当前位置:文档之家› 如何理解电容器的静电容量

如何理解电容器的静电容量

如何理解电容器的静电容量

A.电容量

电容器的基本特性是能够储存电荷(Q),而Q值与电容量(C)和外加电压(V)成正比。

Q = CV

因此充电电流被定义为:

= dQ/dt = CdV/dt

当外加在电容器上的电压为1伏特,充电电流为1安培,充电时间为1秒时,我们将电容量定义为1法拉。

C = Q/V = 库仑/伏特 = 法拉

由于法拉是一个很大的测量单位,在实际使用中很难达到,因此通常采用的是法拉的分数,即:

皮法(pF) = 10-12F

纳法(nF) = 10-9F

微法(mF)= 10-6F

B.电容量影响因素

对于任何给定的电压,单层电容器的电容量正比于器件的几何尺寸和介电常数:

C = KA/f(t)

K = 介电常数

A = 电极面积

t = 介质层厚度

f = 换算因子

在英制单位体系中,f = 4.452,尺寸A和t的单位用英寸,电容量用皮法表示。单层电容器为例,电极面积1.0×1.0″,介质层厚度0.56″,介电常数2500,

C = 2500(1.0)(1.0)/4.452(0.56)= 10027 pF

如果采用公制体系,换算因子f = 11.31,尺寸单位改为cm,

C = 2500(2.54)(2.54)/11.31(0.1422)= 10028 pF

正如前面讨论的电容量与几何尺寸关系,增大电极面积和减小介质层厚度均可获得更大的电容量。然而,对于单层电容器来说,无休止地增大电极面积或减小介质层厚度是不切实际的。因此,平行列阵迭片电容器的概念被提出,用以制造具有更大比体积电容的完整器件。

这种“多层”结构中,由于多层电极的平行排列以及在相对电极间的介质层非常薄,电极面积A得以大大增加,因此电容量C会随着因子N(介质层数)的增加和介质层厚度t’的

知识讲解 静电感应 电容器

物理总复习: 静电感应 电容器 编稿:xx 审稿:xx 【考纲要求】 1、知道静电感应现象; 2、知道什么是电容器以及常用的电容器; 3、理解电容器的概念及其定义,并能进行相关的计算; 4、知道平行板电容器与哪些因素有关及4S C kd επ=。 【考点梳理】 考点一、静电平衡 1、静电平衡状态 (1)静电平衡状态的定义:处于静电场中的导体,当导体内部的自由电荷不再发生定 向移动时,我们说导体达到了静电平衡状态。 (2)静电平衡状态出现的原因是:导体在外电场的作用下,两端出现感应电荷,感应 电荷产生的电场和外电场共同的作用效果,使得导体内部的自由电荷不再定向移动。(导体 内部自由电荷杂乱无章的热运动仍然存在着) 2、静电平衡状态的特点 要点诠释: (1)处于静电平衡状态的导体,内部电场强度处处为零。 导体内部的场强E 是外电场E 0和感应电荷产生的场E /的叠加,即E 是E 0 和E '的矢量和。当导体处于静电平衡状态时,必定有感应电荷的场与外电场大小相等、方向相反,即:E 0 =-E '。 (2)处于静电平衡状态的导体,其表面上任何一点的电场强度方向与导体表面垂直。 如果导体表面的场强不与导体表面垂直,必定存在着一个切向分量,这个切向分量就会使得导体表面的自由电荷沿着表面切线方向运动,那么,导体所处的状态就不是平衡状态,与给定的平衡状态相矛盾,所以导体表面的场强方向一定与导体表面垂直。 (3)达到静电平衡状态下的导体是一个等势体,导体表面是一个等势面。 由上面的思考题知道,无论是在导体内部还是在导体的表面上或者是由导体的内部到表面上移动电荷,电场力都不做功,这就说明了导体上任何两处电势差为零,即整个导体处处等势。 (4)静电平衡状态导体上的电荷分布特点: ①导体内部没有电荷,电荷只分布在导体的外表面 ②导体表面越尖锐的地方电荷密度越大,凹陷的地方几乎没有电荷。 3、静电屏蔽及其应用 要点诠释: (1)静电屏蔽:将电学仪器用金属外壳或者金属网包围起来,以防止外电场对它的影响,金属网或者金属壳的这种作用就叫做静电屏蔽。 (2)实验及解释:如图甲所示,使带电的导体接近验电器,静电感应使得验电器的金箔张开。若用一个金属网将验电器罩住,再使带电金属球靠近,验电器的金箔不会张开,如图乙所示,即使用导线把验电器和金属网连接,箔片也不张开。可见金属网可以把外电场遮住——由于静电感应使金属网内部场强为0,使内部不受外电场的影响。

