当前位置:文档之家› 六方晶系四指数推导

六方晶系四指数推导

六方晶系四指数推导
六方晶系四指数推导

1.4 晶向指数和晶面指数

一晶向和晶面

1 晶向

晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。

2 晶面

晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。

不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。

二晶向指数和晶面指数的确定

1 晶向指数的确定方法

三指数表示晶向指数[uvw]的步骤如图1所示。

(1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。

(2)选取该晶向上原点以外的任一点P(xa,yb,zc)。

(3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。

(4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。

图1 晶向指数的确定方法

图2 不同的晶向及其指数

当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。

显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。

说明:

a 指数意义:代表相互平行、方向一致的所有晶向。

b 负值:标于数字上方,表示同一晶向的相反方向。

c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。

<100>:[100] [010] [001] [001] [010] [100]

<111>:[111] [111] [111] [111] [111] [111] [111] [111]

图3 正交点阵中的几个晶向指数

2 晶面指数的确定

国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。

图4 晶面指数的确定

(1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。

(2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。

(3)取截距的倒数1/xa ,1/yb ,1/zc 。

(4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。

(5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。

说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。

a 指数意义:代表一组平行的晶面;

b 0的意义:面与对应的轴平行;

c 平行晶面:指数相同,或数字相同但正负号相反;

d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相同),空间位向不同的各组晶面,用{hkl}表示。

在立方系中,{100}:(100)(010)(001),{110}:(110)(101)(011)(110)(101)(011),{111}:(111)(111)(111)(111)

e 若晶面与晶向同面,则hu+kv+lw=0;

f 若晶面与晶向垂直,则u=h, k=v, w=l。

立方系常用晶面指数图5。

图5 立方系常用晶面指数

例子:请确定图6中的晶面的晶面指数,并在图7中画出这些晶面指数所代表的晶面。

首先选定坐标系,如图所示。然后求出待标晶面在a,b,c轴上的截距,分别为a/2,2b/3,c/2。取倒数后得到2,3/2,2。再将其化成最小的简单整数比,得到4,3,4三个数。于是该面的晶面指数为(434)。

图6

图7晶面指数的标注

所有相互平行的晶面在三个晶轴上的截距虽然不同,但它们是成比例的,其倒数也仍然是成比例的,经简化可以得到相应的最小整数。因此,所有相互平行的晶面,其晶面指数相

同,或者三个符号均相反。可见,晶面指数所代表的不仅是某一晶面,而且代表着一组相互平行的晶面。

图8立方晶胞的{110}、{111}晶面族

3 关于晶面指数和晶向指数的确定方法还有以下几点说明:

(1)参考坐标系通常都是右手坐标系。坐标系可以平移(因而原点可置于任何位置)。但不能转动,否则,在不同坐标系下定出的指数就无法相互比较。

(2)晶面指数和晶向指数可为正数,亦可为负数,但负号应写在数字上方,如(231),[112]等。

(3)若各指数同乘以不等于零的数n ,则新晶面的位向与旧晶面的一样,新晶向与旧晶向或是同向(当n >0),或是反向(当n <0)。但是,晶面距(两个相邻平行晶面间的距离)和晶向长度(两个相邻结点间的距离)一般都会改变,除非n =1。

从以上各例可以看出,立方晶体的等价晶面具有“类似的指数”,即指数的数字相同,只是符号(正负号)和排列次序不同。这样,我们只要根据两个(或多个)晶面的指数,就能判断它们是否为等价晶面。另一方面,给出一个晶面族符号{hkl },也很容易写出它所包括的全部等价晶面。

对于非立方晶系,由于对称性改变,晶面族所包括的晶面数目就不一样。例如正交晶系,晶面(100),(010)和(001)并不是等同晶面,不能以{100}族来包括。

与晶面族类似,晶体中因对称关系而等同的各组晶向可归并为一个晶向族,用表示。仿照上例,读者可以写出在立方晶系中的<100>,<110>,<111>,<112>和<123>等晶向族所包括的等价晶向。

以后,在讨论晶体的性质(或行为)时,若遇到晶面族或晶向族符号,那就表示该性质(或行为)对于该晶面族中的任一晶面或该晶向族中的任一晶向都同样成立,因而没有必要区分具体的晶面或晶向。

另外,在立方晶系中,具有相同指数的晶向和晶面必定是相垂直的,即[hkl]⊥(hkl)。

4.六方晶系指数表示

上面我们用三个指数表示晶面和晶向。这种三指数表示方法,原则上适用于任意晶系。对六方晶系,取a,b,c为晶轴,而a轴与b轴的夹角为120°,c轴与a,b轴相垂直,如图9所示。

图9 六方晶体的等价晶面和晶向指数

但是,用三指数表示六方晶系的晶面和晶向有一个很大的缺点,即晶体学上等价的晶面和晶向不具有类似的指数。这一点可以从图9看出。图中六棱柱的两个相邻表面(红面和绿

1)和(100)。图中夹角为60°的面)是晶体学上等价的晶面,但其密勒指数却分别是(10

两个密排方向D1和D2是晶体学上的等价方向,但其晶向指数却分别是[100]和[110]。

由于等价晶面或晶向不具有类似的指数,人们就无法从指数判断其等价性,也无法由晶面族或晶向族指数写出它们所包括的各种等价晶面或晶向,这就给晶体研究带来很大的不便。为了克服这一缺点,或者说,为了使晶体学上等价的晶面或晶向具有类似的指数,对六方晶体来说,就得放弃三指数表示,而采用四指数表示(密勒-布拉菲指数)。

四指数表示是基于4个坐标轴:a1,a2,a3和c轴,如图10所示,其中,a1,a2和c轴就是原胞的a,b和c轴,而a3=-(a1+a2)。下面就分别讨论用四指数表示的晶面及晶向指数。

图10 六方晶体的四轴系统

(1)六方晶系晶面指数的标定

六方晶系晶面指数的标定原理和方法同立方晶系中的一样,从待标晶面在a 1,a 2,a 3和c 轴上的截距可求得相应的指数h ,k ,i ,l ,于是晶面指数可写成(hkil )。

