当前位置:文档之家› 测井技术介绍

测井技术介绍

测井技术介绍
测井技术介绍

绪 论(2学时)

一、测井学和测井技术的发展

测井学是一个边缘科学,是应用地球物理的一个分支,它是用物理学的原理解决地质学的问题,并已在石油、天然气、金属矿、煤田、工程及水文地质等许多方面得到应用。30年代首先开始电阻率测井,到50年代普通电阻率发展的比较完善,当时利用一套长短不同的电极距进行横向测井,用以较准确地确定地层电阻率。60年代聚焦测井理论得以完善,孔隙度形成了系列测井,各类聚焦电阻率测井仪器也得到了发展,精度也相应得以提高。测井资料的应用也有了长足的发展,随着计算机的应用,车载计算机和数字测井仪也被广泛的应用。到现在又发展了各种成像测井技术。

二、测井技术在勘探及开发中的应用

无论是金属矿床、非金属矿床、石油、天然气、煤等,在勘探过程中在地壳中只要富集,就具有一定特点的物理性质,那我们就可以用地球物理测井的方法检测出来。特别是石油和天然气,往往埋藏很深,只要具有储集性质的岩石,就有可能储藏有流体矿物。它不用像挖煤一样。而是只要打一口井,确定出那段地层能出油,打开地层就可以开采。由于用测井资料可以解决岩性,即什么矿物组成的岩石,它的孔隙度如何,渗透率怎么样,含油气饱和度大小。沉积时是处于什么环境,是深水、浅水、还是急流河相,有无有机碳,有没有生油条件,能不能富集。在勘探过程中,可以解决生油岩,盖层问题,也可以对储层给予评价,找到目的层,解释出油、气、水。

在油气田开发过程中,用测井可以监测生产动态,解决工程方面的问题。井中产出的流体性质,是油还是水,出多少水,油水比例如何,用流体密度,持水率都可以说明。注水开发过程中,分层的注入量,有没有窜流,用注入剖面测井都可以解决。生产过程中,套管是否变形,有没有损坏、脱落或变位,管外有无窜槽,射孔有没有射开,都需要测井来解决。对于设计开发方案,计算油层有效厚度,寻找剩余油富集区都离不开测井。测井对石油天然气勘探开发来说,自始至终都是不可缺少的,是必要的技术。它服务于勘探开发的全过程。

三、储层分类及需要确定的参数

1.储集层的分类及特点

石油、天然气和有用的流体都是储存在储集层中,储集层是指具有一定储集空间的,并彼此相互连通,存在一定渗透能力的的岩层。储层性质分析与评价是测井解释的主要任务。

1)碎屑岩储集层

它包括砾岩、砂岩、粉砂岩和泥质粉砂岩等。世界上有40%的油气储集在碎屑岩储

集层。碎屑岩由矿物碎屑,岩石碎屑和胶结物组成。最常见的矿物碎屑为石英,长石和其他碎屑颗粒;胶结物有泥质、钙质、硅质和铁质等。控制岩石储集性质是以粒径大小、分选好坏、磨圆度以及胶结物的成分,含量和胶结形式有关。一般粒径大,分选和磨圆度好,胶结物少,则孔隙空间大,连通性好,为储集性质好。

2)碳酸盐岩储集层

世界上油气50%的储量和60%的产量属于这一类储集层。我国华北震旦、寒武及奥陶系的产油层,四川的震旦系,二叠系和三叠系的油气层,均属于这类储层。

碳酸盐岩属于水化学沉积的岩石,主要的矿物有石灰石、白云石和过渡类型的泥灰岩。它的储集空间有晶间孔隙、粒间孔隙、鲕状或钟孔状孔隙、生物腔体孔隙、裂缝、溶洞等。从储层评价和测井解释的观点出发,将碳酸盐岩储集层的储集空间归为二类:一类为原生孔隙,如晶间、粒间、鲕状孔隙等。另一类为次生孔隙如裂缝、溶洞等。前者孔隙较小分布均匀。后者孔隙较大,形状不规则,分布不均匀。按孔隙结构特点碳酸盐岩储集层可分为三类:孔隙型、裂缝型和溶洞型等。

(1)孔隙型碳酸盐岩储集层:它是粒间、晶间、生物腔体孔隙等,还有石灰岩白云岩化后重结晶形成的均匀分布的孔隙。它们都是孔隙性的碳酸盐岩储集层。它们适用的测井方法和解释方法与碎屑岩储集层基本相同,也是目前测井资料应用最成功的一类储集层。

(2)裂缝型碳酸盐岩储集层:这类储层的储集空间主要由构造裂缝和层间裂缝组成,由于裂缝的数量,形状和分布可能极不均匀,故孔隙度和渗透率也可能有很大变化,油气分布也不规律,并且裂缝发育带渗透率高。

(3)洞穴型碳酸盐岩储集层:这类储集层主要由溶蚀作用产生的。洞穴形状大小不一,分布不均匀,往往具有偶然性。用常规测井方法进行解释有很大困难。

2.储集层的基本参数

在储集层的评价中,需要测井解释确定的参数有储层厚度、孔隙度、油气饱和度和渗透率。

1)孔隙度

岩石在形成过程及后期作用中会有粒间孔隙、晶间孔隙、裂缝及洞穴等。根据孔隙流体在孔隙中能否流动,孔隙可分为总孔隙、有效孔隙。有效孔隙指互相联通的孔隙。

总孔隙指所有的孔隙空间。孔隙度是指岩石中孔隙所占的体积与岩石的体积之比。通常用百分数表示。

2)饱和度

孔隙中油气所占孔隙的相对体积称为含油气饱和度,通常也用百分数表示。饱和度

又分为原状地层含烃饱和度、冲洗带残余烃饱和度、侵人带含烃饱和度,可动烃饱和度等。

束缚水饱和度。是另一个重要的饱和度概念,通过它与总含水饱和度的关系可以知道储集层是否能出水。

wirr S 3)岩层厚度

主要指储集层的岩层厚度,指的是有效孔隙,含烃饱和度下限所确定的岩层顶底界所具有厚度。

4)渗透率

为了评价储层的生产能力,应了解油气水流过岩石孔隙的难易程度。当粘度为1×10-3s Pa ?的流体,在单位时间1s钟内,两端压差为latm时,通过岩石单位截面lcm 2

的流体体积为该岩石的渗透率为1μm 2.渗透率分绝对渗透率、有效渗透率和相对渗透率,绝对渗透率为岩石孔隙中只有一种流体存在时对岩石所测量的渗透率。有效渗透率为岩石孔隙存在二种或二种以上的流体时,对其中某一流体所测量的渗透率,为该流体在这种岩石中的有效渗透率。相对渗透率为有效渗透率与绝对渗透率的比值,它表示某种流体流过岩石的难易程度。

四、测井系列的选择

合理和完善的测井系列是保障测井解释准确的先决条件。合理的测井系列可以解决岩性问题,层厚、孔隙度、渗透率、饱和度及泥质含量问题。不同的地质条件,需要不同的测井系列组合,见表1。

1.泥质指示和确定岩性的测井方法选择

泥质指示应能划分泥岩和非泥岩,并能确定泥质含量。基本上各种测井方法都能不同程度的进行泥质解释。最常用的是自然伽马、自然电位和微电极。另外岩性测井和自然伽马能谱测井也能解决这个问题。个别的地区,由于沉积速度快,自然电位不稳定,也可以用其他测井方法解决泥质问题。在以后的泥质砂岩解释中有详细说明。测井系列选择的标准是能准确的划分钻井剖面的岩性,能够准确的确定孔隙度,能够确定地层的含水饱和度,或油气饱和度。如碳酸盐岩地层,三种孔隙度测井确定孔隙度,微球形聚焦确定冲洗带电阻率,双侧向确定深浅电阻率,井径和自然伽马确定泥质含量。再如湖泊相河流相的沉积地层,至少有一种孔隙度,微电极,深浅三侧向,加井径和自然电位,有时加自然伽马。 表1 裸眼井测井系列

井内流体

研究参数 推荐的测井项目 淡水钻井

液 岩性 S w —R w 自然电位、自然伽马、自然能谱、岩性—密度测井 感应测井或侧向测井或电位—梯度电极系测井微球形聚集测井

S xo—R mf Ф—V clay K—ρ几何参数(MSFL)或微侧向测井(MLL)或微电极测井密度测井、中子测井和(或)声波测井

地层测试器(RFT)

地层倾角测井,四臂井径测井,井斜测量

盐水钻井

岩性

S w—R w

S xo—R mf

Ф—V clay

K—ρ

几何参数

自然伽马、自然能谱、岩性—密度测井,自然电位

双侧向测井

微球形聚焦测井或微侧向测井密度测井、中子测井和(或)声

波测井地层测试器(RFT)

地层倾角测井,四臂井径测井,井斜测量

油基钻井

岩性

S w—R w

Ф—V clay

K—ρ

几何参数

自然伽马、自然能谱、岩性—密度测井

感应测井

密度测井、中子测井和(或)声波测井地

层测试器(RFT)

四臂井径测井,井斜测量

空井

岩性

S w—R w

Ф—V clay

K—ρ

几何参数

自然伽马、自然能谱、岩性—密度测井

感应测井

密度测井、中子测井

温度测井

四臂井径测井、井斜测井

2.电阻率测井方法的选择

由于钻井后测井是在井眼中进行,井眼的大小。钻井液性能的差别,使得渗透层受不同程度的污染,存在冲洗带、侵人带和原状地层的电阻率上的差异。电阻率测井应能反应冲洗带、浅、中、深的电阻率数值上的变化。岩层的电阻率高低,岩层的厚薄,影响地层真电阻率数值。所以选用的测井方法也不尽相同。这需要掌握各种方法的线性范围、探测半径、聚焦的强弱、围岩和井的影响大小。对低电阻率地层一般选用双感应一八侧向、微球形聚焦。对高电阻率地层一般选用,双侧向—邻近侧向、微侧向电阻率系列。对于较薄的地层微电极,三侧向或普通电阻率测井也可以很好的解决地质问题。 3.孔隙度测井方法的选择

孔隙度测井一般探测深度较浅,对于储集层一般仅限于冲洗带。声速测井方法适用于粒间和晶间孔隙,不能反映次生孔隙中的裂缝溶洞,适用于均匀分布的孔隙度。中子孔隙度测井只反映岩层的含氢量的大小,并随含氢量的增加探测深度减小。密度测井反映的是岩石的总孔隙度,分不清原生孔隙和次生孔隙。天然气对三种孔隙度都有影响,岩性对孔隙度也有影响。

第一章 自然电位测井(2学时)

在生产实践中发现,在没有人工供电的情况下,测量电极M 在井内移动时,仍测量与岩性有关的电位随井深的变化曲线。由于这个电位是自然电位产生的,所以称为自然电位,用SP 表示。

第一节 井内自然电位产生的原因

井内自然电位产生的原因是复杂的,对于油井来说,主要有以下两个原因:地层水矿化度与泥浆矿化度不同,引起离子扩散作用和岩石颗粒对离子的吸附作用;地层压力与钻井泥浆柱压力不同时,在地层的微孔隙中产生过滤作用。

实践证明:油井的自然电位主要由扩散作用产生的,只有在泥浆柱和地层间的压力差很大的情况下,过滤作用才成为较重要的因素。

一、扩散电位

井内自然电位的产生也是两种不同浓度的溶液相接触的产物。由于砂岩的渗透性较好,当地层水浓度和泥浆滤液浓度不同时(通常)并在井壁附近接触时,离子在渗透压力作用下,高浓度溶液的离子要穿过砂岩向溶液浓度较低的地层中扩散,由于的迁移速率大于,经过一段时间的聚集后,地层内富集正电荷,泥浆滤液中富集负电荷,见图1-1。当扩散最终达到动态平衡时,在砂岩中两种不同浓度溶液的接触面上产生自然电场,产生自然电位差。此时的电动势称为扩散电动势或扩散电位。经实验测定扩散电动势()可由下式进行表示:

w C mf C w C >mf C ?Cl +Na d E mf

w d d C C K E lg = (1-1) 当溶液浓度不很大时,溶液浓度与电阻率成反比,所以

w mf d d R R K E lg

= (1-2)

式中 —扩散电位系数;

d K —泥浆滤液电阻率; mf R w R —地层水电阻率.