电容器计算公式(2013_04_21)

电容器计算公式 电容器串并联容量 并联:C=C1+C2+…… 串联:2 121C C C C C +?= 电容器总容量 3.0.2 本条是并联电容器装置总容量的确定原则。 如没有进行调相调压计算,一般情况下,电容器容量可按主变压器的容量的10%~30%确定,这就是不具备计算条件时估算电容器安装总容量的简便方法。 谐波 3.0.3 发生谐振的电容器容量,可按下式计算: )1(2K n S Q d cx -= 式中,cx Q ----发生n 次谐波谐振的电容器容量(Mvar)d S ----并联电容器装置安装处的母线短路容量(MVA)n ----谐波次数,即谐波频率与电网基波频率之比K ----电抗率 母线电压升高 5.2.2 本条明确了电容器额定电压选择的主要原则 并联电容器装置接入电网后引起的母线电压升高值可按下式计算: d so s S Q U U =? 式中,s U ?----母线电压升高值(kV) so U ----并联电容器装置投入前的母线电压(kV) Q ---- 母线上所有运行的电容器容量(Mvar) d S ----母线短路容量(MVA) 电容器额定电压 5.2.2 本条明确了电容器额定电压选择的主要原则 电容器额定电压可由公式求出计算值,再从产品标准系列中选取,计算公式如下: )1(305.1K S U U SN CN -= 式中,CN U ----单台电容器额定电压(kV)SN U ----电容器投入点电网标称电压(kV)S ---- 电容器每组的串联段数K ----电抗率

串联电抗器的电抗率 5.5.2 (1)当电网背景谐波为5次及以上时,可配置电抗率4.5%一6%。因为6%的电抗器有明显的放大三次谐波作用,因此,在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,电抗率可选用4.5%。 (2)当电网背景谐波为3次及以上时,电抗率配置有两种方案:全部配12%电抗率,或采用4.5%一6%与12%两种电抗率进行组合。采用两种电抗率进行组合的条件是电容器组数较多,为了节省投资和减小电抗器消耗的容性无功。 电容器对母线短路容量的助增 5.1.2 在电力系统中集中装设大容量的并联电容器组,将会改变装设点的系统网络性质,电容器组对安装点的短路电流起着助增作用,而且助增作用随着电容器组的容量增大和电容器性能的改进(如介质损耗减小、有效电阻降低)、开关动作速度加快而增加。试验研究报告建议:在电容器总容量与安装地点的短路容量之比不超过5%或10%(对应于电抗率K=5%~6%,不超过5%;K=12%~13%,不超过10%),助增作用相对较小,可不考虑。 当K=12%~13%时,%10 d c S Q 式中,c Q ----电容器容量(kVar) d S ----母线短路容量(kVar) 回路导体的额定电流 5.1.3 所以取1.35倍电容器组额定电流作为选择回路设备和导体的条件是安全的也是合理的。 电容器分组原则 3.0.3 变电所装设无功补偿电容器的总容量确定以后,通常将电容器分组安装,分组的主要原则是根据电压波动、负荷变化、谐波含量等因素来确定。

