当前位置:文档之家› 无线通信新技术:ch6 OFDM通信技术基础-2

无线通信新技术:ch6 OFDM通信技术基础-2

无线通信技术在不同领域的应用

目录 一、引言 (2) 二、无线通信的分类 (2) 1.GSM接入技术 (2) 2.CDMA接入技术 (2) 3.GPRS接入技术 (2) 4.蓝牙技术 (3) 5.WCDMA接入技术 (3) 6.3G通信技术 (4) 7.无线局域网 (4) 三、无线通信技术在不同领域的应用 (4) 1.无线通信技术在变电站中的应用 (4) 2、现代无线通信技术在海洋地质调查中的应用 (4) 3.无线通信技术在调度通信中的应用 (5) 4.第三代移动通信技术在消防中的运用 (6) 5.激光无线通信技术在宽带接入中的应用 (7) 6.无线通信技术在远程医疗系统中的应用 (8) 四、无线通信技术特点及发展趋势 (9) 1.技术分析 (10) 2 .无线通信技术的发展趋势 (11) 五、结束语 (12) 参考目录

无线通信技术在不同领域的应用 一、前言 无线通信主要包括微波通信和卫星通信。微波是一种无线电波,它传送的距离一般只有几十千米。但微波的频带很宽,通信容量很大。微波通信每隔几十千米要建一个微波中继站。卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。 二、无线通信的分类 1.GSM接入技术 GSM是一种起源于欧洲的移动通信技术标准,是第二代移动通信技术。该技术是目前个人通信的一种常见技术代表。它用的是窄带TDMA,允许在一个射频即‘蜂窝’同时进行8组通话。GSM数字网具有较强的保密性和抗干扰性,音质清晰,通话稳定,并具备容量大,频率资源利用率高,接口开放,功能强大等优点。 2.CDMA接入技术 CDMA即code-division multiple access的缩写,译为“码分多址分组数据传输技术”。CDMA手机具有话音清晰、不易掉话、发射功率低和保密性强等特点,发射功率只有GSM手机发射功率的160,被称为“绿色手机”。CDMA数字网具有以下几个优势:高效的频带利用率和更大的网络容量、简化的网络规化、通话质量高、保密性及信号覆盖好,不易掉话等。另外,CDMA系统采用编码技术,其编码有4.4亿种数字排列,每部手机的编码还随时变化,这使得盗码只能成为理论上的可能。 3.GPRS接入技术 GPRS是分组交换技术。GPRS的用途十分广泛,包括通过手机发送及接收电子邮件,在互联网上浏览等。GPRS的最大优势在于:它的数据传输速度非WAP所能比拟。目前的GSM移动通信网的数据传输速度为每秒9.6K字节,而GPRS达到了115Kbps 此速度是常用56Kmodem理想速率的两倍。除了速度上的优势,GPRS还有'永远在线'的特点,即用户

无线通信基础知识-复习总结.doc

无线通信基础知识 1、什么是无线通信 利用电磁波的辐射和传播,经过空间传送信息的通信方式称为无线电通信(radio communication),简称无线通信。 2、简述无线通信的特征(特点) 1)、电波传播条件复杂。电波会随传播距离的增加而发生弥散损耗,会受到地形、地物的遮蔽而发生阴影效应,会因多径产生电平衰落和吋延扩展;通信中的快速移动引起多普勒频移。2)、噪声和干扰严重。除外部干扰,如天电干扰、工业干扰和信道噪声外,系统本身和不同系统之间,还会产生各种干扰,如邻道干扰、互调干扰、共道干扰、多址干扰以及远近效应等。3)、要求频带利用率高。无线通信可以利用的频谱资源非常有限,而通信业务量的需求却与日俱增。解决方法:要开辟和启用新的频段;要研究各种新技术和新措施,以压缩信号所占的频带宽度和提高频谱利用率。 4)、系统和网络结构复杂。根据通信地区的不同需要,网络可以组成带状、面状或立体状,可单网运行,也可多网并行并互连互通。为此,通信网络必须具备很强的管理和控制功能。5)、可同吋向多个接收端传送信号。 6)、抗灾害能力强。 7)、保密性差。 3、无线通信的分类 4、按使用对象分为:军用和民用 5、按使用环境分为:陆地、海上和空中 6、按多址方式分为:频分多址、时分多址和码分多址、空分多址等 7、按覆盖范围分为:城域网、局域网和个域网 8、按业务类型分为:话务网、数据网和综合业务网 9、按服务对象分为:专用网和公用网 10、按工作方式分为:单工、双工和半双工 11、按信号形式分为:模拟网和数字网 无线通信的传播特性 1、通信系统的信道按信道特性参数随外界因素影响而变化的快慢可以分为儿种?无线通信的 信道属于哪种? 信道分类1、恒参信道;2、随参(变参)信道:无线通信信道 2、地形可以分为几种?地物呢? 1)、为了计算移动信道中信号电场强度中值(或传播损耗中值),可将地形分为两大类,即中等起伏地形和不规则地形。 1、所谓中等起伏地形是指在传播路径的地形剖面图上,地面起伏高度不超过20m,且起伏 缓慢,峰点与谷点之间的水平距离大于起伏高度。以中等起伏地形作传播基准。 2、其它地形如丘陵、孤立山岳、斜坡和水陆混合地形等统称为不规则地形。 2)、不同地物环境其传播条件不同,按照地物的密集程度不同可分为三类地区: 1、开阔地。在电波传播的路径上无高大树木、建筑物等障碍物,呈开阔状地面,如农田、 荒野、广场、沙漠和戈壁滩等; 2、郊区。在靠近移动台近处有些障碍物但不稠密,例如,有少量的低层房屋或小树林等;