二、扩散吸附电动势()

da E 在井内泥岩表面附近,由于泥浆滤液浓度与地层水的浓度不同(),离子在渗透压力作用下,仍然要由高浓度溶液向低溶液浓度中扩散,由于泥岩具有选择吸附阴离子的能力,在粘土颗粒表面可以大量地吸附阴离子,而可以自由扩散,扩散结

w C >mf C +Na

果是在泥浆滤液中富集大量正电荷,而在地层中富集了负电荷,见图1-1。这样就在泥岩表面处形成扩散吸附电位,记为,其表达式为:

da E )lg(lg

w mf da mf w da da R R K C C K E == (1-3) 式中:—扩散吸附电位系数;

da K —地层水浓度;

w C —泥浆滤液浓度

mf C 三、过滤电位

在岩石中,颗粒和颗粒之间有很多孔隙,它们彼此连通,形成很细的孔道,称为毛细管。当泥浆柱的压力大于地层的压力时,泥浆向地层过渡,泥浆滤液通过井壁在岩石孔道中流过。由于岩石颗粒的选择吸附性,孔道壁上吸附泥浆滤液中的负离子仅有正离子向地层中移动,这样在井壁附近聚集了大量负离子, 图1-2 过滤电位形成示意图 在地层内部聚集了大量正离子,这样在地层和泥浆接触面两端形成的电位称为过滤电动势,用表示,如图1-2所示。在泥浆压力大于地层压力的条件下,渗透层处,过滤电位与扩散吸附电位方向一致,其数值与地层和泥浆柱之间的压力差及过滤溶液的电阻率成正比,与过滤溶液的粘度成反比,即:

f E μmf f

f R p K E ?Δ= (1-4)

式中:—压力差,;

p Δatm —过滤电位系数,与溶液的成分浓度有关;

f K —过滤溶液的电阻率, mf R m ?Ωμ—过滤溶液粘度,。

s Pa ??310过滤电位只有当地层与泥浆柱压力差很悬殊时,而且在泥饼形成以前,才有较大的显示。但一般钻井时要求泥浆柱压力只能稍大于地层压力,相差不是很大,而且在测井时已形成泥饼,因此一般井内过滤电位的作用可忽略不计。在砂泥岩剖面的井中的自然电场主要由扩散电位和扩散吸附电位组成。

第二节 自然电位测井曲线特征

由于泥岩(或页岩层)岩性稳定,在自然电位测井曲线上显示为一条电位不变的直线,将它称为自然电位的泥岩基线;在渗透性砂岩段,自然电位曲线偏离泥岩基线,在足够厚的砂岩层中,曲线达到固定的偏转幅度,定为砂岩线。自然电位曲线的异常幅度

SP U Δ就是地层中点的自然电位与基线的差值。如图1-3所示,图1-3为含水纯砂岩的自然电位理论曲线。通常把井中巨厚纯水层砂岩井段的自然电位幅度近似地认为是静自然电位,其值等于扩散电动势与扩散吸附电动势之和。横坐标为自然电位与静自然电位之比,纵坐标为地层厚度,曲线号码为层厚与井径之比SSP SSP U SP /Δh d h 。当上下围岩岩性相同时,曲线特征为:

(1)当地层泥浆是均匀的,上下围岩岩性相同时,自然电位曲线关于目的地层中心对称,地层中心处异常值最大;

(2)地层越厚,SP U Δ越接近,地层厚度变小,SSP SP U Δ下降,曲线顶部变尖,底部变宽;

SP U Δd SP U Δ的半幅点对应地层的界面,因此较厚地层可用曲线半幅点确定地层界面,随着厚度的变小,对应界面处的曲线幅度值离开半幅点向曲线峰值移动。

实测曲线与理论曲线特点基本相同,但由于测井时受多方面因素的影响,实测曲线不如理论曲线规则,见图1-4。渗透性砂岩的自然电位对泥岩基线而言,可向左或向右偏移,它主要取决于地层水和泥浆溶液的相对矿化度。当时,砂岩层段自然电位出现负异常,当mf w C C >mf w C C <时,砂岩层段出现正异常;当mf w C C =时,不存在造成自然电场的条件,则没有自然电位异常出现。和的差别越大,造成自然电场的电动势越大。

w C mf C 第三节 自然电位曲线影响因素

一、渗透层自然电位异常幅度的计算

对于砂泥岩层段来说,自然电流回路的总自然电位经推导为:

s E mf

w s C C K E lg = (1-5) 式中:da d K K K +=—自然电位系数;

w C —砂岩的地层水矿化度,

mf C —泥浆滤液的矿化度。

自然电位实际上是自然电流在井内泥浆电阻上的电位降,即:

SP U Δ m

t sh s m t sh m s m sp r r r E r r r r E r I U ++=?++=?=Δ1 (1-6) 二、曲线影响因素

由(1-6)式可以看出,测量的自然电位幅度值SP U Δ与造成自然电场的总电动势、井内泥浆电阻、泥岩电阻以及砂岩电阻有关。

SSP m r sh r t r 1)岩性和矿化度比值的影响

自然电位异常幅度值SP U Δ与总自然电动势成正比,取决于岩性和钻井液滤液电阻率与地层水电阻率的比值(即s E s E mf R w R w mf R R /mf w C C ),所以岩性和地层水矿化度与钻井液滤液矿化度的比值mf w C 直接影响的异常幅度。在砂泥岩剖面,自然电位曲线以泥岩为基线。在含水纯砂岩层中,自然电位幅度最大,;随泥质含量的增加,下降,导致sp U SSP U SP ≈ΔSSP SP U Δ下降。

2)地层厚度和井径的影响

图 1-3为不同的地层厚度纯水砂岩的自然电位理论曲线,主要说明在其他条件完全相同的情况下,地层厚度(h/d )对自然电位幅度和形状的影响。SP U Δ为记录的自然电位异常幅度值,为静自然电位,从图中可以看出,当地层厚度h>4d 时,自然电位异常幅度近似等于静自然电位;当地层厚度h<4d 时,自然电位异常幅度小于静自然电位,厚度越小,差别越大,异常顶部变窄,底部变宽,这时不能用半幅点确定地层界面。其原因是:地层厚度减小,地层电阻增大,井内钻井液电阻减小,所以减小。

若地层厚度一定时,井径减小,h/d 增大,井内钻井液电阻增 大,则增大。

SSP t r m r SP U Δm r SP U Δ3)地层电阻率,钻井液电阻率以及围岩电阻率的影响

随着的增大,自然电位幅度值降低。这是由于增大(或减小),增大(或减小),则m t R R /t R m R t r m r SP U Δ减小。

围岩电阻率的变化,同样对自然电位异常幅度值有影响。围岩电阻率增大,则增大使自然电位异常幅度值减小。 s R s R s r 4)钻井液侵入带的影响

在渗透性地层,钻井液滤液渗入到地层孔隙中,使钻井液滤液与地层水的接触面向地层方向移动了一个距离。钻井液侵入带的存在,相当于井径扩大,因而是自然电位异常幅度值降低,因此钻井液的侵入增大,自然电位异常幅度减小。

第四节 自然电位曲线的应用

一、 判断岩性,确定渗透性地层

自然电位主要是离子在岩石中的扩散吸附作用产生的,而岩石的扩散吸附作用与岩石的成分、组织结构、胶结物成分及含量有密切的关系,所以可根据自然曲线的变化判断岩性和分析岩性的变化。

在砂泥岩剖面中,当()时,在SP 曲线上,以泥岩为基线,出现负异常的井段,可认为是渗透性岩层,其中纯砂岩井段出现最大的负异常;含泥质的砂

mf w R R

岩层,负异常幅度较低,而且随泥质含量的增多,异常幅度下降;此外,含水砂岩的还取决于砂岩渗透层孔隙中所含流体的性质,一般含水砂岩的比含油砂岩的要高。

sp U Δ水SP U Δ油SP U Δ在识别出渗透层后,可用“半幅点”法确定渗透层的上下界面位置(条件:h>4d,d 为井径)。如果h<4d,用“半幅点”法确定的渗透层厚度一般要大于实际地层的厚度,结果会产生较大的误差。

二、计算地层水电阻率

在求地层水电阻率时,要选择剖面中较厚的饱含水的纯净砂岩层,读出该层的,近似认为是静自然电位,并根据泥浆资料确定,由下式计算地层水电阻率:

sp U ΔSSP mf R w mf R R K SSP lg

?= (1-7) 三、估计地层的泥质含量

泥质含量和其存在状态对砂岩产生的扩散吸附电动势有直接影响,因此可根据自然电位曲线估计泥质含量。如果在一个地区使用这种方法,必须进行大量的试验工作,通过建立和泥质含量之间的定量关系,然后才能利用自然电位曲线估计岩层的泥质含量。有以下两种方法:

sp U Δsh V sh V (1)对某一地区,通过试验,应用数理统计方法建立与sh V sp U Δ之间的关系曲线,再根据自然电位曲线确定地层的泥质含量。

(2)利用经验公式估算:

SSP

PSP V sh ?=1 (1-8) 式中:PSP 含泥质砂岩的静自然电位;SSP 为本地区含水纯砂岩的静自然电位。

四、判断水淹层位

为提高油田采收率,在油田开发过程中,采取分片切割注水采油的方法。由于油层渗透率不同,注入水推进的速度也不一样。如果一口井的某个油层见了水,这个层就称水淹层。水淹层在自然电位曲线上显示特点较多,由于各地区的储集层特点不同,故水淹层在自然电位曲线上的特点不尽相同,所以要根据本地区的曲线变化规律判断水淹层。对部分水淹层(油层底部或顶部见水),自然电位曲线的基线在该层上下发生偏移,出现台阶,见图1-5。这是一种比较普遍的现象,据此可判断水淹层;另外,根据基线偏移的大小,可以估算水淹程度。

第二章 电阻率测井(8学时)

电阻率法测井是地球物理测井中最基本、最常用的测井方法,它包括普通电阻率测井、微电极测井、侧向测井、感应测井和自然电位测井等,尽管这些方法的具体特点和所要解决的问题各不相同,但它们的实质都是进行地层电阻率测量。在井孔中测量地层电阻率时,必须向岩层通入一定的电流,在地层中形成电场,电场分布的特点取决于周围介质的电阻率和供电电极及测量电极间的位置。因此,只要测量出各种介质的电场分布特点就可确定介质的电阻率,所以电阻率测井实质是研究各种介质中电场的分布问题。