电容静电现象

第3课时 电容器 静电现象的应用 1.电容器 ⑴任何两个彼此绝缘而又相距很近的导体都可以构成电容器. ⑵把电容器的两个极板分别与电池的两极相连,两个极板就会带上等量异种电荷.这一过程叫 电容器的充电.其中任意一块板所带的电荷量的绝对值叫做电容器的带电量;用导线把电容器的两板接通,两板上的电荷将发生中和,电容器不再带电,这一过程叫做放电. 2.电容 ⑴电容器所带的电量Q 跟两极板间的电势差U 的比值,叫做电容器的电容,用符号C 表示. ⑵定义式:C =Q U ,若极板上的电量增加ΔQ 时板间电压增加ΔU ,则C =Q U V V . ⑶单位:法拉,符号:F ,与其它单位的换算关系为:1F =106F m =1012pF ⑷意义:电容是描述电容器储存电荷本领大小的物理量,在数值上等于把电容器两极板间的 电势差增加1V 所增加的电量. 3.平行板电容器 ⑴一般说来,构成电容器的两个导体的正对面积S 越大 ,距离d 越小,这个电容器的电容 就越大;两个导体间电介质的性质也会影响电容器的电容. ⑵表达式:板间为真空时:C =4s kd p , 插入介质后电容变大r e 倍:C =4r s kd e p ,k 为静电力常数,r e 称为相对(真空)介电常数. 说明:Q C U = 是电容的定义式,它在任何情况下都成立,式中C 与Q 、U 无关,而由电容器自身结构决定.而4r s C kd e p =是电容的决定式,它只适用于平行板电容器,它反映了电容与其 自身结构S 、d、r e 的关系. 4.静电平衡状态下的导体 ⑴处于静电平衡下的导体,内部合场强处处为零. ⑵处于静电平衡下的导体,表面附近任何一点的场强方向与该点的表面垂直. ⑶处于静电平衡下的导体是个等势体,它的表面是个等势面. ⑷静电平衡时导体内部没有电荷,电荷只分布于导体的外表面. 导体表面,越尖的位置,电荷密度越大,凹陷部分几乎没有电荷. 5.尖端放电 导体尖端的电荷密度很大,附近电场很强,能使周围气体分子电离,与尖端电荷电性相反的离子在电场作用下奔向尖端,与尖端电荷中和,这相当于使导体尖端失去电荷,这一现象叫尖端放电.如高压线周围的“光晕”就是一种尖端放电现象,避雷针做成蒲公花形状,高压设备应尽量光滑分别是生活中利用、防止尖端放电. 6.静电屏蔽 处于电场中的空腔导体或金属网罩,其空腔部分的合场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.如电学仪器的外壳常采用金属、三条高压线的上方还有两导线与地相连等都是静电屏蔽在生活中的应用. 重点难点例析 一、处理平行板电容器相关量的变化分析 进行讨论的依据主要有三个:

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

电容补偿的计算公式

电容补偿的计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电容补偿的计算公式未补偿前的负载功率因数为COS∮1。负载消耗的电流值为I1。 负载功率(KW)*1000 则I1=---------------------- √3*380*COS∮1 负载功率(KW)*1000 则I2=---------------------- √3*380*COS∮2 补偿后的负载功率因数为COS∮2,负载消耗的电流值为I2 则所需补偿的电流值为:I=I1-I2 所需采用的电容容量参照如下: 得到所需COS∮2每KW负荷所需电容量(KVAR) 例: 现有的负载功率为1500KW,未补偿前的功率因数为COS∮1=,现需将功率因数提高到COS∮2=。则

1500*1000 则I1=-----------------=3802(安培) √3*380* 1500*1000 则I2=------------------=2376(安培) √3*380* 即未进行电容补偿的情况下,功率因数COS∮1=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I1=3802安培。 进行电容补偿后功率因数上升到COS∮2=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I2=2376安培。 所以功率因数从0.60升到。所需补偿的电流值为I1-I2=1426安培 查表COS∮1=,COS∮2=时每KW负载所需的电容量为,现负载为1500KW,则需采用的电容量为1500*=1560KVAR。现每个电容柜的容量为180KVAR,则需电容柜的数量为 1500÷180=个即需9个容量为180KVAR电容柜。

