面交叉口影响的机动车车道设计通行能力计算公式如下: 10 Nm=αc·Np(3.2.1-2) 11 式中Nm——一条机动车车道的设计通行能力(pcu/h); 12 αc——机动车道通行能力的道路分类系数,见表3.2.1-2。 13

14 受平面交叉口影响的机动车车道设计通行能力应根据不同的计算行车速度、15 绿信比、交叉口间距等进行折减。 16 第3.2.2条一条自行车车道宽1m。不受平面交叉口影响时,一条自17 行车车道的路段可能通行能力按下公式计算: 18 Npb=3600Nbt/(tf(ωpb-0.5))(3.2.2-1)19 式中Npb——一条自行车车道的路段可能通行能力(veh/ 20 (h· m)); 21 tf——连续车流通过观测断面的时间段(S); 22 Nbt——在tf时间段内通过观测断面的自行车辆数(veh); 23 ωpb——自行车车道路面宽度(m)。 24 路段可能通行能力推荐值,有分隔设施时为2100veh/(h·m); 25 无分隔设施时为1800veh/(h·m)。 26 不受平面交叉口影响一条自行车车道的路段设计通行能力按下式计算: 27 Nb=αb·Npb(3.2.2-2) 28 式中Nb——一条自行车车道的路段设计通行能力(veh/(h· m)); 29

2013年数学建模A题概念解释--通行能力

实际通行能力 由于道路、交通和管制条件以及服务水平不同,通行能力分为:基本(理论)通行能力,可能(实际)通行能力和设计(规划)通行能力。 理论通行能力是理想的道路与交通条件下的通行能力。 以理论通行能力为基础,考虑到实际的地形、道路和交通状况,确定其修正系数,再以此修正系数乘以前述的理论通行能力,即得实际道路、交通在一定环境条件下的可能通行能力。 公式(参《路网环境下高速公路交通事故影响传播分析与控制》): 单向车行道的可能通行能力Qx=CB*N*fw*fHV*fp Qx是单向车行道可能通行能力,即在具体条件下,采用四级服务水平时所能通过的最大交通量veh/h。 CB是基本(理论)通行能力。 N是单向车行道的车道数。 fw是车道宽度和侧向净宽对通行能力的修正系数。 fHV是大型车对通行能力的修正系数,计算公式是:fHV=1/[1+ PHV(EHV-1)],EHV 是大型车换算成小客车的车辆换算系数;PHV是大型车交通量占总交通量的百分比。 fp驾驶员条件对通行能力的修正系数,一般在0.9~1之间 基本通行能力 基本通行能力【basic traffic capacity】指的是在理想的道路和交通条件下,单位时间一个车道或一条道路某一路段通过小客车最大数,是计算各种通行能力的基础。 通行能力 通行能力【traffic capacity】指的是在一定的道路和交通条件下,道路上某一路段单位时间内通过某一断面的最大车辆数。可分为基本通行能力、可能通行能力和设计通行能力三种。

计算公式为:CAP=s1*λ1+s2*λ2+....+sn*λn(s为饱和流量,λ为绿信比) 全红时间越长,通行能力越小 周期时长一定的情况下,相位数越多,通行能力越大 它是指道路上某一地点、某一车道或某断面处,单位时间内可能通过的最大的交通实体(车辆或行人)数,亦称道路容量、交通容量或简称容量。一般以辆/h、人/h表示。车辆多指小汽车,当有其它车辆混入时,均采用等效通行能力的当量小客车单位 道路通行能力与交通量不尽相同,交通量是指道路在某一定时段内实际通过的车辆数。一般道路的交通量均小于道路的通行能力,当道路上的交通量比其通行能力小得多时,则司机驾车行进时操作的自由度就越大,既可以随意变更车速,转移车道,还可以方便地实现超车。当交通量等于或接近于道路通行能力时,车辆行驶的自由度就逐渐降低,一般只能以同一速度循序行进,如稍有意外,就会发生降速、拥挤,甚至阻滞。当交通量超过通行能力时,车辆就会出现拥挤,甚至堵塞。因此,道路通行能力同河流的过水能力一样,是道路在一定条件下所能通过的车辆的极限数值,条件不同,要求不同,其通行能力也就不同。故通行能力是一个变数