第一节 普通电阻率测井

普通电阻率法测井是把一个普通的电极系(由三个电极组成)放入井内,另一个电极留在地面,测量井内岩石电阻率变化的曲线。在测量地层电阻率时,要受井径、泥浆电阻率、上下围岩及电极距等因素的影响,测得的参数不等于地层的真电阻率,而是被称为地层的视电阻率。因此普通电阻率测井又称为视电阻率测井。

埋藏在地下的岩石的电阻率,是一个既不能直接观察又不能直接测量的物理量,只有当电流通过它的时候才能间接地测出来。因此,在测量电阻率时,必须由供电电极A 、B 供电,向岩层通入一定的电流,在井内建立电厂,然后用测量电极M 、N 进行电位差测量,研究岩石电阻率不同对电场分布的影响,从而进一步找出电位差与岩石电阻率之间的关系。A 、B 、M 、N 四个电极中的三个形成一个相对位置不变的体系,称为电极系,见图2-1。测井时电极系放入井中,而另一个电极放在地面,当电极系由井底向井口移动时,便可测量出一条岩石电阻率曲线。

MN U Δ一、均匀介质电阻率的测量

假定井眼所穿过的地层是均匀各向同性的无限大介质,即岩性相同,且电阻率都是R。以点电源A(电流强度为I),空间任取一点P,它到A 的距离为r,以r 为半径作一球,求球面上任一点P 的电位。

球面上的电流密度为:

24r I S I j π==

(2-1) 由欧姆定律的微分形式可知:

24r RI Rj E π=

= (2-2) 而 dr

du E ?

= (2-3) 所以

∫∫+=?=?=C r

RI dr r RI

Edr ππ424U (2-4) 当时∞→r ,,C=0故,则均匀介质中任一点的电位为:

0→U r RI U π4=

(2-5) (1)若将点电源放在P 点,则它在A 点产生的电位也是r RI U π4=,电场的这种性质称为电位的互换原理。对于非均匀介质,这个原理也是适用的。 (2)如果在均匀介质中放置,…个点电源,其电流强度分别为,…,它们距P 点的距离分别为,…,那么所有点电源在P 点所产生的电位是各个点电

源单独在P 点产生的电位的代数和,即: 1A 2A n A 1I 2I n I 1r 2r n r n

n r R I r R I r R I U πππ4442211+++=L (2-6) 电场的这种性质称为电位的叠加原理。在均匀介质中,电阻率R 与电位U 之间存在着简单的关系,由即可求出R,普通电阻率测井正式利用了这一原理。

图2-1是普通电阻率测井的测量原理线路。将由供电电极和测量电极组成的电极系

A、M、N 或M、A、B 放入井内,而把另一个电极B 或N 放在地面泥浆池中,作为接地回路电极,电极系通过电缆与地面上的电源和记录仪相连接。当电极系由井内向井口移动时,供电电极A、B 供给电流I,测量M、N 电极间的电位差。通过地面记录仪可将电位差转换为地层视电阻率。

a R 对图a,供电电极A 的电流I 和电极B 的电流-I 对测量电极M 点的电位都有贡献。 BM RI AM RI U U U B A M 1414???=

+=ππ (2-7) N 点离A,B 点很远,则0=N U 。

因此 : BM

AM AB RI U U M MN ??==Δπ4 (2-8) I U K I U AB

BM AM R MN MN Δ=Δ???=π4 (2-9) K —电极系系数,它的大小与电极系中三个电极之间的距离有关。

对如果用图b 的线路进行测量,可以证明R 的表达式与(2-9)式完全相同,但这时的电极系系数为:

MN

AN AM K ??=π4 (2-10) 由此可见,均匀介质中的电阻率与测量电极系的结构、供电电流以及测量电位差有关,当电极系结构和供电电流大小一定时,均匀介质的电阻率与测量电位差成正比。

二、视电阻率

以上的分析,都是假定电极系处在均匀介质中,但实际测井遇到的情况要复杂得多。石油勘探的目的层具有较好的孔隙性和渗透能力,钻井过程中,由于泥浆柱的压力大于地层压力,泥浆的滤液向渗透层的孔隙中渗透,在渗透层靠近井壁的部分形成泥浆滤液的侵入带,并在井壁上形成泥饼。侵入带内泥浆滤液的分布是不均匀的,靠近井壁的部分,泥浆滤液把孔隙中原有的液体全部赶跑,占据了整个孔隙空间,这部分叫泥浆冲洗带,靠近冲洗带地层孔隙中是泥浆滤液和地层流体的混合物,该部分称为过渡带。而地层中未被泥浆干扰的地层称为原状地层。

另外,渗透层的厚度也是有限的,其顶部和底部都为非渗透的地层,称为目的层的上下围岩。以上各个部分(原状地层,泥浆侵入带,泥饼,上下围岩,井内泥浆),其电阻率、(冲洗带电阻率用表示)、、和通常是不同的。在这种井剖面的情况下,测量的电位差除了受地层真电阻率影响外,还要受、、、,井径,侵入带直径,以及地层厚度h 和电极系结构等因素的影响,因此不能用(2-9)式简单地求解地层的真电阻率。但是在井中实际测量的电位差,仍然可以代入公式(2-9)中计算电阻率,在这种复杂情况下求出的电阻率称为地层的视电阻率,用表示,则:

t R i R xo R mc R s R m R t R i R mc R s R m R d D a R I

U K R MN a Δ= (2-11) 一般来说,地层的视电阻率不同于地层的真电阻率,但是选择适当的电极系和测量条件,可以使测量的视电阻率主要反映地层电阻率的变化。因而可以利用在井内测量的视电阻率曲线,来研究钻井剖面地层电阻率的相对变化。

三、电极系

电极相对位置不同,会形成不同的电场,也就组成了不同的电极系。在电极系的三个电极中,有两个在同一线路(供电线路或测量线路)中,叫成对电极或同名电极,另外一个和地面电极在同一线路(测量线路或供电线路)中,叫不成对电极或单电极。根据电极间的相对位置的不同,可以分为梯度电极系和电位电极系。

1.电位电极系:不成对电极到靠近它的那个成对电极之间的距离小于成对电极间距离的电极系。电位电极系中成对电极之间的距离(MN 或AB )较大,即MN AM <或AB MA <。电位电极系的电极距为单电极(不成对电极)到最近它那个成对电极之间的

距离,即L=AM 。AM 的中点O 称为深度记录点,表示电极在井内的深度位置,在某一深度位置上测得的可看作记录点处的。当成对电极系中的一个电极放到无限远处时,即a R a R MN ∞→,可认为N 电极对测量无影响,只有A、M 对测量是有意义的,这种电位电极系称为理想电位电极系。对理想电位电极系其所求得电阻率为:

I

U AM R M a ?=π4 (2-12) 从式中可看出视电阻率和测量点M 的电位成正比,故此电极系称为电位电极系。此外,电位电极系又可分为:

正装电位电极系:成对电极在不成对电极之下的电位电极系。

倒装电位电极系:成对电极在不成对电极之上的电位电极系。

另外,根据供电电极的多少,电位电极系又分为单极供电电位电极系和双极供电电位电极系。

2.梯度电极系:不成对电极到靠近它的那个成对电极之间的距离大于成对电极间距离的电极系。电极系的三个电极之间有三个距离:AM ,AN ,MN 或AM ,BM ,AB 这三个距离当中,梯度电极系中成对电极之间的距离(MN 或AB )最小,即MN AM >或AB MA >,梯度电极系又分为正装梯度电极系和倒装梯度电极系两种:

正装梯度:成对电极在不成对电极之下的梯度电极系。由于正装梯度电极系测出的曲线在高阻层底界面出现极大值,所以也叫底部梯度电极系。

a R 倒装梯度:成对电极在不成对电极之上的梯度电极系。由于倒装梯度电极系测出的曲线在高阻层顶界面出现极大值,所以也叫顶部梯度电极系。另外,根据供电电极的多少,梯度电极系又分为单极供电梯度电极系和双极供电梯度电极系。

a R 梯度电极系的电极距为不成对电极到成对电极中点之间的距离,即L=AO 。MN 的中点O 称为深度记录点。当成对电极间的距离无限小(在极限情况下等于0)时的梯度电极系叫理想梯度电极系。对理想梯度电极系其所求得电阻率为:

I

E AO R a 24?=π (2-13) 从式中可看出视电阻率和深度记录点O 的电位梯度成正比,故此电极系称为梯度电极系。

a R 此外,电极系的表示方法:通常按照电极在井中的次序,由上到下写出代表电极的字母,字母间写出相应电极间的距离,(以米为单位)表示电极系的类。如:A0.4M0.1N 表示电极距为0.45m 的底部梯度电极系,电极A、M 之间的距离为0.4m,M、N 之间的距离为0.1m。

不同电极系的探测深度也是不同的。探测深度通常以探测半径r来表示,在均匀介质中,以供电电极为中心,以某一半径划一假想球面,若假想球面内包含的介质对电极系测量结果的贡献占整个测量结果的50%,则此半径r就是该电极系的探测深度或探测半径。一般梯度电极系的探测范围是1.4倍电极距L,而电位电极系的r=2L。由此可知,L 越大探测深度也越大。

第二节 视电阻率曲线的影响因素

一、视电阻率曲线特征

假定只有一个高电阻率地层,上下围岩的电阻率相等,并且没有井的影响,采用理想电极系进行测量。来看一下视电阻率的理论曲线。

1. 电位电极系视电阻率曲线特征

(1)当上下围岩电阻率相等时,电位电极系的视电阻率曲线关于地层中心对称 (2)当地层厚度大于电极距时,对应高电阻率地层中心,视电阻率曲线显示极大值;地层厚度越大,极大值越接近于地层真电阻率(图2-3);当地层厚度小于电极距时,对应高阻层中心,曲线出现极小值。

(3)在地层界面处,曲线上出现“小平台”,其中点正对着地层的界面,随层厚降

h<时,“小平台”靠地层外侧一点为高值点,出现低,“小平台”发生倾斜;当AM

假极大值。

(4)对厚层取曲线的极大值作为电位电极系的视电阻率数值。

2. 梯度电极系视电阻率曲线特征

(1)曲线与地层中点不对称,对着高阻层,底部梯度电极曲线在地层底界面出现极大值,顶界面出现极小值;顶部梯度电极曲线在高阻层顶界面出现极大值,底界面出现极小值,而且两者的曲线形状正好倒转。这是确定地层界面的重要特征,由此可用来确定高阻层的顶底界面,见图2-4。