电容计算公式

电容计算公式 教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己~慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串 联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。

3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法, 答:C,KVar/(U×U×2×π×f×0.000000001) ,30/(450×450×2×3.14×50×0.000000001)?472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大,还有"ε"是什么,与电容有什么关系, 再请问在计算中应注意什么,电容是如何阻直通交的呢, 五一长假除了旅游还能做什么, 辅导补习美容养颜家庭家务加班须知 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电 容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中, 本弱点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。 相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。

3静电平衡和电容器

静电平衡和电容器 1、静电感应现象 (1)静电感应现象:导体在电场中自由电荷重新分布的现象。 (2)静电感应因果关系 原因 现象 结果 (3)静电平衡 当导体内E =0时(自由电子定向移动停止),导体达到静电平衡状态。 ①静电平衡状态:导体中(包括表面)没有电荷定向移动的状态。 ②静电平衡的条件:导体内部场强为零,即内E =0。 ③静电平衡状态下导体的特征: a 、导体内部场强处处为零。 b 、导体表面场强垂直表面。(原因:如果不垂直,场强就有一个沿导体表面的分量,自由电子还要发生定向移动) c 、导体为等势体,表面为等势面。(原因:导体内部场强处处为零,在导体内部移动电荷时,电场力不做功,任意两点间电势差为零;电荷在导体表面移动时,电场力与位移垂直,电场力不做功) ④静电平衡导体的电荷分别特点 a 、导体内部没有电荷,电荷只分布在导体的表面。 b 、在导体外表面,越尖锐的位置,电荷的密度(单位面积的电荷量)越大,凹陷的位置几乎没有电荷。 2、尖端放电 (1)空气电离 气体分子中的电子在强电场的作用下发生剧烈的运动,挣脱原子核对它的束缚而成为自自电子,同时气体分子变成带正电荷的正离子,这个现象叫做空气的电离。 (2)尖端放电 中性的分子电离后后变成带负电的自由电子和失去电子带正电的离子,这些带电粒子在强电场的作用下加速,撞击空气中的分子,使它们进一步电离,产生更多的带电粒子,那些所 带电荷与导体尖端的电荷符号相反的粒子,由于被吸引而奔向尖端,与尖端上的电荷中和,

这相当于导体尖端失去电荷,这个现象叫做尖端放电。 (3)应用和防止 ①应用:避雷针是利用尖端放电避免雷击的一种设施。 ②防止:高压设备中导体的表面尽量光滑会减少电能的损失。 1、静电屏蔽 (1)定义:处于静电平衡状态的导体,内部场强处处为零,可以利用导体球壳(或金属网罩)封闭某区域,使该区域不再受外电场的影响,这一现象称为静电屏蔽。 (2)静电屏蔽的实质 利用静电屏蔽现象,使金属壳的感应电荷和外加场强的矢量和为零,好像是金属壳将电场“挡”在外面,即所谓的屏蔽作用,其实是壳内两种电荷并存,矢量和为零而已。 当金属壳达到静电平衡时,内部没有电场,因而金属的外壳会对其内部起到保护作用,使它内部不受外部电场影响。 (3)静电屏蔽的两种情况 ①导体内空腔不受外界影响,如图甲 ②接地导体空腔外部不受内部电荷影响,如图乙所示。 处于静电平衡的导体,内部场强处处为零的原因是() A、外电场不能进入导体内部 B、所有感应电荷在导体内部产生的合场强为零 C、外电场和所有感应电荷的电场在导体内部叠加的结果为零 D、以上解释都不正确 如图所示,金属壳放在光滑的绝缘水平垫上,能起到屏蔽外电场或内电场作用的是() 如图所示,带电体Q靠近一个接地空腔导体,空腔里面无电荷,在静电平衡后,下列物理量中等于零的是() A、导体墙内任意点的场强 B、导体腔内任意点的电势 C、导体外表面的电荷量