根据几何学可知,三维空间独立的坐标轴最多不超过三个。应用上述方法标定的晶面指数形式上是4个指数,但是不难看出,前三个指数中只有两个是独立的,它们之间有以下的关系:i = -( h + k ),因此,可以由前两个指数求得第三个指数。

六方晶体中常见晶面及其四指数(亦称六方指数)标于图11中。从图看出,采用四指数后,同族晶面(即晶体学上等价的晶面)就具有类似的指数。例如:

共6个等价面(Ⅰ型棱柱面)。

共6个等价面(Ⅱ型棱柱面)。

而{0001}只包括(0001)一个晶面,称为基面。六方晶体中比较重要的晶面族还有

,请读者写出其全部等价面。

图11 六方晶体中常见的晶面

(2)六方晶系晶向指数的标定

采用四轴坐标,六方晶系晶向指数的标定方法如下:当晶向通过原点时,把晶向沿四个轴分解成四个分量,晶向OP 可表示为:OP=ua 1+va 2+ta 3+wC ,晶向指数用[uvtw]表示,其中t=-(u+v)。原子排列相同的晶向为同一晶向族,图12中a 1轴为[0112],a 2轴[0121],a 3轴[2011]均属〈0112〉,其缺点是标定较麻烦。可先用三轴制确定晶向指数[UVW],再利用公式转换为[uvtw]。采用三轴坐标系时。C 轴垂直底面,a 1、a 2轴在底面上,其夹角

为120o ,如图12,确定晶向指数的方法同前。采用三轴制虽然指数标定简单,但原子排列相同的晶向本应属于同一晶向族,其晶向指数的数字却不尽相同,例如[100],[010],[011],见图12。

图12 六方晶系的一些晶面与晶向指数 六方晶系按两种晶轴系所得的晶向指数可相互转换如下)2(31

V U u -=,

)2(1

U V v -=,)(v u t +-=,W w =。例如,[011]→[2011],[100]→[0112],

[010]→[0121],这样等同晶向的晶向指数的数字都相同。

标定方法通常采用行走法。用行走法确定六方晶体的四轴晶向指数时,会遇到一个新的问题,即解是不唯一的。例如,a 1轴的指数可以是

,也可以是[2000];a 2轴的指数可以是,也可以是[0200]。分析各种等价晶向的四指数后发现,要想使等价晶向具有类似的四指数,就需要人为地附加一个条件,即前三个指数之和为零。若将晶向指数写成

[UVTW ],则上述附加条件可写成:U+V+T=0,或T =-(U+V )。按照这个附加条件,上述a 1轴的指数就应该是,而不是[2000];同样,a 2和a 3轴的指数分别是和

。 图13中标出了六方晶体中各重要晶向的四指数,它们是[0001],,等等。

图13 六方晶体中常见的晶向

除上述几个特殊晶向外,对一般的晶向,很难直接求出四指数[UVTW],因为很难保证在沿a1,a2,a3和c轴分别走了U,V,T和W步后既要到达晶向上的另一点,又要满足条件T=-(U+V)。比较可靠的标注指数方法是解析法。该法是先求出待标晶向在a1,a2和c三个轴下的指数u,v,w(这比较容易求得),然后按以下公式算出四指数U,V,T,W。

(1-1)

T = - (U + V)

W = w

此公式可证明如下。

由于三指数和四指数均描述同一晶向,故:

U a1+ V a2+ T a3+ W c= u a1+v a2+w c

(1-2) 又由几何关系:

a1+ a2= - a3

(1-3) 再由等价性要求:

T = - (U+V)

(1-4) 解以上三个联立方程,即得到:

u = 2U+V,v = 2V+U,w = W

(1-5) (1-5)式和(1-1)式可用矩阵表示如下:

=

=

下面举两个例子。

例1 请写出a1轴的晶向指数。

解:从晶胞图直接得到:u=1,v=0,w=0,按(1-1)式算得:

例2 请写出a2和-a3交角的平分线D的晶向指数。

解:从晶胞图可看出:D=a1+(-a3)=2a1+a2,得u=2,v=1,w=0,代入(1-1)式得到:U=1,V=0,T=-1,W=0,故。

5 立方和六方晶体中重要晶向的快速标注

在以后各章将多次遇到立方和六方晶体中的一些低指数重要晶向,需要迅速确定其指数。根据上述标定指数的方法,我们归纳出一条快速标定晶向指数的口诀,即:“指数看特征,正负看走向”。就是说,根据晶向的特征,决定指数的数值;根据晶向是“顺轴”(即与轴的正向成锐角)还是“逆轴”(即与轴的正向成钝角),决定相应于该轴的指数的正负。下面具体讨论立方和六方晶体中的各重要晶向。

(1)立方晶体

立方晶体中各重要晶向的特征如下:

(1)<100> 是晶轴。若沿着a轴,则第一指数为1,依次类推;如果“逆轴”(如沿-a轴),则相应指数为。

(2)<110> 是立方体面对角线。若面对角线在a面(即(100)面)上,则第一指数为零,其余两个指数为1或(取决于所讨论的对角线是“顺着”还是“逆着”相应的晶轴)。

(3)<111> 是体对角线。三个指数都是1或,取决于该对角线与相应轴的交角(锐角为1,钝角为)。

(4)<112> 是顶点到对面(即不通过该顶点的{100}面)面心的连线。如果对面是a 面,则第一指数为2或,其余两个指数为1或。

(2)六方晶体

六方晶体中各重要晶向的特征如下:

(1)[0001] c轴。

(2)和a1,a2或a3轴平行的晶向。和哪个轴正(或反)平行,则相应的指数就是2(或),其余三个指数就是,,0(或1,1,0)。

(3)两个晶轴±a i和a j交角的平分线(i、j=1,2,3,i≠j)。例如,

是+a1轴和-a3轴交角的平分线;是-a2轴和+a3轴交角的平分线等等。

根据以上几类晶向指数,还可以迅速求得某些不平行于基面的重要晶向。方法是先求该晶向在基面上的投影线的指数[UVT 0],而w 可从晶胞图中直观看出。例如,求图1-19中MN 的指数时,先将MN 平移至原点,找出其投影ON'的指数,从图1-19中可直观看出W=1,故MN 的指数,化整后得到。

6 晶带

相交于某一晶向直线或平行于此直线的晶面构成一个晶带,此直线称为晶带轴。设晶带轴的指数为[uvw],则晶带中任何一个晶面的指数(hkl )都必须满足:hu+kv+lw=0,满足此关系的晶面都属于以[uvw]为晶带轴的晶带,已知两个非平行的晶面指数为(h 1k 1l 1)和(h 2k 2l 2)则其交线即为晶带轴的指数[uvw]:1221l k l k u -=,1221h l h l v -=,1221k h k h w -=。

图14 晶带轴

7 晶面间距

一组平行晶面中,相邻两个平行晶面之间的距离叫晶面间距。两近邻平行晶面间的垂直距离,用d hkl 表示。对于不同的晶面族{hkl}其晶面间距也不同。总的来说,低指数晶面的面间距较大,高指数晶面的面间距较小。

图15 晶面间距

22)22(34)(1c l a k hk h hkl d +++=

图16 晶面间距公式的推导 由晶面指数的定义,可用数学方法求出晶面间距,(简单立方):d=a/(h 2+k 2+l 2)1/2,正交系:222)()()(1

c l b k k h hkl

d ++=,立方系:222l k h a

hkl d ++=,六方系:22)22(34

)(1

c l a k hk h hkl

d +++=。此公式用于复杂点阵(如体心立方,面心立方等)时要考虑晶面层数的增加。例如,体心立方(001)

面之间还有同一类的晶面,可称为(002)面,故晶面间距应为简单晶胞001d 的一半,等于2a

由公式也可看出低指数晶面的面间距大。

三 晶体的极射赤面投影

采用立体图难以做到清晰表达晶体的各种晶向、晶面及它们之间的夹角。通过投影图可将立体图表现于平面上。晶体投影方法很多,广泛应用的是极射赤面投影。

1 参考球与极射赤面投影

(1)参考球

设想将一很小的晶体或晶胞置于一个大圆球的中心,由于晶体很小,可认为各晶面均通过球心,由球心作晶面的法线与球面的交点称为极点,这个球称参考球,如图17。球面投影用点表示相应的晶面,两晶面的夹角可在参考球上量出,如图17,(110)与(010)夹角为45o 。但使用上仍不方便。可在此基础上再作一次极射赤面投影。

图17 参考球与立方系球面投影

(2)极射赤面投影

以球的南北极为观测点,赤道面为投影面。连结南极与北半球的极点,连线与投影面的交点即为晶面的投影,如图18。投影图的边界大圆与参考球直径相等叫基圆。位于南半球的极点应与北极连线,所得投影点可另选符号,使之与北半球的投影点相区分。也可选与赤道平行的其他平面作投影面,所得投影图形状不变,只改变其比例。对于立方系,相同指数的晶面和晶向互相垂直、所以立方系标准投影图的极点即代表了晶面又代表了晶向。若将参考球比拟为地球,以地球的两极为投影点,将球面投影投射到赤道平面上,就叫极射赤面投影。

图18 极射赤面投影

2 标准投影图

以晶体的某个晶面平行于投影面,作出全部主要晶面的极射投影图称为标准投影图。一般选择一些重要的低指数晶面作投影面,如立方系(001),(011),(111)及六方系(0001)等。例如(001)标准投影图是以(001)为投影面,进行极射投影而得到的,如图19。

图19 立方系(001)标准投影图

3 吴氏网

吴氏网是球网坐标的极射平面投影,分度为2 o,具有保角度的特性。其读数由中心向外读,分东,南,西,北。吴氏网如图20所示。

图20 吴氏网(分度为2o)

使用吴氏网时,投影图大小与吴氏网必须一致。利用吴氏网可方便读出任一极点的方位,并可测定投影面上任意两极点间的夹角,是研究晶体投影,晶体取向等问题的有力工具。在测量时,用透明纸画出直径与吴氏网相等的基圆,并标出晶面的极射赤面投影点。将透明纸

盖于吴氏网上。两圆圆心始终重合,转动透明纸、使所测两点落在赤道线上,子午线上,基因上,同一经线上。两点纬度差(在赤道上为经度差)就等于晶面夹角。不能转到某一纬线去测夹角,因为此时所测得的角度不是实际夹角。

例题

1.已知纯钛有两种同素异构体,低温稳定的密排六方结构和高温稳定的体心立方结

构,其同素异构转变温度为882.5℃,计算纯钛在室温(20℃)和900℃时晶体中(112)

和(001)的晶面间距(已知a a20℃=0.2951nm, c a20℃=0.4679nm, aβ900℃=0.3307nm)。

答案

20℃时为α-Ti:hcp结构

当h+2k=3n (n=0,1,2,3…) ,l=奇数时,有附加面。

900℃时为β-Ti:bcc结构

当奇数时,有附加面。

内容提要

晶胞是能反映点阵对称性、具有代表性的基本单元(最小平行六面体),其不同方向的晶向和晶面可用密勒指数加以标注,并可采用极射投影方法来分析晶面和晶向的相对位向关系。

重点与难点

1 晶向指数与晶面指数的标注;

2 晶面间距的确定与计算;

晶向指数:[uvw] 即为AB 晶向的晶向指数。

如u 、v 、w 中某一数为负值,则将负号标注在该数的上方。[21]和[1]就是两个相互平

行、方向相反的晶向。

因对称关系而等同的各组晶向可归并为一个晶向族,用

表示

对立方晶系来说,[100]、[010]、[001]和[00]、[00]、

[00]等六个晶向,它们的性质完全相同,用<100>表示

对于正交晶系 [100]、[010]、[001]这三个晶向并不是等同晶

向,因为以上三个方向上的原子间距分别为a 、b 、c ,沿着这

三个方向,晶体的性质并不相同。

图1-19{100},{111},{110} 晶面族

在立方系中:

{100}=(100)、(010)、(001);

{110}=(110)(101)(011)(10)(01)(01);

{111}=(111)、(11)、(11)、(11)。

{123}=(123)、(132)、(231)、(213)、(312)、(321);

(23)、(32)、(

31)、(13)、(12)、(21);

(13)、(12)、(21)、(23)、(32)、(3

1);

(12)、(13

)、(23)、(21)、(31)、(32)。

共24组晶面 晶面指数用来分别表示原子的排列构成的许多不同方位的晶面。 如(111)

在晶体中有些晶面具有共同的特点,其上原子排列和分布规律是完全相同的,晶面间距也相同,唯一不同的是晶面在空间的位向,一组等同晶面称为一个晶面族,用符号{hkl}表示。 在立方晶系中,具有相同指数的晶向和晶面必定是相垂直的,即[hkl] 垂直于(hkl )。例如:[100] 垂直于(100),[110] 垂直于(110),[111] 垂直于(111),等等。但是,此关系不适用于其它晶系。

左边图,a 1、a 2、c 为晶轴,而

a 1与a 2 间的夹角为120度。六

方晶系六个柱面的晶面指数为

(100)、(010)、(10)、(00)、

(00)、(10)这六个面是同

类型晶面,但其晶面指数中的数

字却相同。晶向指数也有类似情

况,例如[100]和[110]是等同晶

向,但晶向指数却不相同。为了

解决这一问题,可采用专用于六

方晶系的指数标定方法。(右图)

六方晶系四指数推导

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。 图4 晶面指数的确定 (1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。 (2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。 (3)取截距的倒数1/xa ,1/yb ,1/zc 。 (4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。 (5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。 说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。 a 指数意义:代表一组平行的晶面;

七大晶系图解

晶体的七大晶系是十分专业的问题,它有时是鉴别晶体的关键,鉴藏矿晶的人多少应该知道一些。 概论 已知晶体形态超过四万种,它们都是按七种结晶模式发育生长, 即七大晶系。晶体是以三维方向发育的几何体,为了表示三维空间,分别用三、四根假想的轴通过晶体的长、宽、高中心,这几根轴的交角、长短不同而构成七种不同对称、不同外观的晶系模式:等轴晶系, 四方晶系,三方晶系,六方晶系,斜方晶系,单斜晶系,三斜晶系 上图是七大晶系的理论模型,在同一水平面上,请大家仔细分辨它们的区 别。面向观众的轴称x 轴,与画面平行的横轴称y 轴,竖直的 轴称z 轴,也可叫“主轴” 请看图

一,等轴晶系简介 等轴晶系的三个轴长度一样,且相互垂直,对称性最强。这个晶系的晶体通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。此晶系的矿物有黄铁矿、萤石、闪锌矿、石榴石,方铅矿等。请看这种晶系的几种常见晶体的理论形态:

等轴晶系的三个晶轴(x 轴y 轴z 轴)一样长, 互相垂直

常见的等轴晶系的晶体模型图 金刚石晶体

八面体和立方体的聚形的方铅矿 黄铁矿 四方晶系简介

四方晶系的三个晶轴相互垂直,其中两个水平轴(x 轴、y 轴)长度一样,但z 轴的长度可长可短。通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。再,四方晶系四个柱面是对称的,即相邻和相对的柱面都一样,但和顶端不对称(不同形);所有主晶面交角都是九十度交角。请看模型图: 四方晶系的晶体如果z 轴发育,它就是长柱状甚至针状;如果两个横轴(x 、y)发育大于竖轴z 轴,那么该晶体就是四方板状,最有代表性的就是钼铅矿。请看常见的一些四方晶系的晶体模型:

三方晶系和六方晶系

关于我对三方晶系、六方晶系以及将六方晶系 转化成三方晶系的一点认识 关键词:三方晶系.六方晶系、转化。 摘要:本文详细阐述了三方晶系、六方晶系,七大晶系和六大晶系的相关知识以及它们之间的区别和联系。通过对三方晶系和六方晶系的晶格常熟、三方点阵和六方点阵的形成以及它们的对称性关系进行讨论,进一步阐明了三方晶系之所以能归入六方晶系的理论基础,解释了六方晶系转化成三方晶系的方法。 三方晶系(trigonal SyStem ):

三方晶系 属中级晶族。特征对称元素为三重对称轴。可划分出六方晶胞的菱面体晶胞。 在晶体外形或去观物性中能呈现出具有唯一高次三重轴或三重反轴特征对称元素的晶 体归属于三方晶系。 三次轴 三方晶系一类正当晶格单位有两种选取模式:一种是取菱形六面体的三方素晶格R,其 晶格参数具有a=b=c, α = β = γ<120o ≠90o 的特征;另一种是取体积为素晶格R 三倍的 三方H 格子,此中晶体学界常用的轴系变换方式是三方H 格子具有a=b≠c, α=β=90o , Y=I20。的特征。代表矿物:??,红宝石、蓝宝石 (即 刚玉)。 六方晶系(hexagonal CryStaI system):三方晶系碳酸盐