(2)地层厚度很大时,在地层中点附近,有一段视电阻率曲线和深度轴平行的直线,其值等于地层的真电阻率曲线(用来确定地层的真电阻率)。

(3)对于h>L的中厚度岩层,其视电阻率曲线与厚地层的视电阻率曲线形状相似,但随着厚度的减小,地层中部视电阻率曲线的平直段变小直到消失,见图2-4。

(4)当用底部梯度电极系时,在薄的高阻层下方出现一个假极大值,它距高阻层底界面为一个电极距,见图2-5。

视电阻率曲线的主要应用有划分岩性剖面,计算储层的孔隙度和含油饱和度,定性判断油水层和进行地层对比。

二、视电阻率曲线影响因素

前面讨论的理论曲线是在理想条件下作出来的,即地层是水平的,采用理想电极系,不考虑井的影响。实测曲线由于受井的影响变得平缓且曲线幅度降低,为正确使用视电阻率曲线,有必要研究各种条件对视电阻率曲线的影响。

a R (1)井径、层厚的影响

当地层电阻率、电极距、泥浆电阻率等因素一定时,随着h /d 降低(井径加大或地层厚度减小),视电阻率曲线变得平滑。所以在其它条件相同时,高阻薄层视电阻率曲线的幅度值比厚层要偏低。井径变化对视电阻率曲线的影响,归根结底是由于井内泥浆的影响。通常泥浆电阻率低于地层电阻率,井径扩大,井的扩大,井的分流作用增大,视电阻率值降低。为了使视电阻率曲线具有很好的划分地层的能力,要求钻井泥浆的电阻率要大于五倍地层水电阻率。

(2)电极系的影响

从理论曲线分析中可知,电极系类型不同,所测视电阻率曲线形状不同。即使同一类型的电极系在同样的测量条件下,电极系的尺寸不同,所测的视电阻率曲线的形状及幅度也不一样。

(3)侵入影响

采用不同电阻率的泥浆钻井时,会对渗透性地层产生泥浆高侵和泥浆低侵现象,视电阻率会受到影响。

泥浆高侵(增阻泥浆侵入):地层孔隙中原来含有的流体的电阻率较低,电阻率较高的泥浆滤液侵入后,使侵入带岩石电阻率升高。这种情况多出现在水层。

泥浆低侵(减阻泥浆侵入):地层孔隙中原来含有的流体的电阻率比渗入地层中的泥浆滤液的电阻率高时,泥浆滤液侵入后,使侵入带岩石电阻率降低。这种情况一般出现在地层水矿化度不很高的油层。泥浆侵入对于测量和确定岩层真电阻率是一种因素,但也可根据侵入类型粗略地估计渗透层含油、水情况。

t R (4)高阻邻层的屏蔽影响

以上讨论的是单一高电阻率地层的视电阻率曲线。实际测井工作中,经常碰到的是许多高电阻率地层和低电阻率地层交互出现。如果各高阻层之间的距离小于2个电极距,则相邻高阻层对供电电极发出的电流产生屏蔽作用,因而使曲线形态发生畸变,见图2-6。实践证明,高阻邻层的屏蔽作用,不仅与地层厚度,地层电阻率有关,而且还和电极系类型,电极距,夹层厚度有关。在定性分析屏蔽影响时,要考虑以下几点:

a、位于单电极方向的高阻层,可对另一高阻层产生屏蔽影响,但后者对前者的读数基本上不产生影响。

b、当两个高阻层之间的距离小于电极距时,可产生减阻屏蔽。

c、当两个高阻层之间的距离大于电极距时,可产生增阻屏蔽。

(5)地层倾斜的影响

理论曲线是在水平岩层中得出的结果,而实际上大部分岩层总有些倾斜,所以实测曲线与理论曲线形状和幅度都有所不同,见图2-7。其它条件均相同,只改变地层倾角α,所测的梯度电极系视电阻率曲线发生变化。若把利用倾斜地层中所测的划分岩层所得到的厚度定义为视厚度。其曲线特点为:

a R a h 随地层倾角α增大,

极大值向地层中心移动,使曲线变得较对称;曲线的极大值随α增大而降低,曲线变得平缓,极小值模糊不清;,h h a >α越大,和差别越大。时,曲线还保持曲线的基本特征,只是确定的岩层厚度偏高。因此,在用视电阻率曲线来确定地层真电阻率时,必须经过多次校正。

a h h 060<α

三、标准测井

在一个地区或一个油田,为了研究岩性变化、构造形态和大段油层的划分和对比工作,常用相同的深度比例(一般为1:500)及相同的横向比例,采用相同的测井系列,作为划分标准层及进行地层对比的基本图件。标准测井包括有2.5米梯度电极系视电阻率测井和自然电位测井以及井径测井。

第三节 侧向测井

为了评价含油性,必须较准确的求出地层的电阻率,在地层厚度较大、地层电阻率和泥浆电阻率相差不太悬殊的情况下,可以采用普通电极系测井来求地层电阻率;但在地层较薄、电阻率很高,或者在盐水泥浆的情况下,由于泥浆电阻率很低,使得电极流出的电流大部分都在井和围岩中流过,进入测量层的电流很少。因此测量的视电阻率曲线变化平缓,不能用来划分地层、判断岩性。另外,在存在砂泥岩交互层的地区,高阻邻层对普通电极系的屏蔽影响很大,使其难以求出地层真电阻率。

一、三电极侧向测井基本原理

三侧向测井电极系是一个长的金属圆柱体,它被绝缘材料(绝缘环)分隔成三部分,如图2-8。中间的为主电极,两端的、为屏蔽电极,它们对称地排列在主电极两侧,且相互短路。在电极系上方较远处设有对比电极N 和回路电极B,电极系在井中的工作状态和电流分布特点如图2-9。测井过程中,主电极和屏蔽电极、分别通以相同极性的电流和,保持为一常数,通过自动调节装置调节,使、的电位始终保持和的电位相等,沿纵向的电位梯度为零。这就保证了电流不会沿井轴方向流动,而绝大部分呈水平层状进入地层,这样大大减小了井和围岩的影响,使三侧向具有较高的

0A 1A 2A 0A 1A 2A 1A 2A 0A

分层能力。测量的是主电极(或任一屏蔽电极)上的电位值。因为主电流保持恒定,故测得的电位依赖于地层电阻率的大小。三侧向电极系的深度记录点在主电极的中点,测得的视电阻率可表示为:

I U K R a = (2-14) 三侧向测井由主电极流出的电流在屏蔽电极电流的作用下,呈水平层状进入地层,这样大大减小了井和围岩的影响,使三侧向具有较高的分层能力,适合在高矿化度泥浆中使用。

0A 上述三侧向测井的分层能力较强,并且探测深度较深,通常把这种三侧向测井称为深三侧向测井,它主要反映原状地层的电阻率变化。在三侧向测井测井中,为了准确了解径向电阻率(如侵入带电阻率和原状地层电阻率)的变化,提出了浅三侧向测井。浅三侧向测井的探测深度较浅,其电极系结构如图2-8所示。其特点是:屏蔽电极、的尺寸比深三侧向测井要短,减弱了屏蔽电流对主电流的控制作用,并在和外面加上两个极性相反的电极和,作为主电流和屏蔽电流的回路电极,使主电流径向流入地层不远处即发散。所测出的视电阻率主要反映井壁附近岩层电阻率的变化。在渗透层井段就反映侵入带的变化。图2-8所给的是一种实际应用的深、浅三侧向电极系,电极系尺寸如下(单位为m)(其中电极上面的数值表示该电极的长度,两个电极之间的数值表示电极之间相隔的距离)。浅三侧向:

1A 2A 1A 2A 1B 2B 0I i R 2

20111.12.04.0025.015.0025.04.02.01.1A A A A A 深三侧向:

2

20111.12.04.0025.015.0025.04.02.01.1B A A A B 仪器全长3.6m,仪器直径为0.089m。

二、影响三侧向测井视电阻率的因素

1.曲线的影响因素

三侧向测井的视电阻率理论曲线特征与电位电极系的视电阻率曲线相似,当上下围岩电阻率相等时,曲线关于地层中心对称,在高阻地层中,视电阻率出现极大值;当上、下围岩电阻率不等时,则曲线呈不对称形状,且极大值移向高阻围岩一方。的影响因素包括两方面,电极系参数和地层参数。前者影响电极系K,后者影响电极系的电位。

a R a R

电极系参数包括电极系长度、主电极长度及电极系直径。电极系愈长,主电流聚焦越好,主电流进入地层的深度也越深。

计算表明,当电极系尺寸大到一定程度后,该改变电极系长度,对探测深度几乎没有什么影响。另外,主电极长 图2-9 深三侧向测井的电流分布

度对曲线的纵向分层能力有影响,主电极越短,分层能力越强。所以,为划分地层剖面,应选择合适的主电极长度。下面讨论地层参数的影响。

(1)层厚和围岩的影响

当层厚大于4L(L 为主电极长度)时,围岩对测量的基本上没有影响,然而对厚度小于或接近于L 的地层,受围岩影响比较明显,层厚较薄时,电流层受低阻围岩影响而分散,使值降低,地层越薄,围岩电阻率越小,值降低越多。

a R a R a R a R (2)侵入带的影响

侵入带的影响与电极系的聚焦能力、侵入深度和侵入带电阻率有关,侵入越深或电极系的聚焦能力越差,侵入带的影响则相对增加。在侵入深度相同条件下,随着侵入带电阻率的增加,它对的影响也相对增加,并且增阻侵入比减阻侵入对影响更大些。

a R a R 2.曲线的主要应用

三侧向测井实质上是视电阻率测井的一种,它能解决的问题与普通电阻率测井相同。但是它受井眼、层厚、围岩的影响较小,分层能力较强,是划分不同电阻率地层的有效方法,特别是划分高阻薄层,比普通电极系视电阻率曲线要清楚得多。

(1)深浅三侧向曲线重叠法判断油水层。

由于三侧向的视电阻率曲线受泥浆侵入带的影响,而油层和水层侵入的性质一般情况下是不同的。油层多为减阻侵入,而水层多为增阻侵入。一些油田曾采用两种不同探测深度(深浅)的三侧向视电阻率曲线,进行重叠比较的方法判断油水层。在油层(泥浆低侵)处,一般深三侧向的视电阻率值大于浅三侧向的视电阻率的值,曲线出现正异常,在水层(泥浆高侵)处,一般深三侧向的视电阻率值小于浅三侧向的视电阻率值,曲线出现负异常。

a R a R a R a R (2)划分地质剖面(分层)

三侧向测井受井眼、层厚、邻层的影响较小,纵向分层能力较强,通常在曲线开始急剧上升的位置为地层界面。

a R (3)确定地层电阻率

利用三侧向的视电阻率确定地层电阻率时和普通电极系一样,仍然遇到三个未知数

(地层真电阻率)

,(侵入带电阻率)和 D(侵入半径)。结合微侧向测井求得,再利用深浅三侧向的侵入校正图版就可求出和D。

t R i R i R t R

三、双侧向视电阻率曲线特点及应用

双侧向测井是在三侧向和七侧向的基础上发展起来的,它采用两个柱状电极和七个体积较小的环状电极,电极系结构如图2-10。其中是主电极,两对监督电极和、

和以及两对屏蔽电极和、和,每对电极对称地分布在两侧,并短

路相接。电极系深度记录点为主电极的中心,为增加探测深度, 和不是环状而是

柱状电极,与三侧向的屏蔽电极相同。

o A 1M 2M 1N 2N 1A '1A 2A '2A o A '1A '2A 测量时电极供以恒定电流,两对屏蔽电极和、和流出相同极性的屏蔽电流、,通过自动调节电路保持监督电极和(或和)间的电位差为零,柱状屏蔽上的电位与环状屏蔽电极上的电位的比值为一常数。即o A 0I 1A 2A '1A '