无线通信技术应用及发展

龙源期刊网 https://www.doczj.com/doc/0519106473.html, 无线通信技术应用及发展 作者:郭永刚路彬 来源:《电子技术与软件工程》2018年第19期 摘要 无线通信技术作为推动我国经济不断向前发展的重要力量,不仅促使我国生产力水平不断得到提升,而且还有效改善了人民的日常生活质量,并在电力系统之中得到了广泛的应用与发展,特别是在电力通信方面起着关键的作用,为我国电网建设提供了全面的技术保障。安全有效的电力系统可以在各个方面合理地分配电能,遇到电力系统事故可以予以及时的解决。电力通信系统作为电力系统的重要组成成分,能够促使电网调度工作达到自动化以及现代化的目的,并且从根本上保证电网的安全性以及经济性。 【关键词】无线通信技术应用发展 随着我国经济发展水平的不断提升,科学技术的不断进步,促使现代通信技术变得更加科学化以及数字化。由于当前信息知识更新速度较快,而且经济发展速度呈现高度上升趋势,使得人们在信息获取方面提出了更高的要求。为有效解决无线通信技术在使用过程中出现的问题与矛盾,必须要全面秉持创新理念,综合运用与之相关的技术手段来予以解决,从而在最大程度上满足人们在信息获取方面所提出的各项需求,并为其不断提供多方面的信息资源,为科学规划工作的顺利开展奠定良好基础,推动无线通信技术蓬勃发展。 1 无线通信技术的发展 1.1 无线通信技术的联合化与集成化 全面结合我国当前资金状况、技术水平以及市场需求等相关方面的内容,将会采用融合方式来对目前的无线网络开展异构网络的联合工作,从而促使通信网络的形成,并成为无线通信技术发展内容之一。现阶段,我国网络融合形式包括:接入网、核心网融合以及业务融合等,对于选择不同的网络来实现接入工作时,需要先对其开展协同工作,从而促使无线网络的使用者达到无线漫游的目的。在构建未来通信终端时,需要为其添加配置能力,并不断提升该项能力,便于计算机与通信技术进行全面的融合,而且在该种技术下通信终端便不会接收到用户的干预内容,同时还可以为用户提供丰富多样的网络接入方式,便于其随时展开网络监控工作,及时更新升级与之相关的软件。除此之外,由于时代不断进步,人们需求水平不断提升,因此未来无线通信技术的构建要全面符合时代发展特征以及全方位满足用户提出的各项需求,而且无线通信技术要保证能够实现多种功能集成的目的,例如语音、数据以及图像业务的综合、无线传输模块的综合等。 1.2 无线网络通信技术的有效融合

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

无线通信基础知识

序 无线通信之所以成为既富挑战性又能引起研究人员兴趣的课题,主要原因有两个,这两个原因对于有线通信而言基本没有什么影响。首先是衰落(fading)现象;其次是无线用户是在空中进行通信,因此彼此间存在严重的干扰(interference),下面分别做一简要介绍。 1)衰落 首先介绍一些无线衰落信道的特性,与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为: P(d)=|d|-n S(d)R(d) 其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种: (1) 大尺度衰落:电波在自由空间内的传播损耗|d|-n,其中n一般为3~4,与频率无关; (2) 阴影衰落:S(d)表示,由于传播环境的地形起伏、建筑物和其他障碍物对地波的阻塞或遮蔽而引发的衰落,被称作中等尺度衰落; (3) 小尺度衰落:R(d)表示,它是由发射机和接收机之间的多条信号路径的相长干扰和相消干扰造成的,当空间尺度与载波波长相当时,会出现小尺度衰落,因此小尺度衰落与频率有关。 大尺度衰落与诸如基站规划之类的问题关系更为密切,小尺度衰落是本文的

重点。 2)干扰 干扰可以是与同一台接收机通信的发射机之间的干扰(如蜂窝系统的上行链路),也可以是不同发射机——接收机对之间的干扰(例如不同小区中用户之间的干扰)。