六方晶系晶轴 在唯一具有高次轴的C 轴主轴方向存在六重轴或六重反轴特征对称元素的晶体归属六 方晶系。 六次轴 六方晶系特征对称性决定了六方晶系晶胞对应的基向量特点是:副轴和均与主轴垂直, 二个副轴基向量的大小相等,副轴间的夹角为120° ,即其晶胞参数具有a=b≠c, α=β =90° , Y =120°的关系。六方晶系(hexagonal SyStem ) >有一个6次对称轴或者6次倒转 轴,该轴是晶体的直立结晶轴C 轴。另外三个水平结晶轴正端互成120° .夹角。轴角α = β =90o , Y =120° ,轴单位a=b≠c o 六方晶系晶体常见有六棱柱状、六方板(片)状以及它 们的各种聚形,偶然会出现十二棱柱体(复六方柱)。代表矿物:祖母绿emerald,含钻的 翠绿色绿柱石。化学组成为Be3Λ12[Si6018]o 六方晶系,晶体呈六方柱状,柱面有纵向条纹。玻璃光泽,硬度7.5。性质稳定,不易 受腐蚀,是一种贵重宝石,以其透明的绿色为主要鉴定特征。其颜色的鲜艳程度和亮度主 要取决于氧化钻和氧化铁的含呈。含氧化铁愈多,则颜色变为深暗,质量下降。世界90% 的优质祖母绿产于哥伦比亚,碧绿清澈,晶莹凝透,以稍带蓝色的翠绿色质量最佳,和翡翠 一样是宝石中的六方晶系 六方晶系祖母绿

(完整版)七大晶系详细图解

七大晶系详细图解 已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。它们都是按七种结晶方式模式发育的,即七大晶系。晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。 一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的

晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。 常见立方晶系晶体模型图: 晶体实物图:

二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图: 注:柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面。 晶体实物图:

标注六方晶系晶向指数的平行投影修正系数法

用平行投影修正系数法标注六方晶系晶向指数 桂进秋席生岐※张建勋范群成 西安交通大学材料科学与工程学院 摘要:介绍了采用平行投影修正系数法标注六方晶系晶向指数的新方法,并对其原理进行了论证。 关键词:六方晶系晶向指数Miller-Bravais指数平行投影 0前言 众所周知,金属中常见的3种晶体结构为体心立方、面心立方和密排六方,其中密排六方结构属于六方晶系。由于其对称性特点,在晶体学中惯用四轴坐标表示六方晶系的晶面和晶向,称为Miller-Bravais 指数[1]。在这种体系中对晶面指数的标注并未有什么不便,但是对晶向指数的标注却比较麻烦,容易出错。正如范群成[2]所指出,晶向[1213]在文献[3]中被误标为[1212],而在文献[4]中又被误标为[1211]。 在一般的教科书[1,4,5,6]中,六方晶系Miller-Bravais晶向指数[uvtw]有2种主要的标注方法。一种是所谓的移步法[4],选择合适的路径沿4个晶轴方向从待定晶向上的一点(通常是坐标原点)依次移动到另一点,而合适的路径要求满足u+v=-t约束条件。由于这一约束条件的限制,移动路径及距离的选取决定相当困难,不易寻找。另一种是公式法[1,4,6],即先在三轴坐标系中标出[UVW],再利用公式:u=(2U-V)/3, v=(2V-U)/3, t= -(u+v), w=W 换算成[uvtw]。该方法不但麻烦,完全依赖于对换算公式的记忆,而且不直观,不便于对晶向的理解和把握。 为更直观地从晶胞结构图中直接计算来标出六方晶系中的晶向指数,范群成曾提出了正射投影修正系数法[2]。如图1所示,这种方法是由待标晶向上任一点(常取特殊点)分别向a1,a2,a3和c轴作垂直投影,求出以晶格常数为单位的投影值,并给c轴的投影值乘以修正系数3/2,然后化为最小简单整数。这种方法在一个晶胞中通过垂直投影来计算出晶向指数,和晶胞结合,直观性有改进,和移步法的结果有一致性,比移步法容易操作。 受正射投影法的启示,在《材料科学基础》课堂讨论的过程中,我们提出了另一种也较为简便易行的来标定六方晶系Miller-Bravais晶向指数的方法——平行投影修正系数法。本文就对这种新方法做一详细介绍。

三方晶系和六方晶系

矿物晶体七大晶系图解矿物晶体七大晶系图解——————三方晶系和六方晶系三方晶系和六方晶系三方晶系和六方晶系((一) 三方晶系和六方晶系有许多相似之处,一些矿物专著和科普书刊往往将二者合并在一起,或干脆就称晶体有六大晶系。 与前面讲的五个晶系最大的不同是三方/六方晶系的晶轴有四根,即一根竖直轴(z 轴)三根水平横轴(x、y、u 轴)。竖轴与三根横轴的交角皆为90度垂直,三根横轴间的夹角为120度(六方晶系为60度,也可说成三横轴前端交角120度。)。如果围绕z 轴旋转一周,三方晶系晶体的横轴可以重合三次,六方晶系晶体的横轴则重合六次,故,三方/六方晶系晶体的对称度都高,z 轴是高次轴,也就是主轴。 三方晶系常见的晶体有三棱柱状、三角片状等,有时呈六棱柱、六角片状(复三方、复三角面)及它们的各种聚形;六方晶系晶体常见有六棱柱状、六方板(片)状以及它们的各种聚形,偶然会出现十二棱柱体(复六方柱)。有时候三方/六方晶系会出现菱形六面体晶型,较容易同三斜晶系的晶体混同。 三方晶系和六方晶系以严格的矿物学理论而言是不应该混淆的,但作为非矿物学家的我们,没有必要去探究那些高深的理论或从专业研究角度去区分它们的理论差异,那没有太大的实际用途。如果一定要我用一句通俗的话来描述三方和六方的区别,可以这样说:三方晶系的矿物既能长成三棱柱、三角板片的晶型,也能长成六棱柱、六角板片的晶型与六方晶系晶体混淆,但六方晶系的矿物通常不会长成三棱柱或三角板片等与三方晶系混淆(仅有一个三方双锥例外)。

一般说来,三方/六方晶系的晶体外观比较好认。常见的矿物有水晶、方解石、电气石、绿柱石、刚玉、辰砂、赤铁矿、磷灰石等。请看实际晶体: 六方晶系的高温β石英石英,,又叫无腰水晶又叫无腰水晶 三方晶系的α α 石英石英石英,,即低温水晶即低温水晶,,最为普遍常见最为普遍常见