2A s I 's I 1M 1N 2M 2N '1A 1A α=1'1/A A U U (或α=2

'2/A A U U )。然后,测量任一监督电极(如)和无穷远电极之间的电位差。在主电流恒定不变的情况下,测得的电位差和介质的视电阻率成正比:

1M 0I 01

I U K R M a = (2-15)

其中:K 为双侧向的电极系系数,可由实验或理论计算获得;为上的电位。 1M U 1M 双侧向测井顾名思义,它也分为深双侧向和浅双侧向,深双侧向的探测深度较深,所测的视电阻率主要反映原状地层电阻率;浅双侧向的探测深度较浅,所测的电阻率与侵入带电阻率有关。双侧向电极系尺寸如下:

)(38.03.022.002.008.002.018.012.018.002.008.002.022.03.08.0)(31'11110222'22B A A N M A M N A A B 仪器全长9.36m。由此可见,浅双侧向与深双侧向的尺寸一样,其不同之处在于把柱状屏

蔽电极和改成电流的回路电极、。

'1A '

2A 1B 2B 双侧向测井资料应用于三侧向基本相同。 第四节 冲洗带电阻率测井

微电极测井是在普通电阻率测井的基础上发展起来的一种测井方法,它采用特制的微电极测量井壁附近地层的电阻率。普通电阻率测井能从剖面上划分出高阻层,但它不能区分这个高阻层是致密层还是渗透层;另外,在含油气地区经常会遇到砂泥岩的薄交互层,而由于普通电极系的电极距较长,尽管能增加探测深度,但难以划分薄层(这是一对矛盾)。因此,为解决上述实际问题,在普通电极系的基础上,采用了电极距很小的微电极测井。

一、 微电极测井

1.微电极测井原理

微电极系的电极距比普通电极系的电极距小得多,为了减小井的影响,电极系采用了特殊的结构,测井时使电极紧贴在井壁上,这就大大减小了泥浆对结果的影响。

我国微电极测井普遍采用微梯度和微电位两种电极系,其仪器结构是在一起的主体上装2-3个弹簧片作为扶正器,其中一个弹簧片山装有硬橡胶板,在橡胶板上签有三个电极A 、、,1M 2M A 为供电电极,、为测量电极,电极间的距离为0.025m,测量过程中,装有弹簧片的扶正器使极板紧贴井壁进行测量,尽量减少钻井液对测量结果的影响。橡胶板上的三个电极组成两种类型的微电极系,见图2-11。其中1M 2M A 0.0250.025为微梯度电极系,微梯度的电极距为0.0375m,由1M 2M A 0.05组成的微电位电极系电极距为0.05m。

2M 由于电极距很小,它的探测深度都很小,实验证明微梯度电极系的探测范围只有5cm,微电位的约为8cm 左右。在渗透性地层处,由于泥浆滤液侵入地层中,在井的周围形成泥浆滤液侵入带,井壁上形成了泥饼,侵入带内的泥浆滤液是不均匀的。靠近井壁附近,孔隙内几乎都是泥浆滤液,这部分叫泥浆冲洗带,它的电阻率大于5倍的泥饼电阻率,而泥饼电阻率约为泥浆电阻率的1~3倍。在非渗透的致密层和泥岩层段,没有泥饼和侵入带。渗透层和非渗透层的这种区别,是区分它们的重要依据。由于微梯度和微电位电极系探测半径不同,因此泥饼、泥浆薄膜(极板与井壁之间夹的泥浆)和冲洗带电阻率对它们的影响不同,探测半径较大的微电位电极系主要受冲洗带电阻率的影响,显示较高的数值。微梯度受泥浆影响较大,显示较低的数值。因此在渗透性地层处,微梯度和微电位测量的视电阻率曲线出现幅度差,利用这个差异可以判断渗透性地层。在渗透性地层处,微电位的读数大于微梯度的读数,显示出的幅度差称为正幅度差,反之,显示出的幅度差称为负幅度差。

利用微梯度和微电位的视电阻率曲线的差别研究地层,必须使微电极系和井壁的接触条件保持不变,所以要求微梯度和微电位同时测量。

2.微电极测井资料的应用

选用微梯度和微电位两种电极系以及相应的电极距,目的是要它们在渗透性地层段出现明显的幅度差,因此,不但要求两者同时测量,而且要将两条视电阻率曲线画在一起,采用重叠法进行解释,见图2-12。根据现场实践,微电极测井主要有以下几种应用:

1)确定岩层界面,划分薄层和薄的交互层

通常依据微电极测井曲线的半幅点或曲线分离点确定地层界面,一般可划分20cm 厚的薄层,薄的交互层也有较清楚的显示。

2)判断岩性和确定渗透性地层

石油测井技术服务方案

石油测井技术服务方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案: (1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其他保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用

第一部分测井、射孔工程技术服务方案及技术措施; 一、培训 对参与中国华油集团公司银川分公司的全体人员进行培训,包括认识该区块的重要性和特殊性、学习取全取准测井资料的保证措施、讨论各岗位的技术难点和应对措施并进行相应的技术演练等等。通过培训增强参与人员的责任感、主动性和积极性。培训内容包括:施工方案、质量保障措施,HSE管理措施等。 二、全员生产准备 全员生产准备内容包括设备检修、人员配备、仪器刻度、备件准备、区域资料收集等,其各项质量均应满足规定的要求。公司测井工程部具体组织实施。具体工作如下: 1、测井工程部根据生产计划及测井施工要求,将生产准备任务下达至相关施工中心和支持

保障单位,并对其准备过程实施有效控制。 2、数控测井中心职责: (1)组织施工作业小队进行设备、工装的保养和维护; (2)对所属施工作业小队的人员、仪器设备进行调配; (3)按公司相关文件规定及时督促小队进行电缆深度记号标定及电缆张力检定、泥浆电阻率测量杯校验; (4)按各类下井仪器刻度规程的规定督促小队进行仪器刻度; (5)组织施工作业小队通过资质认证; (6)对施工作业小队生产准备情况实施检查并作记录。 3、仪修车间按照《测井下井仪器一、二、三级例行保养》制度和仪器维修标准系列对仪器进行维修保养并实施检验,填写保养记录并签名。 (1)外观检查应无机械损伤、机械结构紧密、

测井技术

测井设备 一、ECLIPS全称:Enhanced Computerized Logging and Interpretive Processing System ECLIPS-5700数控测井系统是当今最先进的测井设备之一,它采用的是WTS通讯系统,WTS是“Wireline Telemetry Systems”(电缆遥测系统)的英文字母缩写,其最快传送速率为230KB(千比特),能很好地完成5700测井时大数据量的传输任务,是当今世界速度最快的测井通讯系统之一。5700WTS通讯就是指地面与井下仪器之间的通讯,其中井下仪器负责井下仪器的通讯部分:接收命令、采集数据,数据的初步处理和向地面发送数据;地面系统负责地面通讯部分,向井下仪发送命令,接收井下仪器的数据信号。地面通讯主要由5756接线控制面板和5750电缆信号处理板组成。命令用M2下传,而数据的传输有3种:M2数据、M5数据和M7数据。5700WTS遥测系统调制编码方式采用曼切斯特码,文章对于该编码方式作了全面地研究,指出了采用该编码方式的优点和规则。 ECLIPS-5700测井系统又称加强型计算机测井解释处理系统,可完成各种常规和成像测井的数据采集和处理编辑工作。它采用菜单驱动,具备“help”功能,便于操作。ECLIPS 可提供广泛的诊断,如电源和遥传系统的诊断程序以及用户可选择的诊断程序。通过图形显示和数据处理的实时显示,可不断地监视测井质量。 二、测斜仪 所谓井眼轨迹,实指井眼轴线。一口实钻井的井眼轴线乃是一条空间曲线。为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。所使用的仪器就称为“测斜仪”。 每隔一定长度的井段测一个点,这些井段称为“测段”,这些点称为测点。测斜仪在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。这三个参数就是轨迹的基本参数。按照测斜仪的发展顺序,分别介绍其原理如下: 1. 照相测斜仪原理: 利用小孔成像的光学原理,在工作时灯泡发光,将罗盘内测角装置的影像通过透镜成像在胶片上,使胶片感光,提出仪器后通过洗像液使胶片显影并读取数据。 2. 电子测斜仪原理: 单多点电子测斜仪采用三轴磁力仪和三轴或两轴重力加速度计测量井眼方位角和井斜角,每一个测点可以分别记录三个重力矢量、三个磁通门参数、探管温度、电池电压和井眼其它参数,并储存在探管的存储器内,提出仪器后再经过计算机或控制器把存储器里的数据进行回放、打印。随钻电子测斜仪的工作原理与单多点电子测斜仪基本一样,只不过不需要提出仪器便可通过其它传输通道将井底测量点的数据随时传输至地面的处理终

中国石油集团测井有限公司

中国石油集团测井有限公司(CNPC Logging)成立于2002年12月,直属中国石油天然气集团公司,注册地在西安市高新技术开发区,是集测井技术研发、测井装备制造、测井技术服务于一体的专业化技术公司。 公司现有作业队伍292支,具备年测井13000口、录井600口、射孔90000米的生产作业能力。国内服务市场已覆盖到长庆、华北、吐哈、青海、玉门、塔里木、冀东、福山、浙江、吉林等油田,以及大部分煤层气作业市场;海外服务市场已延伸到乌兹别克、加拿大、孟加拉、伊朗、蒙古、缅甸等国家。装备销售市场已覆盖全国测井公司,并远销俄罗斯等国家。 公司成立10年来,坚持产品领先战略,充分发挥研发制造服务一体化优势,以找油找气和提速提效相统一为目的,自主研发了具有完全自主知识产权的EILog快速与成像测井系列,获得专利授权190项、注册商标6项,为油气勘探开发和相关工程技术业务提供了品种齐全、优质高效、解决问题的仪器产品、软件产品和服务产品,促进了油气田增储上产。主要产品包括: 1. 综合化的地面系统,支持EILog各种测井仪器工具和远程传输,支持多语言、多单位制转换。 2. 集成化快速测井系统,一次下井可获取三电阻率、三孔隙度、GR、SP、井径、井斜等18条曲线,系列齐全,能满足不同类型储层和复杂井况的需求。 3. “三电两声一核磁”成像测井系统,包括阵列感应、阵列侧向、微电阻率扫描、阵列声波、超声波和核磁共振,适用于复杂油气层的精准识别和精细评价。 4. MWD加“四电一声两放射”随钻测井系统,包括定向遥测、井斜方位工具面、感应电阻率、电磁波电阻率、侧向电阻率、泥浆电阻率、声波测井、可控源中子孔隙度和方位自然伽马,适用于水平井地质导向和地层岩性、含油性和孔隙度等参数评价。 5. 数字岩心,包括钻井式井壁取心、岩心数字化、井场求取岩心参数等功能,可及时用于测井解释评价过程,提高油气层识别准确率。 6. 模块式地层动态测试器,能及时、准确、直接地获得储层流体、压力资料,是解决疑难油气层识别的有效手段,可减少试油工程投入。 7. 固井质量监测系统,包括声幅/变密度、扇区水泥胶结、方位声波成像、伽马密度、光纤陀螺测斜仪等,能提供套管外一、二界面水泥固井质量和局部串槽的精细评价,周向分辨率45°。 8.生产测井及测试技术,拥有先进齐全的产出剖面、注入剖面、套损监测仪器系列,拥有中子寿命、中子伽马能谱、过套管地层电阻率、PNN等剩余油测井系列,拥有压力测试、稳定试井、不稳定试井、取样分析、井下调剖等测试产品,可及时对产层特性做出评价。 9. 射孔技术系列,包括水平井定向射孔、小井眼射孔、复合射孔、井口带压射孔、全通径射孔、多级起爆、超深井射孔桥塞、井下P-T测试等,系列齐全,技术先进,可满足不同用户需求。 10. 随钻录井技术,包括综合录井、现场地化录井、定量荧光录井、轻烃分析、PK 录井等,能随钻识别岩性、准确卡层、定量发现和评价油气层。 11. 元素俘获测井技术,可获得精确的地层岩性组分,准确地识别地层岩性,结合密度和声波等常规