道路通行能力计算方法

道路饱和度计算方法研究摘要:道路饱和度是研究和分析道路变通服务水平的重要指标,但目前人们仍比较简单地用V/C来计算饱和度,未能根据各类不同道路的标准进行计算,尤其是公路和城市道路,其计算方法并不一致,、应根据不同的情况,采用不同的方法进行计算。 0 引言 饱和度的计算主要应考虑两点:一是交通量,二是通行能力。前者的数据一般是通过交通调查数据经过计算获得,后者的计算则相对较为复杂。由于城市道路与公路的通行能力计算方法不同,有必要分开讨论。本文将在介绍道路分类的基础上,对不同类型道路的通行能力及饱和度算法作一探讨。 1 道路分类 我国道路按照使用特点的不同,可分为城市道路、公路、厂矿道路、林区道路和乡村道路。目前除公路和城市道路有准确的等级划分标准外,对林区道路、厂矿道路和乡村道路一般不再进行等级划分。 城市道路 城市道路是指在城市范围内具有一定技术条件和设施的道路,不包括街坊内部道路。城市道路与公路分界线为城市规划区的边线。根据道路在城市道路系统中的地位、作用、交通功能以及对沿线建筑物的服务功能.一般将城市道路分为四类:快速路、主干路、次干路及支路。具体分级标准参见《城市道路设计规范》等相关规范。 公路

公路是连接各城市、城市与乡村、乡村与厂矿地区的道路。根据交通量、公路使用任务和性质,一般将公路分为高速公路、一级公路、二级公路、三级公路、四级公路五个等级。具体分级标准参见《公路工程技术标准》等相关规范。 2 饱和度定义及影响因素 饱和度 道路饱和度是反映道路服务水平的重要指标之一,其计算公式即为人们常说的V/C,其中V为最大交通量,C为最大通行能力。饱和度值越高,代表道路服务水平越低。由于道路服务水平、拥挤程度受多方面因素的制约,实际中因难以考虑多方面因素,常以饱和度数值作为评价服务水平的主要指标。美国的《通行能力手册》将道路的服务水平根据饱和度等指标的不同分为六级(具体分级标准可参考该手册,此处从略).我国则一般根据饱和度值将道路拥挤程度、服务水平分为如下四级: 一级服务水平:道路交通顺畅、服务水平好,V/C介于0至之间; 二级服务水平:道路稍有拥堵,服务水平较高,V/C介于至之间; 三级服务水平:道路拥堵,服务水平较差,V/C介于至之间; 四级服务水平:V/C>,道路严重拥堵,服务水平极差。 影响因素 饱和度的大小取决于道路的车流量和通行能力,此外,影响饱和度的因素主要还有车流量、道路通行能力、行程速度及运行时间等。 2.2.1 行程速度与运行时间

全国大学生数学建模竞赛题目

2001高教社杯全国大学生数学建模竞赛题目(请先阅读 “对论文格式的统一要求”)C 题 基金使用计划某校基金会有一笔数额为M 元的基金,打算将其存入银行或购买国库券。当前银行存款及各期国库券的利率见下表。假设国库券每年至少发行一次,发行时间不定。取款政策参考银行的现行政策。校基金会计划在n 年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n 年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%。 银行存款税后年利率(%)国库券年利率(%)活期 0.792半年期 1.664一年期 1.800二年期 1.944 2.55三年期 2.160 2.89五年期 2.304 3.14 、管路敷设技术资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处、电气课件中调试作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调、电气设备调试高中资料试卷技术障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于