七大晶系详细图解

. 七大晶系详细图解 已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。它们都是按七种结晶方式模式发育的,即七大晶系。晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。 一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的. . 晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。

常见立方晶系晶体模型图: 晶体实物图:

. . 二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图:

六方晶系四指数推导知识讲解

六方晶系四指数推导

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数

当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P (x 1,y 1,z 1)和Q (x 2,y 2,z 2),然后将(x 1-x 2),(y 1-y 2),(z 1-z 2)三个数化成最小的简单整数u ,v , w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。

晶体的对称性与晶系

晶体的对称性与晶系 自然界不论是宏观物体还是微观粒子,普遍存在着对称性。晶莹的雪花、美丽的花朵、艳丽的蝴蝶都具有对称性,人体也具有对称性。地下的矿物,如水晶、钻石、闪锌矿……也都具有对称性。微观粒子如水分子、苯分子以及所有分子都具有对称性。对称性显示出物体的匀称和完美,为人们所喜爱和追求,因而设计师设计的宏伟建筑如天安门、人民大会堂、长江大桥……都呈现出对称性。 本文主要介绍晶体的宏观对称性,包括旋转轴、对称面和对称中心等,以及晶体宏观对称性与晶系的关系。 晶体的宏观对称性 晶体宏观对称性有旋转轴(也称对称轴)、对称面(也称镜面)和对称中心,分别介绍如下。 旋转轴 旋转轴是对称元素,绕旋转轴可做旋转操作。n 次旋转轴记为n ,απ 2=n ,α 称为基转角。例如NaCl 晶体的外形是立方体,立方体对应面中心联线方向有4次旋转轴,绕此轴每旋转90°后,晶体形状不变;立方体对角线联线方向有3次旋转轴,绕此轴每旋转120°后,晶体形状不变;立方体对应棱边中心联线方向有2次旋转轴,绕此轴每旋转180°,晶体形状不变。图6-4示出这3种旋转轴。可以证明在晶体宏观外形中存在的旋转轴有1,2,3,4和6次旋转轴5种,不存在5次轴和大于6次的旋转轴。 对称面 对称面是对称元素,对称面也称镜面,常用m 表示。凭借对称面可以做反映操作,如同物体与镜子中的像是反映关系。人的双手手心相对,平行放置,左右手就互为镜象。许多晶体中存在对称面,NaCl 晶体有9个对称面。 对称中心 对称中心也是对称元素,常用i 表示。通过对称中心可以做倒反操作。例如人的双手手心相对,逆平行放置,此时左右手构成倒反关系。NaCl 晶胞中,在体心位置存在对称中心。因此晶胞中任意一个原子与对称中心相连,在反方向等距离处必存在同样的原子。晶体有无对称中心对晶体的性质有较大的影响。 凭借上述三种对称元素所做的对称操作都是简单操作,如果连续做两个简单操作就成为复合操作。旋转倒反操作是复合操作,与它对应的对称元素称为反轴,记为n 。与旋转轴一

7大晶系

一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系 的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。 二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。

三、斜方晶系 斜方晶系的晶体中三个轴的长短完全不相等,它们的交角仍然是互为90度垂直。即X≠Y≠Z。Z轴和Y轴相互垂直90°。X轴与Y轴垂直,但是不与Z轴垂直,即α=γ=90,β>90°与正方晶系直观相比,区别就是:x轴、y轴长短不一样。如果围绕z轴旋转,四方晶系旋转九十度即可使x轴y轴重合,旋转一周使x轴y轴重合四次(使另两轴重合的次数多于两次,该轴称“高次轴”),四方晶系有一个高次轴,也叫“主轴”。斜方晶系围绕z 轴旋转,需180度才可使x轴y轴重合,旋转一周只重合两次,属低次轴。也就是说,斜方晶系的对称性比四方晶系要低。特征对称元素是二重对称轴或对称面。其实,斜方晶系的晶体如果围绕x轴或y轴旋转,情况与围绕z轴旋转相同。换句话说,斜方晶系没有高次轴,或曰没有理论上的主轴。从模型上看,四方晶系的x轴和y轴所指向的晶面完全都是对称相同的,斜方晶系的x轴和y轴所指向的晶面却是各自对称相等的。

晶体结构

第二章答案 1依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2 等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 3 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 4、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。 解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。rO2- =0.140nm,rMg2+=0.072nm,z=4,晶胞中质点体积:(4/3×πr O2-3+4/3×πrMg2+ 3)×4,a=2(r++r-),晶胞体积=a3,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO质量/晶胞体积=3.49g/cm3。 5从理论计算公式计算NaC1与MgO的晶格能。MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。 、解:u=z1z2e2N0A/r0×(1-1/n)/4πε0,e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023,NaCl:z1=1,z2=1,A=1.748,nNa+=7,nCl-=9,n=8,r0=2.81910-10m,u NaCl=752KJ/mol;MgO:z1=2,z2=2,A=1.748,nO2-=7,nMg2+=,n=7,r0=2.1010m,uMgO=392KJ/mol;∵uMgO> uNaCl,∴MgO的熔点高。 6 解释下列概念: 晶系:根据晶体的特征对称元素所进行的分类。晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系,分属于3个不同的晶族。高级晶族中只有一个立方晶系;中级晶族中有六方、四方和三方三个晶系;低级晶族中有正交、单斜和三斜三个晶系。晶体:是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。 晶体常数:晶轴轴率或轴单位,轴角。 类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石;反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 晶胞:任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体结构特征的最小单位。