国内随钻测井解释

1国内随钻测井解释现状及发展 在国内现有的技术条件下,开展大斜度井和水平井测井资料的可视化解释能在很大程度上提高测井解释识别地质目标的精度,通过实时解释、实时地质导向有助于提高钻井精度、降低钻井成本、及时发现油气层。 未来的勘探地质目标将更加复杂,以地质导向为核心的定向钻井技术的应用会越来越多。伴随新的随钻测井仪器的出现,应该有新的集成度高的配套解释评价软件,以充分挖掘新的随钻测井资料中包含的信息,使测井资料的应用从目前的单井和多井评价发展为油气藏综合解释评价。因此,定向钻井技术的发展及钻井自动化程度的提高必将使随钻测井技术的应用领域更加关泛。 2 提高薄油层钻遇率 提高薄油层水平井油层钻遇率必须加强方案研究及现场调整、实施两方面研究。方案设计包括对油层的构造、沉积相、储层物性、电性特征、油气显示特征综合研究。现场调整、实施包括对定向工具的认识及现场地质资料综合分析、重新调整轨迹后而实施的设计。 一口水平井的实施是一个系统工程,包括地质、钻井工程两方面的因素。地质设计及现场提出的方案要充分考虑工程的可行性。只有加强综合研究,根据油藏的变化情况及时调整轨迹,才能提高油层钻遇率。 目前,在石油、天然气等钻井勘探开发技术领域,水平井作业中,使用随钻测井工具、随钻测量工具和现场综合录井工具。随钻测量工具、随钻测井工具位于离钻头不远的地方,在钻机钻进的同时获取地层的各种资料和井眼轨迹资料,包括井斜、方位、自然伽马、深浅侧向电阻率等。现场综合录井工具获取钻时、岩屑、荧光、气测录井等,这样利用随钻测量工具、随钻测井工具测得的钻井参数、地层参数和现场综合录井资料推导出目的层实际海拔深度和钻头在目的层中实际位置,并及时调整钻头轨迹,使之顺着目的层沿层钻进,尽量提高砂岩钻遇率。

随钻测井技术

第8卷第4期断 块 油 气 田 FAUL T-BLOCK OIL&G AS FIFLD2001年7月随钻测井技术 布志虹1 任干能2 陈 乐2 (11中原油田分公司勘探事业部 21中原石油勘探局地质录井处) 摘 要 随钻测井是一种新型的测井技术,它能够在钻开地层的同时实时测量地层信息。 本文介绍了斯伦贝谢公司最新的随钻测井技术,并通过对其新技术的分析,提出了在重点探井文古2井进行随钻测井的建议及方法。 关键词 随钻测量 随钻测井 随钻测量工具 引言 在钻井过程中同时进行的测井称之为随钻测井。 随钻测井系统中随钻测井的井下仪器的安装与常规测井的仪器基本相同,所不同的是各仪器单元均安装在钻铤中,这些钻铤必须能够适应正常的泥浆循环。 用随钻测井系统进行随钻测井作业比电缆测井作业简单。首先在地面把各种随钻测井仪器刻度好,然后把他们对接起来进行整体检验,再把随钻测井仪接在钻杆的底部,最后接上底部钻具总成和钻头,至此,就可以进行钻井和随钻测井作业了。 1 数据记录方式Ξ 随钻测井有2种记录方式,一是地面记录,即将井下实时测得的数据信号通过钻井液脉冲传送到地面进行处理记录;二是井下存储,待起钻时将数据体起出。这里仅介绍地面记录的方法。 在随钻测量仪中设计有一个十分重要的系统即钻井液脉冲遥测系统,该系统的作用是把各传感器采集的信号实时传送到地面。目前在随钻测量系统中主要使用连续钻井液脉冲进行遥测传输,它在井下用一个旋转阀在钻井液柱中产生连续压力波,这个旋转阀称为解制器。在井下改变波的相位(即调频),并在地面检测这些相位变化,就可以把信号连续地传输到地面。 来自各传感器的模拟信号首先被转换成二进制数。每一个二进制数则由一个具有适当的二进制位数的字来表示,每个字所含有的二进制位数的多少(即字长的大小)视测量结果所需的精度而定,如果所传输的信号对精度的要求不高,可用一个字长较小的字表示这个二进制数;反之,则需用一个字长较大的字表示。目前随钻测量系统中采用的字长一般为8位,即每个字含有8个二进制位,这是一个最优化方案,既满足了各测量信号对精度的要求,又能在单位时间里传送较多的二进制数到地面。 这些字由一系列的“0”和“1”组成,由调制器把它调制成代表这些字的钻井液脉冲发送到地面。调制器调制信号是一帧一帧地调制的,每一帧由16个字组成,其中15个字长为8位的字用于传输测量信号,一个字长为10位的字是用来标识一帧的起始位置的帧同步字。 最后,压力信号由安装在立管中的压力传感器检测出,由调制器调制并传送到地面。这些压力信号被送到地面计算机系统,由计算机系统调解后被还原成各传感器的测量信号值,并与其所对应的时间和深度一起存入数据库。这些测量信号和及其处理结果就可以实时地显示在荧光屏上或打印在绘图纸上。 在钻井液遥测系统的数据传输率和字长一定的情况下,系统在单位时间内向地面传送的二进 22Ξ收稿日期 2001-02-15 第一作者简介 布志虹,女,1962年生,高级工程师, 1982年毕业于江汉石油学院测井专业,现在中原油田分公司勘探事业部从事勘探管理工作,地址(457001):河南省濮阳市,电话:(0393)4822513。

SLB随钻测井技术及应用

随钻测井(LWD)技术及应用 WZ11-1 N
宋菊 随钻测量技术 Apr-16-2009
1 Initials 4/18/2009

主要内容
随钻测井简介 VISION Scope 作业要点
环境随钻测井影响
2 Initials 4/18/2009

随钻测井仪器
振共磁核
电缆测井仪器
CMR
proVISION sonicVISION StethoScope TeleScope
随钻测井可以实现 的测井项目
侧向电阻率 电磁波传播电阻率
DSI
PeriScope seismicVISION
geoVISION Xceed/Vortex
3 Initials 4/18/2009
谱获俘、马格西、规常
EcoScope
试测力压层地 像成率阻电 率阻电向侧
波声
MDT
岩性密度 光电指数 中子孔隙度
PEx
元素俘获,自然伽马 声波 地层压力 俘获截面 核磁 地层界面 图像
AIT ECS
HRLS
随钻测井能够完成几乎全部测井项目
FMI
97%以上的随钻测井不再需要重复电缆测井 以上的随钻测井不再需要重复电缆测井

传达独立的地层评价
电缆测井 随钻测井
97%以上的随钻测井不需要重复 相同项目的电缆测井
4 Initials 4/18/2009

随钻测井的价值
决策
决策/ 决策/ 产量
储层增产地质导向
增 值 方 向
地层产能和渗透性
储层产能 储层评价
R Φ R Φ R Φ MR,
孔隙度, 饱和度, 岩性, 孔隙度 饱和度 岩性 流体
西格马
实 时 数 据 构造
随钻测井服务 Φ
地 元 地层元素 地 元 地 元
Rt Rxo
孔 密度 隙 光电 度 指数
ΦISO
向 导 质 质 质 质 地 地 地 地
流度 流 流 流
e e e Perm
V
地层信息
Sc op e
实时测井 EcoScope
GVR (RAB) ARC ADN
马 伽马 伽马 伽马能谱
pe co riS Pe e op Sc tho Ste
N ISIO ProV
Sonic VISION
Te le
测量工具
实时可视化
感应 电阻 率
侧向 电阻 率
试 试 试 测试 力 力 力 压力 层 层 层 地层
振 振 振 共振 核 核磁
测 测 测 测 探 探 探 探 界 界 界 界 边 层 地 地 地 地
西格马
中子
密度
波 声波 声波 声波
成像
遥 测
实时解释
LWD测量的项目 测量的项目
测量项目
5 Initials 4/18/2009

石油测井方案及应急预案

测井方案及应急预案 编写单位:******公司 施工单位:*****队 审批人: 钻井队(签字):______________________ 日期: ____________ 测井队(签字):______________________ 日期: ____________ 监督(签字):________________________ 日期: ____________ *****公司 年月曰

一、现场数据 1泥浆参数: 泥浆密度:g/ml ;粘度:s; PH 值:;CL-: mg/l ; 2 .钻井数据: 套管: 3. 测井项目 二、人员分工 1.测井队长: 2.工程师: 3.带班操作手: 4.绞车操作: 5.动力检查: 6.井口巡视: 7.仪器连接检查: 三、作业准备 1:首先在基地选用性能良好的仪器配接检查,到达井场后对仪器再次进行配接检查,保证仪器在入井前的正常状态。 2:基地准备好打捞工具。 3:注意劳保用品穿戴。 4:天气寒冷注意防止人员冻伤,防滑防冻。

5:测井前,把电缆卡子,剪切电缆工具放至钻台。 6:井下防落物;提高警惕防止高空落物,注意人身安全。 7 :测井时,井口专人值班。 &测井时,派有经验的带班操作手操作绞车,注意遇阻遇卡。 9:作业时,与井队密切配合。 10:PCL传输作业注意CHT变化,防止损伤仪器,造成仪器落井、遇卡、遇阻事故。 四、对井队的要求 1:井口坐岗 2:井口照明充足 3:组装井口时井队充分配合 4:测井时严禁电气焊 5:钻台供气供水充足 6:井口工注意电缆,防止钻具碰伤电缆 五、测井施工方案及风险分析 在测井中应当防止仪器遇阻、遇卡及电缆吸附卡。测井施工的总体原则是必须在确保100%安全的条件下进行测井施工。 电缆测井方案的详细步骤见下: 1)在测井前应详细检查下井用的电缆和马笼头的通断绝缘状况、仪器O圈全部更换,确保测井作业顺利完成。 2)在下井过程中,密切注意仪器悬重及CHT张力,观察仪器在泥浆中