道路通行能力计算方法

道路饱与度计算方法研究 摘要:道路饱与度就是研究与分析道路变通服务水平的重要指标,但目前人们仍比较简单地用V/C来计算饱与度,未能根据各类不同道路的标准进行计算,尤其就是公路与城市道路,其计算方法并不一致,、应根据不同的情况,采用不同的方法进行计算。 0 引言 饱与度的计算主要应考虑两点:一就是交通量,二就是通行能力。前者的数据一般就是通过交通调查数据经过计算获得,后者的计算则相对较为复杂。由于城市道路与公路的通行能力计算方法不同,有必要分开讨论。本文将在介绍道路分类的基础上,对不同类型道路的通行能力及饱与度算法作一探讨。 1 道路分类 我国道路按照使用特点的不同,可分为城市道路、公路、厂矿道路、林区道路与乡村道路。目前除公路与城市道路有准确的等级划分标准外,对林区道路、厂矿道路与乡村道路一般不再进行等级划分。 1、1 城市道路 城市道路就是指在城市范围内具有一定技术条件与设施的道路,不包括街坊内部道路。城市道路与公路分界线为城市规划区的边线。根据道路在城市道路系统中的地位、作用、交通功能以及对沿线建筑物的服务功能.一般将城市道路分为四类:快速路、主干路、次干路及支路。具体分级标准参见《城市道路设计规范》等相关规范。 1、2 公路

公路就是连接各城市、城市与乡村、乡村与厂矿地区的道路。根据交通量、公路使用任务与性质,一般将公路分为高速公路、一级公路、二级公路、三级公路、四级公路五个等级。具体分级标准参见《公路工程技术标准》等相关规范。 2 饱与度定义及影响因素 2、1 饱与度 道路饱与度就是反映道路服务水平的重要指标之一, 其计算公式即为人们常说的V/C,其中V为最大交通量,C为最大通行能力。饱与度值越高,代表道路服务水平越低。由于道路服务水平、拥挤程度受多方面因素的制约,实际中因难以考虑多方面因素,常以饱与度数值作为评价服务水平的主要指标。美国的《通行能力手册》将道路的服务水平根据饱与度等指标的不同分为六级(具体分级标准可参考该手册,此处从略).我国则一般根据饱与度值将道路拥挤程度、服务水平分为如下四级: 一级服务水平:道路交通顺畅、服务水平好,V/C介于0至0、6之间; 二级服务水平:道路稍有拥堵,服务水平较高,V/C介于0、6至0、8之间; 三级服务水平:道路拥堵,服务水平较差,V/C介于0、8至1、0之间; 四级服务水平:V/C>1、0,道路严重拥堵,服务水平极差。 2、2 影响因素 饱与度的大小取决于道路的车流量与通行能力,此外,影响饱与度

为什么要参加大学生数学建模竞赛

为什么要参加大学生数学建模竞赛 大学生数学建模竞赛是培养学生创新能力和竞争能力的极好的、具体的载体。 1.对于学校的领导(校长、教务处长等)来说,全心全意把学校搞好(高质量的教学、高百分比的就业率、高水平的教师队伍以及提高知名度等)肯定是他们追求的办学目标而且会采取各种措施。但是就选派学生参加大学生数学建模竞赛来说,不少领导(甚至数学教师)会非常犹豫:我们数学课时少,教学任务重,即使参加了,拿不到奖的话,不但不能提高学校的知名度,甚至会招致一些负面的议论等等。实际上,领导们有三个问题考虑不够,它们是: ⑴对数学的极端重要性要有充分的认识。学生将来的发展和成就是和他们坚实的数学基础密切相关的。但是现在的数学教学确实有许多不足之处有待改革,特别是怎么做到不仅教知识,而且要教知识是怎样用来解决实际问题的能力是有待加强的。让部分师生参加到数学建模活动,特别是大学生数学建模竞赛肯定是有利于推动教学改革的。 ⑵ 办好学校的关键之一是提高教师的教学水平。怎样提高呢?鼓励教师组织学生参加大学生数学建模竞赛等数学建模活动,既可以帮助教师进一步了解怎样用数学来解决实际问题,更有助于数学教师到其他专业系科了解他们要用什么样的数学以及怎样用这些数学,互相学习,进行切磋,从而对怎样提高自己的教学水平,数学教学怎样更好为其他专业后继课,甚至对专业课题研究服务产生具体的想法,提出切实可行的措施,最终能够提高教师的专业水平和教学水平,从而也就提高了学校的水平。 ⑶ 学生要求参加大学生数学建模竞赛的积极性是很高的,关键是怎样组织好,培训好。实际上,即使是高职高专院校,也一定有一部分学生的数学基础是相当坚实的,他们之间又有一部分对数学,特别是用数学来解决实际问题有强烈的兴趣。为什么不组织他们参赛呢?培养一些数学基础好对应用又有能力的高职高专院校的学生,今后他们在工作中做出好成绩的可能性肯定会比较大。毕业生事业有成者多也标志了学校办得好、有水平。此外,对于怎样贯彻因材施教也会产生一些很好的想法。 2.对于数学教师来说,组织、指导学生参加大学生数学建模竞赛对自己也会有极大的好处。