晶系

根据国际符号判断晶体类型 在第一位序上出现了3或,4或,6或,分别属于三方、正方和六方晶系; 第二位序出现了3或,只能是立方晶系; 三斜为1或,单斜为2,m ,2/m ,但只有一个位序; 斜方和单斜一样,其对称元素为2或m ,但位序为三个,分别为222、mm2、mmm 等。 旋转-平移:螺旋轴n s , s 为小于n 的正整数,平移量 τ=(s/n)t, t 为点阵基矢 反映-平移:滑移面a 、b 、c 、n 、d , 为平移量 a: τ=1/2a b: τ=1/2b c: τ=1/2c n: τ=1/2(a+b)或1/2(b+c)或1/2(a+c) d: τ=1/4(a+b)或1/4(b+c)或1/4(a+c) ? 符号具体含义 晶格类型Lattice type (P, I, F, A, B, C ) 反映(m ) 旋转Rotations (2, 3, 4, 6) 旋转-反演( ) 螺旋轴Screw axes (rotations and translations) (21, 31, 32, 41, 42, 43, 61………65) 滑移面Glide planes (mirror operations and translations) (a, b, c, n, d ) ? 立方晶系Cubic – 第二个对称符号为3或-3 (如:Ia3, Pm3m, Fd3m) ? 四方晶系Tetragonal – 第一个对称符号为4, (-4), 41, 42,或43 (如:I4/m, P4/mcc, P41212) ? 六方晶系Hexagonal :第一个对称符号为 6, (-6), 61, 62, 63, 64, or 65 (如:P6mm, P63/mcm) ? 菱方晶系 Rhombohehral :第一个对称符号为3, (-3), 31 or 32 (如:P31m, R3, R3c, P312) ? 正交晶系Orthorhombic : 三个对称符号均为反映面、滑移面、2重旋转轴或螺旋轴 4

七大晶系十四个点阵图解大全

*七大晶系简单介绍(带图) 1、立方晶系[等轴晶系]-cubic system [晶体] a=b=c; α=β=γ=90°; 2、四方晶系[正方晶系]-tetragonal system [晶体] a=b≠c ; α=β=γ=90°; 3、正交晶系(晶体)-orthorhombic system [晶体] rhombic system [晶体] a≠b≠c ; α=β=γ=90°; [斜方晶系(矿物)] 4、单斜晶系-monoclinic system [晶体] a≠b≠c ;α=γ=90°≠β; 5、三斜晶系-triclinic system [晶体] a≠b≠c ; α≠γ≠β; 6、菱方晶系[三角晶系]-rhombohedral system [晶体] a=b=c; α=β=γ≠90°(0120 ); 7、六方晶系-hexagon system [晶体] hexagonal system [晶体] a=b≠c ;α=β=90°;γ=120°; 七大晶系

七大晶系细分

1、立方晶系[等轴晶系]-cubic system [晶体] 简单立方面心立方体心立方 2、四方晶系[正方晶系] -tetragonal system [晶体] 简单四方体心四方

3、正交晶系[斜方晶系]- orthorhombic system [晶体] rhombic system [晶体] 简单正方体心正方底心正方面心正方 4、单斜晶系-monoclinic system [晶体] 简单单斜底心单斜

5、三斜晶系-triclinic system [晶体] 简单三斜

第2章 晶体结构

第2章晶体结构 为了便于对材料进行研究,常常将材料进行分类。如果按材料的状态进行分类,可以将材料分成晶态材料,非晶材料及准晶材料。因所有的晶态材料有其共同的规律,近代晶体学知识就是为研究这些共同规律而必备的基础。同时为了研究非晶材料与准晶材料及准晶材料也必须以晶体学理论做为基础。在一般的教材中对晶体学的基础知识已经有了不同深度的阐述,作为辅导教材,对教科书上已经有较多阐述的内容,本章中就简要的进行说明,而重点在于用动画形式,将在教材中难以用文字表达清楚的内容进行较多的阐述,加深对教材内容的理解记忆 2.1晶体学基础 2.1.1 空间点阵和晶胞 具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。将晶胞作三维的重复堆砌就构成了空间点阵。 为了便于分析研究晶体中质点的排列规律性,可先将实际晶体结构看成完整无缺的理想晶体并简化,将其中每个质点抽象为规则排列于空间的几何点,称之为阵点。这些阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。同一空间点阵可因选取方式不同而得到不相同的晶胞 <晶胞、晶轴和点阵矢量> 根据6个点阵参数间的相互关系,可将全部空间点阵归属于7种类型,即7个晶系。按照"每个阵点的周围环境相同"的要求,布拉菲(Bravais A.)用数学方法推导出能够反映空间点阵全部特征的单位平面六面体只有14种,这14种空间点阵也称布拉菲点阵。

空间点阵是晶体中质点排列的几何学抽象。 1 空间点阵 最初人们认为凡是具有规则外形的天然矿物均为晶体。但现在人们认识到晶体的规则的几何外形是内部结构规律的外在反映. 近代的科学研究表明了下面的两个基本事实: 1)如果说某一种材料是晶体,其基本的特征是:组成该材料的内部的微观粒子(原子,分子,离子等)在三微的空间做有规则的周期性的排列。 2)这种排列的规律决定了材料的性能。 根据这样的事实我们可以抽象出个的重要概念即空间点阵。为了清楚地表明原子在空间排列的规律性,常常将构成晶体的实际质点抽象为纯粹的几何点,称之为点阵或节点。 2 晶胞 1 晶胞定义 晶胞:单位格子圈出的晶体结构.即将单位格子中的格点换成基元该格子就成为晶胞. 图2-2 2 晶格常数 晶胞的边长度一般称为晶格常数或点阵常数,在X,Y,Z轴上分别以表示。 3 棱间夹角 晶胞间夹角又称轴间夹角,通常用Y-Z轴,z-x轴和x-y轴之间的夹角分别用表示. 2.1.2 晶向指数和晶面指数 为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶 向指数与晶面指数。