国内外石油测井新技术

国内外石油测井新技术 第一节岩石物理性质 岩石物理性质研究是进行油层识别与评价的核心技术,主要研究岩石的电、声、核等物理性质,研究手段主要是实验室岩心测量。这些测量是刻度现场测井曲线、建立测井参数与孔隙度、渗透率、饱和度等储层参数之间关系的基础。岩石物理性质研究是测井学科。最基础的研究领域,最终目的是发展新的测井方法,改进测井参数与储层参数之间的经验关系式,减少测井解释和油气藏描述的不确定性。 测井解释和油藏描述的不确定性在很大程度上是因为不能有效描述岩石复杂的孔隙结构,尤其是对于碳酸盆岩。要显著减少不确定性程度就要求开发出新的技术,精确描述岩石微小结构,并将这些信息与测量的岩石物理性质联系起来。 C . H . Arns等人使用一种高分辨率X射线微型计算层析(micro一CT)装置分析了几组岩心塞碎片。该装置包括一个能从岩心塞卜采集、由20003个体元组成的三维图像。研究者通过对各种砂岩样品和一块碳酸盐岩样品的分析,给出了直接用数字化层析图像计算的渗透率和毛细管压力数据。将这些计算结果与相同岩心的常规实验数据进行比较,发现两组数据非常一致。这说明,可用不适合实验室测试的岩心物质(如井壁岩样或损坏的岩心和钻屑)预测岩石物理性质,还说明结合数字图像与数值计算来预测岩石性质和推导储层物性间的相互关系是可行的。 M.MARVOV等人研究了双孔隙度碳酸盐岩地层孔隙空间的微观结构对其物性参数的影响。利用两种自相一致的方法计算了弹性波速度、电导率和热导率。这两种方法是有效介质近似法和有效介质法。双孔隙度介质被认为是一种非均质物质,这种物质由均质骨架构成,同时带有小规模的原生孔隙和大规模的包含物(作为次生孔隙)。这些介质的所有成分(固体颗粒、原始孔隙和次生孔隙)都可用三轴椭球体近似表达。次生夹杂物椭球体纵横比的变化反映了次生孔隙度的类型(孔洞、孔道和裂缝)。研究人员将有效介质参数(声波速度,电导率和热导率)作为次生孔隙度大小和类型的函数计算了这些参数,此外,还考察了次生孔隙形状的双模式分布对研究参数的影响。所获得的结果是用反演方法独立确定碳酸盐岩原生孔隙度和次生孔隙度的基础。 M . B . BP11Pf1PI等人分析比较了4种用LWD数据确定孔隙度的方法。在LWD测井中测量是在滤液侵入较深前就完成了,“天然气效应”体积密度和中子孔隙度测量范围内,低密度、低含氢指数(HI)的轻烃的存在导致测井响应的分离)无处不在,确定岩石孔隙度变得很困难。研究人员用尼日尔三角洲浅海海滨采集的随钻测井数据评价了四种计算孔隙度的方法(快速直观的中子一密度法,电阻率一密度迭代法、中子一密度迭代法和蒙特卡罗模拟法)。一般情况下,这4种技术都可较准确地估算出孔隙度。文献讨论了这些方法的相对优点以及出现差异的原因,提出了对这4种方法的使用建议:

石油测井技术服务方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案: (1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其他保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用“暗标”方式评审,则在任何情况下,“施工组织机构”不得涉及人员姓名、简历、公司名称等暴露投标人身份的内容); (11)投标人技术服务范围内拟分包的工作(按第二章“投标人须知”第1.11款的规定)、材料计划和劳动力计划; (12)任何可能的紧急情况的处理措施、预案以及抵抗风险(包括测井、射孔工程技术服务过程中可能遇到的各种风险)的措施; (13)对专业分包工程的配合、协调、管理、服务方案; (14)招标文件规定的其他内容。 2.若投标人须知规定技术服务方案采用技术“暗标”方式评审,则技术服务方案的编制和装订应按附表七“技术服务方案(技术暗标部分)编制及装订要求”编制和装订技术服务方案。 3.技术服务方案除采用文字表述外可附下列图表,图表及格式要求附后。若采用技术暗标评审,则下述表格应按照章节内容,严格按给定的格式附在相应的章节中。

国外随钻测井发展历程

国外随钻测井发展历程 提高服务质量,降低服务成本是工程技术服务努力追求的目标,就此而言, 随钻测井相对于电缆测井具有多方面的优势。随钻测井资料是在泥浆滤液侵入地层之前或侵入很浅时测得的,更真实地反映原状地层的地质特征,可提高地层评价精度。随钻测井在钻井的同时完成测井作业,减少了井场钻机占用时间,从钻井-测井一体化服务的整体上节省成本。在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险大以致不能进行作业时,随钻测井是唯一可用的测井技术。因此,随钻测井既提高了地层评价测井数据的质量,又减少了钻井在用时间,降低成本。 在过去的近20年里, 随钻测井技术快速发展, 目前已具备对应电缆测井的所有技术,包括比较完善的电、声、核测井系列,以及随钻核磁、随钻压力等等。同时, 全球随钻测井业务不断增长, 已成为油田工程技术服务的主体技术之一,其业务收入和工作量大幅增加。可以预期, 随着石油勘探开发向复杂储集层纵深发展, 随钻测井技术将更趋完善, 电缆测井市场份额将更多地被随钻测井所取代。 一、随钻测井发展历程 随钻测井技术的发展可追溯到1930年前后,当时电缆测井技术开始出现和发展。20世纪30年代早期,Dallas地球物理公司的J.C.Karaher用一段长4-5英尺的绝缘线将钻头与钻柱绝缘,在每根钻杆内嵌入绝缘棒,用一根导线在绝缘 棒中间穿过,通向地面,通过这根导线传输信号。 用这种方法得到了令人鼓舞的结果,测量到连续 的电阻率曲线。1938年采集到第一条LWD电阻率 曲线[1],这是用电连接方式传输数据的第一条 LWD曲线(图1)。 20世纪40年代和50年代仅有的几个专利文 献表明,许多发明家和研究组织继续致力于实时 的、可靠的随钻测量系统的研究,遗憾的是,LWD 数据传输技术的发展非常缓慢,技术上很难突破。 在测井技术发展开始的50年时间里,在石油工业

测井解释流程

测井解释流程 测井资料数据处理与综合解释 一、测井资料数据处理 1、测井解释收集的第一性资料: ①钻井取芯 ②井壁取芯和地层测试 ③钻井显示 ④岩屑录井 ⑤气测录井 ⑥试油资料 2、测井数据预处理 在用测井数据计算地质参数之前,对测井数据所做的一切处理都是预处理。主要包括: ①深度对齐:使每一深度各条测井数据同一采样点的数据。 ②把斜井曲线校正成直井曲线 ③曲线平滑处理:把非地层原因引起的小变化或不值得考虑的小变化平滑掉。 ④环境校正:把仪器探测范围内影响消除掉,获得地层真实的数值。 ⑤数值标准化:消除系统误差的方法。 二、测井资料的定性解释 测井资料的定性解释是确定每条曲线的幅度变化和明显的形态特征反映的地层岩性、物性和含油性,结合地区经验,对储集层做出综合性的地质解释。 三、测井综合解释由各油田测井公司的解释中心选择的处理解释程序,有比较富有经验的人员,较丰富的资料对测井数据做更完善的处理和解释,它向油田提供正式的单井处理与解释结果,综合地质研究,还可以完成地层倾角、裂缝识别、岩石机械性质解释等特殊处理。 1、地层评价方法 以阿尔奇公式和威里公式为基础,发展了一套定量评价储集层的方法,包括: ①建立解释模型; ②用声速或任何一种孔隙度测井计算孔隙度; ③用阿尔奇公式计算含水饱和度和含油气饱和度; ④快速直观显示地层含油性、可动油和可动水; ⑤计算绝对渗透率; ⑥综合判断油气、水层。 2、评价含油性的交会图 电阻率—孔隙度交会图 3、确定束缚水饱和度和渗透率 储集层产生流体类别和产量高低, 与地层孔隙度和含油气、束缚水饱和度、绝对渗透率和原油性质等有关。束缚水饱和度与含水饱和度的相互关系,是决定地层是否无水产油气的主要因素,绝对渗透率是决定地层能否产出流体的主要因素,束缚水饱和度有密切关系。没有一种测井方法可直接计算这两个参数。 确定束缚水饱和度的方法: 1)将试油证实的或综合分析确有把握的产油。油基泥浆取芯测量的含水饱和度就是束缚水饱和度。 2)深探测电阻率计算的含水饱和度作为束缚水饱和度。 3)根据试油、测井资料的统计分析,确定束缚水饱和度。 确定地层绝对渗透率的方法:

5700成像系统介绍-NEW1

目录 一、成像测井技术简介 (2) 二、ECLIPS--5700成像测井系统简介 (4) (一)地面系统 (4) 1、地面面板 (5) 2、软件系统 (6) (二)下井仪器 (8) 1、下井仪器的主要配置: (9) 2、下井仪器的功能简介 (10) (三)辅助设备 (15) (四)工作方式 (15) 三、ECLIPS—5700成像测井系统的引进: (17) (一)、前期准备工作 (17) (二)引进过程 (18) (三)刻度设备的装配 (18) 四、ECLIPS—5700成像测井系统的验收 (19) (一)、设备的清点验收: (19) (二)ECLIPS—5700成像测井系统的车间配接 (19) (三)ECLIPS—5700成像测井系统的试投产 (20) 五、投产使用情况简介 (22) 六、发现和存在的问题 (23) 结束语 (24)

ECLIPS--5700成像测井系统的引进及应用 一、成像测井技术简介 成像测井技术是当今世界测井技术的前沿。 随着石油与天然气工业的发展,油气勘探开发的难度越来越大,尤其是对探测复杂的非均质油气层,以往的数控测井技术更是力不从心,而成像测井技术除了能提供石油与天然气工业中所需要的油气储量及产量参数----孔隙度、饱和度、油气层厚度和油气藏面积以及渗透率、地层压力、流体黏度和油气层有效厚度以外,还特别适合于提供裂缝、孔洞、薄互层等非均质信息。因此,应用成像测井技术解决面临的地质问题,具有更强的适应能力,可进一步提高油气勘探开发的效益。 所谓成像测井技术,就是在井下采用传感器阵列扫描测量或旋转扫描测量,沿井眼纵向、周向或径向大量采集地层信息,传输到井上以后通过图像处理技术得到井壁的二维图像或井眼周围某一探测深度以内的三维图像。 目前,我国的成像测井技术与国外差距较大,成像测井总体框架尚处于调研准备阶段,而国外的测井公司于90年代初,已经相继推出了各自的成像测井地面采集系统。例如斯仑贝谢公司的MAXIS-500,哈里伯顿公司的EXCELL-2000以及贝克阿特拉斯的