电容器的定义以及相关的公式介绍

[知识学堂] 电容器的定义以及相关的公式介绍 定义 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电容与电池容量的关系: 1伏安时=25法拉=3600焦耳 1法拉=144焦耳 相关公式 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电

容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S 为极板面积,d为极板间的距离。) 定义式C=Q/U 电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)

静电场和物质的相互作用

静电场和物质的相互作用 第章静电场与物质的相互作用理论基础为静电场的高斯定理与环流定理静电场与物质的相互作用问题:()物质在静电场中要受到电场的作用表现出宏观电学性质()物质的电学行为也会影响电场分布最后达到静电平衡状态。 引言导体***物质分类***导体、电介质和半导体与静电场作用的物理机制各不相同。 绝缘体半导体金属导体内存在大量的自由电子(在晶格离子的正电背景下)与导体相对绝缘体内没有可自由移动的电子称电介质本章讨论金属导体半导体内有少量的可自由移动的电荷超导体()第章静电场与物质的相互作用§静电场中的导体§电容器和电容§静电场中的电介质§静电场的能量FEi=静电感应:在外电场影响下导体表面不同部分出现正负电荷的现象。 一、导体的静电感应现象静电平衡:感应电荷产生的附加电场与外加电场在导体内部相抵消。 此时导体内部和表面没有电荷的宏观定向运动。 §导体的静电平衡性质E二、导体的静电平衡性质、导体内部的场强处处为零。 导体表面的场强垂直于导体的表面。 、导体内部和导体表面处处电势相等整个导体是个等势体。 导体表面成为等势面。 FEi=E、静电平衡下的孤立导体其表面处面电荷密度与该表面曲

率有关曲率(R)越大的地方电荷密度也越大曲率越小的地方电荷密度也小。 当表面凹进曲率为负值时电荷面密度更小。 RRRRR因此,孤立的带电导体球,长直圆柱,无限大平板表面电荷均匀分布特例:相距很远的大小导体球用导线相连接电势相等:Q,R, q,r,、处于静电平衡的导体其表面上各点的电荷密度与表面邻近处场强的大小成正比。 由高斯定理:E=S E来自电荷dS的贡献其他电荷贡献尖端放电与无限大带电平面的场强公式比较?**导体与静电场相互作用问题计算基本原则**导体静电平衡的条件静电场基本方程电荷守恒定律例、有任意形状的带电导体已知其表面上某处的面电荷密度为,试求该处电荷元dS受到其余电荷作用的电场力。 解:产生的场强为:(外侧)导体表面上其余电荷在dS内外侧产生的场强内侧的总场强:(内侧)由此算得导体表面外侧的总场强:电荷元受到的电场力:(外侧)(内侧)讨论若导体周围存在其他带电体,可以计算,导体表面电荷元σds受到的电场力表式同上σ例、两块大导体平板面积为S分别带电q和q两极板间距远小于平板的线度。 求平板各表面的电荷密度。 解:qqBA电荷守恒:由静电平衡条件导体板内E=。 特例:当两平板带等量的相反电荷时电荷只分布在两个平板的内表面!由此可知:两平板外侧电场强度为零内侧这就是平板电容器。 qqBA空腔内无电荷空腔内有电荷q电荷分布在导体内