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

道路通行能力报告

道路通行能力分析实践学院: 专业:组长:指导老师:交通工程 短号: 年级:2011级 成员: 中国·珠海 二○一四年一月

目录 一、调查目的 (1) 二、调查时间和地点 (1) 三、城市道路信号交叉口通行能力分析 (1) 1.交叉口地点: (1) 2.交叉口地理环境和交通环境 (1) 3.道路截面结构 (3) 4.调查数据 (3) 5.通行能力计算 (5) 6.延误计算和现状服务水平评价 (8) 四、城市道路无信号交叉口通行能力分析 (9) 1.交叉口地点 (9) 2.交叉口地理环境和交通环境 (9) 3.道路截面结构 (10) 4.无信号交叉口车流运行特性 (10) 5.调查数据 (11) 6.通行能力计算 (13) 7.饱和度计算和现状服务水平评价 (13) 五、城市道路路段通行能力分析 (14) 1.路段地点: (14) 2.路段概况: (14) 3.调查数据 (15) 4.通行能力计算 (16) 5.现状服务水平评价 (17) 参考文献 (18)

1 道路通行能力分析实践 一、调查目的 交通调查是指为了找出交通现象的特征性趋向,在道路系统的选定点或路段,收集和掌握车辆或行人运行状态的实际数据所进行的调查分析工作。通过现场勘查得到的数据以及相关参数,计算并分析道路的通行能力和服务水平,评价其设计合理性和所存在的问题。 二、调查时间和地点 1、时间:2014年1月7号 2、时间段:17:30—18:30 3、地点: 1)港湾大道-留诗路信号交叉口 2)金峰北路-科技二路无信号交叉口 3)港湾大道路段 三、城市道路信号交叉口通行能力分析 1. 交叉口地点: 港湾大道-留诗路信号交叉口 2. 交叉口地理环境和交通环境 地理环境:交叉口位于港湾大道与留诗路形成的平面十字型交叉口,位于珠海市香洲东北部。港湾大道全长21.1km,是由歧湾公路珠海段扩宽改造的珠海市东出口公路。根据珠海市的总体规划,该大道分为城市型和郊区型两部分。其中,城市道路10.8km,路幅宽度为45m,设置机动车道、非机动车道和人行道 交通环境:港湾大道属于珠海市主干道。作为珠海市区进出京珠高速的唯一道路,是珠海的北大门。担负着周边城市进出珠海的重要途径之一。

路段通行能力计算方法

根据交叉口的现场交通调查数据,通过各流向流量的构成关系,可推得各路段流量,从而得到饱和度V/C 比。路段通行能力的确定采用建设部《城市道路设计规范》(CJJ 37-90)的方法,该方法的计算公式为:单条机动车道设计通行能力n C N N a ????=ηγ0,其中N a 为车道可能通行能力,该值由设计车速来确定,如表2.2所示。 表2.13 一条车道的理论通行能力 其中γ为自行车修正系数,有机非隔离时取1,无机非隔离时取0.8。η为车道宽度影响系数,C 为交叉口影响修正系数,取决于交叉口控制方式及交叉口间距。修正系数由下式计算: s 为交叉口间距(m),C 0为交叉口有效通行时间比。 车道修正系数采用表 2.3所示 表2.3 车道数修正系数采用值 路段服务水平评价标准采用美国《道路通行能力手册》,如表2.4所示 表2.4 路段服务水平评价标准