测井新技术培训总结

2015年测井新技术培训总结 首先,我非常感谢公司给我这次参加培训的机会,也很荣幸参加了这次培训,这说明公司对我们员工培训的重视,反映了公司“重视人才,培养人才”的战略方针;对于身处测井行业的我,也非常珍惜这次机会。 2015年4月13日至2015年4月22日在山东省东营市胜利职业学院参加了这次测井新技术培训。经过这10天的学习,对钻井、采油等测井相关领域的技术及测井新技术有了深入的了解与认识,。现将学习体会总结如下:第一天:开班典礼/中石化测井技术现状及发展趋势—杨明清 采油工程方案设计技术—王桂英 第二天:钻井技术发展趋势与前沿技术—冯光通 移动端学习—孙艳 第三天:低渗透油气藏压裂酸化配套技术—肖金 套管井剩余油评价测井技术—张玉模 第四天:随钻测控技术—于其蛟 射孔技术—朱建新 第五天:石油工程科技论文写作探讨—陈会年 国内外非常规油气勘探开发现状与展望—王永诗 第六天:拓展训练—翟莉 第七天:低孔渗地层评价及水平井测井解释—吴海燕 第八天:随钻测井及解释/井间电磁成像测井技术研究与应用—赵文杰 第九天:测井软件现状及应用—刘子文 第十天:交流学习 这些天学习中首先的问题就是介绍目前寒冬期中我们如何求发展?老师开篇介绍石化石油工程技术服务有限公司于2012年12月28中成立,包括测井事业部、8家地区公司等,各家公司的不仅服务于国内各大盆地,也有服务海外市场的,除华北测井其他测井公司均在海外市场有服务队伍,这个是需要我们重视的问题。老师说到目前市场上,测井设备品牌繁杂,自主设备品牌滞后,高端测井设备利用率低。面对目前如此严峻的形势,各测井公司应巩固内部市场,扩大国内外部市场,大力发展国际市场,同时由于内部竞争激烈,应成立专业化油服

石油测井技术服务方案范文

石油测井技术服务 方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案:(1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其它保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用“暗标”方式评审,则在任何情况下,“施工组织机构”不得涉及人员姓名、简历、公司名称等暴露投标人身份的内容); (11)投标人技术服务范围内拟分包的工作(按第二章“投标人须知”第1.11款的规定)、材料计划和劳动力计划;

(12)任何可能的紧急情况的处理措施、预案以及抵抗风险(包括测井、射孔工程技术服务过程中可能遇到的各种风险)的措施; (13)对专业分包工程的配合、协调、管理、服务方案; (14)招标文件规定的其它内容。 2.若投标人须知规定技术服务方案采用技术“暗标”方式评审,则技术服务方案的编制和装订应按附表七“技术服务方案(技术暗标部分)编制及装订要求”编制和装订技术服务方案。 3.技术服务方案除采用文字表述外可附下列图表,图表及格式要求附后。若采用技术暗标评审,则下述表格应按照章节内容,严格按给定的格式附在相应的章节中。 第一部分测井、射孔工程技术服务方案及技术措施; 一、培训 对参与中国华油集团公司银川分公司的全体人员进行培训,包括认识该区块的重要性和特殊性、学习取全取准测井资料的保证措施、讨论各岗位的技术难点和应对措施并进行相应的技术演练等等。经过培训增强参与人员的责任感、主动性和积极性。培训内容包括:施工方案、质量保障措施,HSE管理措施等。 二、全员生产准备 全员生产准备内容包括设备检修、人员配备、仪器刻度、备

随钻声波测井技术综述

随钻声波测井技术综述 随钻测井的研究从20世纪30年代开始研究,在1978年研究出第一套具有商业价值的随钻测井仪器。在那以后,随钻测井在国外取得迅速发展并获得广泛应用,我国对随钻测井的重视达到了前所未有的程度。随钻声波测井也是如此。 1发展随钻测井的意义和随钻声波测井发展现状 随钻测井(LWD)是近年来迅速崛起的先进技术。它集钻井技术,测井技术和油藏描述等技术于一体,在钻井的同时完成测井作业,减少了钻机占用井场的时间,从钻井测井一体化中节省成本[1]。跟常规电缆测井相比,除了节省成本外,随钻测井有如下优势:(1)从测量信息上讲,随钻测井是在泥浆尚未侵入或者侵入不深时测量地层信息,泥饼和冲洗带尚未形成,所测得到的曲线更加准确,更能反映原始地层的真实信息,如声波时差等。(2)从对钻井的指导作用来讲,随钻测井可以提前检测到超压地层,以指导钻井泥浆的配制,提高钻井安全系数。它也可以根据测井信息,分析出有利的含油气方向,确定钻井方向,增强地质导向功能。(3)从适应环境上讲,在大斜度井,水平井或特殊地质环境(如膨胀粘土和高压地层),电缆测井困难或者风险大以致不能进行作业时,随钻测井可以取而代之。目前在海上,几乎所有钻井活动都采用随钻技术[2]。 正因为这些优点,作为随钻测井的重要组成部分的随钻声波测井近年来也获得了巨大的发展。总体而言,国外无论在随钻声波测井的基础理论研究方面还是在仪器研发方面都比较成熟,而国内近年来也对随钻声波测井的相关难题进行了大量的工作。 具体而言,从上世纪90年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX随钻声波测井仪,CLSS随钻声波测井仪,sonicVISION随钻声波测井仪的相继出现,更加巩固了他们的垄断地位。在国内,鞠晓东,闫向宏[等人在随钻测井数据降噪[3],存储[4],压缩[5],传输特性[6]和电源设计[7]等方面做出了大量的工作。车小花[7],苏远大[8]等人对隔声体设计的隔声效果和机械强度分析进行了数值模拟和实验。此外,唐小明,乔文孝,王海澜等人在随钻声波测井基础理论研究方面做了许多有益的探索。 2随钻声波测井仪工作原理和技术性能 目前国际上主要的随钻声波测井仪有贝克休斯的APX,哈里伯顿的CLSS和斯伦贝谢的sonicVISION。以贝克休斯的APX测井仪为例,介绍一下仪器工作原理和结构。 APX测井仪的结构如下图1所示。从右到左由上部短节,声源电子线路部分,全向声源,声波隔离器,接收器阵列,接收器电子线路部分,下部短节等组成,全长9.82m (32.3ft),其中声波测量点到底部短节的距离为 2.83m(9.3ft),最短源距为 3.26m (10.7ft)。 其工作原理为:位于钻铤上部的声源发射器以最佳频率向井眼周围地层发射声能脉冲,在沿井壁及周围地层向下传播的过程中被阵列接收器接收到首播信号,接收信号后,系统首先用先进的嵌入式技术,将接收到的声波模拟信号转换成数字信号,并采用有限元等方法将数字信号转换为声波时差(data)值。最后将原始声波波形数据和预处理的声波波形数据存储在精心设计的高速存储器内或者以实时方式通过钻井液脉冲遥测技术传输到地面[9]。

测井技术快讯-1

测井技术快讯 WELL LOGGING TECHNOLOGY EXPRESS 第1期 2011年 1月15日 主办:技术信息研究所 新型多频介电扫描成像测井仪(Dielectric Scanner*) 斯仑贝谢公司曾经分别研制了1.1 GHz 、25 MHz 电磁波传播测井仪EPT 和DPT ,因探测深度和使用条件的限制,没有得到广泛应用。近年来,斯仑贝谢公司推出多频介电扫描成像测井仪Dielectric Scanner ,在业内第一个应用多频介电频散技术来准确测量储层剩余油气体积、阿尔奇公式中的m 和n 指数以及储层的离子交换能力CEC 。这些参数以前只能通过实验室岩心分析得到。介电频散测量能够提供近井眼区域电性质的径向剖面,用于推导复杂油气储层的岩石特性和流体分布。结合传统测井方法,介电测井能够提供更准确的储层评价和油藏描述。 多频介电扫描成像仪器的技术特点: ●仪器有一个铰链连接活动极板,2个发射天线位于极板中央,两边各对称排列4个接收天线。还有用于测量泥饼和泥浆特性的2个浅探测探头。 ●4种源距的发射-接收模式(双发四收),提供不同的径向探测深度(1~4 in )(2.5~10 cm ),从泥饼、侵入带、过渡带到原状地层都能探测到。 ●2种极化模式扫描,即纵向极化和横向极化,以减小各向异性影响。 ●基本测量包括每个接收天线对接收到的电磁波信号的幅度和相位移,在每一个工作频率下有72种幅度和72种相位测量。 多频介电扫描成像仪器的用途: ●孔隙流体分析:使用多源距高频率测量数据,可以测量剩余油气饱和度和侵入带地层水矿化度,还可以描述侵入剖面,即稠油储层/低侵入储层的含油饱和度剖面。 ●骨架分析:根据电介质散射测量数据,可以得到碳酸盐岩地层的m 、n 曲线,以及泥质砂岩地层的离子交换能力CEC 、泥质含量和各向异性。 ●地质构造分析:根据多极化模式和高分辨率测量数据,可以进行薄层分析、超薄层的构造各向异性测量、地质特性提取、碳酸盐岩分类。 本期导读 1. 新型多频介电扫描成像测井仪 2. 井下光学成像测井技术新进展 3. 井下传送新技术——超强电缆 和井下爬行器 4.一新型的磁敏角度传感器正在逐 渐取代电位器式位移传感器

5700测井技术介绍—阵列感应测井原理及应用

5700测井技术介绍— 阵列感应 测井原理及地质应用

目录 一、前言 (1) 二、阵列感应测井原理及应用 (1) 1.阵列感应测井原理简介 (1) 2阵列感应资料处理 (2) 3.阵列感应测井的地质应用 (10) 三、阵列感应测井实例分析 (14) 1、低矿化度泥浆侵入含高矿化度地层水的储层 (14) 2、高矿化度泥浆侵入含低矿化度地层水的储层 (17) 3、在稠油井中的应用效果 (20) 4、水淹层解释应用效果 (21) 5、在判断地层水矿化度方面的应用效果 (23) 四、总结和建议 (24)

一、前言 阵列感应测井是测井发展史上的一个飞跃,自从测井公司引进了阿特拉斯的阵列感应测井仪HDIL后,经过多年的使用,已经成为测井中一项不可缺少的项目,特别是在沙泥岩地层和低电阻率地层中,发挥了其它测井项目不可替代的作用。 二、阵列感应测井原理及应用 1.阵列感应测井原理简介 阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。 高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。而且它具有宽的频谱,它 )及所有的奇次谐波的能量,因此每个线圈可以包括了方波频率(约等于10KH Z 共8个频率下同时进行工作。 在10、30、50、70、90、110、130、150KH Z

贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍
贝克休斯随钻测井 技术介绍
1
随钻测量(MWD)
旋转倾斜角
– 旋转钻井过程中的井眼倾斜角
旋转方位角
– 旋转钻井过程中的井眼方位角
方向原始数据
– 用于对钻柱轴向磁场干扰进行修正
振动粘滑动态
– 轴向振动 – 横向振动 – 粘滑振动
2
3
2008年5月28日
1

贝克休斯随钻测井技术介绍
高速数据传输 (aXcelerate)
原始信号的形状清晰且容易 确定 泵噪音和反射作用导致到达 地表传感器的信号失真 对泵噪音的消除使得对井下 脉冲发生器信号的识别成为 可能 动态优先级提升(DPP)算 法可消除反射作用和表面噪 音 对信号进行最终过滤,并采 用自适应相关器恢复井下脉 冲发生器的原始信号
4
高速数据传输 (aXcelerate)
3比特/秒的实时数据 密度具有足够分辨率 能确保图像重要特征 的识别 增加至6比特/秒的数 据密度可产生清晰的 图像,可确保特征识 别以及实时倾角选择
5
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Gamma 伽马射线 Ray
6
2008年5月28日
2

贝克休斯随钻测井技术介绍
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率 Resistivity
MPRTEQ
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
7
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Density & 密度与孔 Porosity 隙度
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
8
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
9
2008年5月28日
3

相关主题
文本预览
相关文档 最新文档