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

电容器的串并联的计算方法

电容器的串并联的计算方 法 Final revision on November 26, 2020

电容器的串并联的计算方法 电容器并联时,相当于电极的面积加大,电容量也就加大了。并联时的总容量为各电容量之和:C并=C1+C2+C3+…… 顺便说说电容器的串联。若三个电容器串联后外加电压为U, 则U=U1+U2+U3=Q1/C1+Q2/C2+Q3/C3, 而电荷Q1=Q2=Q3=Q,所以Q/C串=(1/C1+1/C2+1/C3)Q 1/C串=1/C1+1/C2+1/C3 可见,串联后总电容量减小。 电容器串联时,要并联阻值比电容器绝缘电阻小的电阻,使各电容器上的电压分配均匀,以免电压分配不均而损坏电容器。 又可知,电容的串、并联计算正好与电阻的串、并联计算相反。 电压是充电时的电压,容量与电流,电压的关系和功率相似,和负载有关,电压和容量为定量时,负载电阻越小,电流越大,时间越短电压和负载为定量时,容量越大,电流不变,时间越长但实际放电电路中,一般负载是不变的,电容的电压是逐渐下降的,电流也就逐渐下降。 1.电容量(uf)=电流(mA)/15 限流电阻(Ω)=310/最大允许浪涌电流 放电电阻(KΩ)=500/电容(uf) 2.计算方式C=15×IC为电容容量单位微法i设备为工作电流单位为安 如一个灯泡的电阻为0.6安电容就选择15×0.6=9微法在电路里串连9微法的电容就可以了 3.经验公式,1uF输出50mA(如果是线性的话,10000F的超级电容可以达到500兆安培的浪涌电流) 还有 4.半波整流方式计算应该是每uF电容量提供约30mA电流,这是在中国的50Hz220V线路上的参考。 全波整流时电流加倍,即每uF可提供60mA电流。 而我比较清楚的是,书本上的公式:R*C≥(3~5)*T/2,需要知道纹波成份中的频率最低信号的频率是多少(即最大的T),然后来确定C的值。 电容的容量。

静电屏蔽电容器范书凡

私塾国际学府学科教师辅导教案 学员编号:sszk 年级:高一年级课时数:3课时学员姓名:范书凡辅导科目: 物理学科教师:王浩彬授课主题静电屏蔽 教学目的1、了解导体导电机制、静电平衡状态、静电感应现象; 2、理解电场中处于静电平衡状态下导体的特点; 3、了解静电屏蔽现象及其应用 教学重点静电平衡的原理 授课日期及时段2016-8-4 19:00-21:00 【基础知识巩固】 【要点梳理】 1. 静电感应现象及静电平衡 (1)现象解释:将呈电中性状态的金属导体放入场强为E 的静电场中,导体内自由电子便 受到与场强E 方向相反的电场力作用,除了做无规则热运动,自由电子还要向电场玩的反方向作定向移动,图1—4一l(a)所示,并在导体的一个侧面集结,使该侧面出现负电荷,而相对的另一侧出现“过剩”的等量的正电荷图l一4—1(b)所示。在电场中的导体沿着电场强度方向两个端面出现等量异种电荷,这种现象叫做静 电感应。 (2)导体静电平衡条件:E 内 =0 由于静电感应,在导体两侧出现等量异种电荷,在导体内部形成与场强E 向的场强E',在 导体内任一点的场强可表示为E 内=E +E′。 因附加电场E′与外电场E 方向相反,叠加的结果削弱了导体内部的电场,随着导体两侧感 应电荷继续增加,附加电场E′增强,合场强E 内将逐渐减小。当E 内 =0时,自由电子的定向运 动也停止了。如图1—4—1(c)。 说明: ①导体静电平衡后内部场强处处为零,是指电场强度E ,与导体两端感应电荷产生的场强E′的合场强为零。 ②金属导体建立静电平衡状态的时间是短暂的。 ③静电平衡时,电荷在导体表面的分布往往是不均匀的,越是尖锐的地方,电荷分布越密,