材料科学基础 第三章

第三章 金属与陶瓷的结构 一、学习目的 材料的结构问题需分层次认识,第一层次是原子核外电子的排布即电子组态和电子构型;第二层次是原子与原子之间的排列位置与相互作用即晶体结构;第三层次是晶相、玻璃相的分布、大小、形状等即显微结构。固态物质按照原子间(或分子)的聚集状态可以分为晶体和非晶体,在金属与陶瓷中,这两种状态都存在,并且以晶体为主。在掌握了原子结构与化学键基础上,学习晶体结构基础知识,掌握固体中原子与原子之间的排列关系,对认识和理解材料性能至关重要。 二、本章主要内容 在结晶性固体中,材料的许多性能依赖于内部原子的排列,因此,必须掌握晶体特征和描述方法。本章从微观层次出发,介绍了金属、陶瓷材料的结构特点,介绍了结晶学的基础知识。主要内容包括: 1、 晶体和晶胞 晶体:是原子、离子或分子按照一定的空间结构排列所组成的固体,其质点在空间的分布具有周期性和对称性。 晶胞:是从晶体结构中取出的能够反映晶体周期性和对程性的重复单元。 2、 金属的晶体结构 金属原子之间靠金属键结合形成的晶体为金属晶体。金属晶体的三种类型和特征为: 面心立方晶体:晶胞中八个角上各有一个原子,六个面中心各有一个原子,角上的原子为临近8个晶胞所共有,每个面中心原子为2个晶胞所共有。晶胞的原子数为4。晶胞长度a (晶胞参数a=b=c )与原子半径R 之间的关系为: 2a =晶胞中原子堆积系数(晶胞中原子体积与晶胞体积的比值)APF=0.74. 体心立方晶体:晶胞中八个角上各有一个原子,晶胞的中心有一个原子,角上的原子为临近8个晶胞所共有,所以,体心立方晶胞中的原子数为2。晶胞长度a (晶胞参数a=b=c )与原子半径R 之间的关系为: a = 晶胞中原子堆积系数APF=0.68. 密排六方晶体:由两个简单六方晶胞穿插而成。形状为八面体,上下两个面为六角形,六个侧面为长方形。密排六方的晶胞参数有两个,a 为正六边形的边长,c 为上下底面的间距(晶胞高度) 。/c a ≈。晶胞中原子堆积系数APF=0.74。 金属晶体密度: C A nA V N ρ=. 3、陶瓷的晶体结构 陶瓷晶体中大量存在的是离子晶体,由于离子键不具有方向性和饱和性,有利于空间的紧密堆积,堆积方式取决于阴阳离子的电荷和离子半径r 的相对大

七大晶系详细图解

七大晶系详细图解

一、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图: 注:柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面。 晶体实物图:

三、斜方晶系 斜方晶系的晶体中三个轴的长短完全不相等,它们的交角仍然是互为90度垂直。即X≠Y≠Z。Z轴和Y轴相互垂直90°。X轴与Y轴垂直,但是不与Z轴垂直,即α=γ=90,β>90°与正方晶系直观相比,区别就是:x轴、y轴长短不一样。如果围绕z轴旋转,四方晶系旋转九十度即可使x轴y轴重合,旋转一周使x轴y轴重合四次(使另两轴重合的次数多于两次,该轴称“高次轴”),四方晶系有一个高次轴,也叫“主轴”。斜方晶系围绕z轴旋转,需180度才可使x轴y 轴重合,旋转一周只重合两次,属低次轴。也就是说,斜方晶系的对称性比四方晶系要低。特征对称元素是二重对称轴或对称面。其实,斜方晶系的晶体如果围绕x轴或y轴旋转,情况与围绕z轴旋转相同。换句话说,斜方晶系没有高次轴,或曰没有理论上的主轴。从模型上看,四方晶系的x轴和y轴所指向的晶面完全都是对称相同的,斜方晶系的x轴和y轴所指向的晶面却是各自相等的。

矿物晶体七大晶系图解

1.三斜晶系 三斜晶系的“三斜”,指的是三根晶轴的交角都不是九十度直角,它们所指向的三对晶面全是钝角和锐角角构成的平行四边形(菱形),相互间没有垂直交角。作个形象比喻:把一个砖头形的长方块朝着一个角的方向斜推压,形成一个全是菱形面的立方体,这就是三斜晶系的模型。 三斜晶系的晶轴长短不一,斜角相交,没有晶轴能作重合对称的旋转,前后、左右、上下的三组晶面只能顺晶轴作平移重合(平面对称),在七大晶系中,三斜晶系的对称性最低。看图: 三斜晶系的晶体给人的感觉多是“拧、扁、歪、斜”的,有些板状晶体被喻为“刀片状”。常见矿物有蔷薇辉石、微斜长石、钠长石、胆矾、斧石等。请观看实际晶体: 斧石晶体,典型的菱形立方体结构

斧石的菱面体使它的晶型象斧头,故名

蔷薇辉石晶体 微斜长石晶体,注意看所有的晶面交角没有相互垂直的,全是菱形面,这就是三斜晶系晶体的特征

微斜长石与烟晶,阿根廷产 钠长石晶簇

胆矾晶体 蓝晶石晶簇 2.单斜晶系 单斜晶系晶体的的三个晶轴长短皆不一样,z轴和y轴相互垂直90度,x轴与y轴垂直,但与z轴不垂直(x轴与z轴的夹角是β,β>90度)。作一个形象的比喻:把斜方晶系模型顺

着z轴方向推压一下,使前后的晶面上、下错位,这就是单斜晶系的模型。 如果围绕z轴旋转180度,可以使y轴指向的晶面对称;而围绕x轴旋转。则不能产生任何晶面的重合对称(除非旋转一周,但无意义)。通俗地说:斜方晶系晶体(模型)的两个晶面可以通过y轴旋转180度达到重合,而左右晶面和前后晶面却不能通过旋转达到重合,它们只能顺y轴和x轴平移才能达到重合。 所谓“单斜”,可以联想为:晶体有一个轴所顶的面是斜的。单斜晶系只有一个对称轴和对称面,和斜方晶系相比,它的对称程度又低了一级。请看模型图: 单斜晶系的晶体横截面与斜方晶系相似 常见的单斜晶系矿物有石膏、蓝铜矿、雄黄雌黄、黑钨矿、锂辉石、正长石等。 请观赏真实晶体:

相关主题
文本预览
相关文档 最新文档