由路段流量的调查结果,并且根据交叉口的间距、路段等级、车道数等对路段的通行能力进行了修正。在此基础上对路段的交通负荷进行了分析。 路段机动车车道设计通行能力的计算如下: δ m c p m k a N N = (1) 式中: m N —— 路段机动车单向车道的设计通行能力(pcu/h ) p N —— 一条机动车车道的路段可能通行能力(pcu/h ) c a —— 机动车通行能力的分类系数,快速路分类系数为0.75;主干道分类 系数为0.80;次干路分类系数为0.85;支路分类系数为0.90。 m k —— 车道折减系数,第一条车道折减系数为 1.0;第二条车道折减系数 为0.85;第三条车道折减系数为0.75;第四条车道折减系数为0.65.经过累加,可取单向二车道 m k =1.85;单向三车道 m k =2.6;单向四车道 m k =3.25; δ—— 交叉口影响通行能力的折减系数,不受交叉口影响的道路(如高架 道路和地面快速路)δ=1;该系数与两交叉口之间的距离、行车速度、绿信比和车辆起动、制动时的平均加、减速度有关,其计算公式如下: ?+++= b v a v v l v l 2/2///δ (2) l —— 两交叉口之间的距离(m ); a —— 车辆起动时的平均加速度,此处取为小汽车0.82/s m ; b —— 车辆制动时的平均加速度,此处取为小汽车1.662/s m ; ?—— 车辆在交叉口处平均停车时间,取红灯时间的一半。 Np 为车道可能通行能力,其值由路段车速来确定: 表4.1 Np 的确定

道路通行能力计算方法

道路饱和度计算方法研究 摘要:道路饱和度是研究和分析道路变通服务水平的重要指标,但目前人们仍比较简单地用V/C来计算饱和度,未能根据各类不同道路的标准进行计算,尤其是公路和城市道路,其计算方法并不一致,、应根据不同的情况,采用不同的方法进行计算。 0 引言 饱和度的计算主要应考虑两点:一是交通量,二是通行能力。前者的数据一般是通过交通调查数据经过计算获得,后者的计算则相对较为复杂。由于城市道路与公路的通行能力计算方法不同,有必要分开讨论。本文将在介绍道路分类的基础上,对不同类型道路的通行能力及饱和度算法作一探讨。 1 道路分类 我国道路按照使用特点的不同,可分为城市道路、公路、厂矿道路、林区道路和乡村道路。目前除公路和城市道路有准确的等级划分标准外,对林区道路、厂矿道路和乡村道路一般不再进行等级划分。 1.1 城市道路 城市道路是指在城市范围内具有一定技术条件和设施的道路,不包括街坊内部道路。城市道路与公路分界线为城市规划区的边线。根据道路在城市道路系统中的地位、作用、交通功能以及对沿线建筑物的服务功能.一般将城市道路分为四类:快速路、主干路、次干路及支路。具体分级标准参见《城市道路设计规范》等相关规范。 1.2 公路 公路是连接各城市、城市与乡村、乡村与厂矿地区的道路。根据

交通量、公路使用任务和性质,一般将公路分为高速公路、一级公路、二级公路、三级公路、四级公路五个等级。具体分级标准参见《公路工程技术标准》等相关规范。 2 饱和度定义及影响因素 2.1 饱和度 道路饱和度是反映道路服务水平的重要指标之一,其计算公式即为人们常说的V/C,其中V为最大交通量,C为最大通行能力。饱和度值越高,代表道路服务水平越低。由于道路服务水平、拥挤程度受多方面因素的制约,实际中因难以考虑多方面因素,常以饱和度数值作为评价服务水平的主要指标。美国的《通行能力手册》将道路的服务水平根据饱和度等指标的不同分为六级(具体分级标准可参考该手册,此处从略).我国则一般根据饱和度值将道路拥挤程度、服务水平分为如下四级: 一级服务水平:道路交通顺畅、服务水平好,V/C介于0至0.6之间; 二级服务水平:道路稍有拥堵,服务水平较高,V/C介于0.6至0.8之间; 三级服务水平:道路拥堵,服务水平较差,V/C介于0.8至1.0之间; 四级服务水平:V/C>1.0,道路严重拥堵,服务水平极差。 2.2 影响因素 饱和度的大小取决于道路的车流量和通行能力,此外,影响饱和

相关主题
文本预览
相关文档 最新文档