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

电容补偿计算方法

1、感性负载的视在功率S×负载的功率因数COSφ = 需要补偿的无功功率Q: S×COSφ =Q 2、相无功率Q‘ =? 补偿的三相无功功率Q/3 3、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压380v时,无功容量是Q=0.045Kvar 100μF电容、额定电压380v时,无功容量是Q=4.5Kvar? 1000μF电容、额定电压380v时,无功容量是Q=45Kvar 4、“多大负荷需要多大电容” : 1)你可以先算出三相的无功功率Q; 2)在算出1相的无功功率Q/3; 3)在算出1相的电容C; 4)然后三角形连接! 5、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压10Kv时,无功容量是Q=31.4Kvar 100μF电容、额定电压10Kv时,无功容量是Q=3140Kvar 6、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压220v时,无功容量是Q=0.015Kvar 100μF电容、额定电压220v时,无功容量是Q=1.520Kvar? 1000μF电容、额定电压220v时,无功容量是Q=15.198Kvar

提高功率因数节能计算 我这里有一个电机,有功功率 kw 23.3 视在功率 kva 87.2 无功功率 kvar 84.1 功率因数cosφ=0.27 电压是377V 电流是135A 麻烦帮我算一下功率因数提高到0.95所节约的电能,以及需要就地补偿的电容容量,请给出公式和注意事项,感谢! 满意答案 网友回答2014-05-03 有功功率23.3KW是不变的,功率因数提高到0.95以后,无功功率降低为Q=P*tgφ= P*tg(arcosφ)=P*tg(arcos0.95)=23.3*0.33=7.7kvar 需补偿容量为84.1-7.7=76.4kvar 视在功率也减小为P/cosφ=23.3/0.95=24.5kva 所节约的电能是不好计算的,因为电能是以有功电量计算的,但功率因数提高了,你的力率电费会减少,能少交很多电费。 另外,因为视在功率降低了,线路上的电流也就降低了,线路损耗也能相应降低不少,电压也会有所提高。。 电动机无功补偿容量的计算方法 有以下两种: 1、空载电流法 Qc=3(Uc2/Ue2)*Ue*Io*K1。 说明: I0——电动机空载电流; Uc——电容器额定电压(kv); Ue——电动机额定电压; K1——推荐系统0.9。 2、目标功率因数法 Qc=P(1/(cosφe2-1)-1/(cosφ2-1))*K2。 说明:cosφe——电动机额定功率因数; K2——修正系数; cosφ ——电动机补偿后的目标功率因数; P——电动机额定功率; Ue——电动机额定电压; 推荐cosφ在0.95~0.98范围内选取。

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.

电容器电流计算

电容器电流计算 The manuscript was revised on the evening of 2021

电流计算 根据某进口品牌电容器铭牌,参考举例:要达到50Kvar无功输出。需配置电容器为70Kvar电容器。其额定电流为:81.6A,额定电压为:500V,产品型号:7R50+XD70. 根据公式计算: 额定电流 I=Q÷·U)=70÷又根据I=U/Z=U÷(1/wc)=wc·U 故wc=I/U=81÷=162 1、当电容器运行在480V系统电压下时:I=wc·U Q=·I 电流(A) I==≈78A 容量(Kvar) Q=·I= 2、当电容器运行在450V系统电压下时:电流(A) I==≈73A 容量(Kvar) Q=·I= 3、当电容器运行在440V系统电压下时:电流(A) I== 容量(Kvar) Q=·I=、当电容器运行在420V系统电压下时:电流(A) I==≈68A 容量(Kvar) Q=·I= 综上计算公式可知,当系统电压越低,运行电流也变小,其实际输出容量则越小。考虑到一般低压配电系统运行电压为380V±5%。 取其上限计算。U=380+=399≈400V .考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为430V。 电流(A) I==≈70A

容量(Kvar) Q=·I=若实际电流为380V, 考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为410V. 电流(A) I==≈67A 容量(Kvar) Q=·I=下图为某进口电容器铭牌: 根 据 以 上 公 式 来 推算,其铭牌标注容量跟实际计算容量完全吻合。

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与

其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

相关主题
文本预览
相关文档 最新文档