无线信道的多径衰落 无线移动信道的主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机,参见图1。由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。这样,接收信号的幅度将会发生急剧变化,就会产生衰落。 图1 例如发射端发送一个窄脉冲信号,则在接收端可以收到多个窄脉冲,每一个窄脉冲的衰落和时延以及窄脉冲的个数都是不同的。对应一个发送脉冲信号,图2给出接收端所接收到的信号情况。这样就造成了信道的时间弥散性(time dispersion ),其中τmax被定义为最大时延扩展。 在传输过程中,由于时延扩展, 接收信号中的一个符号的波形会扩 展到其他符号当中,造成符号间干 扰( Inter Symbol interference, ISI )。为了避免产生ISI,应该令图2 符号宽度要远远大于无线信道的最大时延扩展,或者符号速率要小于最大时延扩展的倒数。由于移动环境十分复杂,不同地理位置,不同时间所测量到的时延扩

无线局域网是无线通信专业技术与网络专业技术相结合产物

无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下,提供以太网互联功能。 无线局域网概述 无线网络的历史起源可以追溯到50年前第二次世界大战期间。当时,美国陆军研发出了一套无线电传输技术,采用无线电信号进行资料的传输。这项技术令许多学者产生了灵感。1971年,夏威夷大学的研究员创建了第一个无线电通讯网络,称作ALOHNET。这个网络包含7台计算机,采用双向星型拓扑连接,横跨夏威夷的四座岛屿,中心计算机放置在瓦胡岛上。从此,无线网络正式诞生。 1.无线局域网的优点 (1)灵活性和移动性。在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。 (2)安装便捷。无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。 (3)易于进行网络规划和调整。对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。 (4)故障定位容易。有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。

(5)易于扩展。无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间"漫游"等有线网络无法实现的特性。 由于无线局域网有以上诸多优点,因此其发展十分迅速。最近几年,无线局域网已经在企业、医院、商店、工厂和学校等场合得到了广泛的应用。 2.无线局域网的理论基础 目前,无线局域网采用的传输媒体主要有两种,即红外线和无线电波。按照不同的调制方式,采用无线电波作为传输媒体的无线局域网又可分为扩频方式与窄带调制方式。 (1)红外线(Infrared Rays,IR)局域网 采用红外线通信方式与无线电波方式相比,可以提供极高的数据速率,有较高的安全性,且设备相对便宜而且简单。但由于红外线对障碍物的透射和绕射能力很差,使得传输距离和覆盖范围都受到很大限制,通常IR局域网的覆盖范围只限制在一间房屋内。 (2)扩频(Spread Spectrum,SS)局域网 如果使用扩频技术,网络可以在ISM(工业、科学和医疗)频段内运行。其理论依据是,通过扩频方式以宽带传输信息来换取信噪比的提高。扩频通信具有抗干扰能力和隐蔽性强、保密性好、多址通信能力强的特点。扩频技术主要分为跳频技术(FHSS)和直接序列扩频(DSSS)两种方式。

无线通信技术基础知识

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介

质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。

无线网络通信新技术的应用

无线网络通信新技术的应用 【摘要】文中对无线局域网中以无线电波、红外线等无线媒介来代替目前有线局域网进行了介绍。探讨了无线网络通信新技术,它们包括WiMAX技术、3G技术简介和UWB超宽带技术的介绍,指出随着无线网络通信新技术的应用,依靠网络为工具进行沟通和交流,已经成为时代的需要,需要人类更好地探索与开发。 【关键词】无线局域网;无线电波;无线媒介;网络通信 0.引言 无线局域网是指以无线电波、红外线等无线媒介来代替目前有线局域网中的传输媒介(比如电缆)而构成的网络。无线局域网内使用的通信技术覆盖范围一般为半径100m左右,也就是说差不多几个房间或小公司的办公室。当然实际的覆盖范围受很多因素影响,比如通信区域中的高大障碍物。无线网络通信技术作为下一代通信网当中最具有潜力的IT领域技术之一,业界越来越对关注无线网络通信技术的反战。随着移动通信和Internet的用户不断增长,各种通信技术陆续更新换代并相互融合,新的无线网络技术更是层出不穷,其中就有3G、WiMax 等。在这些技术当中,无线网络通信技术充当着一个核心角色,又由于当今用户对网络化、无线化移动化、便携化的强烈需求,各种数据业务需求相继出现。 1.无线网络通信新技术 改革开放30多年,随着高科技的发展,我国的通讯科技水平得到不断的提高和发展,网络不仅在传输带宽上得到了飞速的发展,在通信方面也演变出了迅猛的网络连接方式,就如同现今的人人皆有的手机一样,无线网络正逐渐成为人们流行追逐的目标和企业完善体系必备选择方案。其中衍生出了如下无线网络新技术的出现: 1.1关于WiMAX技术的简介 WiMAX技术源于英特尔,随其发展日益进入到了人们的生活当中,设备商同时利润能不断增大。它是针对微波和毫米波频段的空中接口标准的一项无线城域网技术,主要用于无线接入点连接互联网,DSL的无线扩展技术给居民用户和中小企业带来便携和移动的好处,其技术优势主要三点,第一,传输距离够远,传输距离最远可以到达50公里左右,而与之前WIFI而言,是无法比拟的。覆盖的信号范围很广,只要用过建立少数的基站就能实现全面的覆盖,解决了无线网络范围的问题。第二,接入速度够快,WiMAX采用OFDM调制方式,频道设置带宽为20MHz,由室外固定天线稳定接受无线电波,因此,WiMAX所提供的最高接入速度可以达到70M每秒,对于无线网络而言,这是一个超越了宽带速度上十倍的速度。第三,具有较为广泛的多媒体通信服务,由于其本身具有良好的安全性以及可扩展性,从而实现了包括了语音、视频等传输的电信级多媒体通信服务。WiMAX作为一种新型宽带无线城域的接入结束,随着标准化工作进展,演变为可编写、移动以及充分应用到互联网接入技术,此技术将备受业界关注。 1.2关于3G技术知识的简介 3G技术,它是指第三代手机(3G)的应用开始。一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统,未来的3G必将与社区网站进行结合,WAP与web的结合是一种趋势,如时下流行的微博客网站:

无线通信领域的新技术

无线通信领域的新技术——感知无线电 李忠孝 无线电通信频谱是一种宝贵的资源,伴随着无线通信业务量和新技术的快速发展,频谱资源日趋紧张。如何开放频谱和提高频谱利用率对频谱管理提出了严峻的挑战。感知无线电技术在这种情况下应运而生。感知无线电(CR:Cognitive Radio)提供了一种依伺机接入方式共享和利用频谱的手段,它可以有效地解决这两个问题。 感知无线电是一种无线电系统,它能够自动地检测周围的环境情况,智能地调整系统的参数以适应环境的变化,在不对授权用户造成干扰的条件下从空间、频率、时间等多维地利用空闲频谱资源进行通信。它区别于其他传统无线电系统的主要特点是:1)对环境情况的感知能力;2)对环境变化的自适应性;3)系统功能模块的可重构性;4)自主地工作和运行等。 感知无线电是一种用于提高无线电通信频谱利用率的智能技术。具有认知功能的无线通信设备可以感知周围的环境,再利用已经分配给授权用户,但在某一特定的时刻和环境下并没有被占用的频带,即动态利用“频谱空穴”;并能够根据输入激励的变化实时地调整其传输参数,在有限信号空间中以最优的方式有效地传送信息,以实现无论何时何地都能保证通信的高可靠性和无线频谱利用的高效性。感知无线电的一个认知周期包涵三个基本过程:感知频谱环境;信道识别;功率控制和频谱管理。其中,感知频谱环境是感知无线电的最显著特征,能够感知并分析特定区域的频段,找出适合通信的频谱空穴,即频谱空穴的检测和选择。根据不同的感知灵敏度和感知速度,频谱检测的方法有匹配滤波器、能量检测、循环平稳特征检测、协同检测等。 感知无线电技术是无线电发展的一个新里程碑,其应用会带来历史性的变革。对于频谱管制者而言,该技术可以大大提高可用频谱数量,提高频谱利用率,有效利用资源;对于频谱持有者而言,利用该技术可以在不受干扰的前提下开发二级频谱市场,在相同频段上提供不同的服务;对设备厂商而言,该技术可以带来更多的机会,具备感知无线电功能的设备将更具竞争力;对终端用户而言,可以带来更多带宽,在感知无线电技术成熟后,用户可以享受到单个无线电终端接入多种无线网络的优势;在军事通信方面,根据感知无线电的特点可以“见缝插针”地利用空闲频谱通信,提高通信的可靠性和对抗能力。因此,感知无线电技术必将是未来无线通信的一个重要发展方向,为无线电资源管理和无线接入市场带来新的发展契机和动力。 目前,CR的发展还处于初级阶段,各项理论和技术处于研究和探索之中,但它已得到了各界的关注,很多著名学者和机构投入到它的研究中。启动了很多针对此的研究项目,最引人注目的是IEEE802.22工作组。该工作组制定了利用空闲电视频段进行宽带无线接入的技术标准,这是第一个引入感知无线电概念的IEEE技术标准化活动。

无线通信技术应用与发展

无线通信技术应用及发展 无线通信技术热点领域 近几年来,全球通信技术的发展日新月异,尤其是近两三年来,无线通信技术的发展速度与应用领域已经超过了固定通信技术,呈现出如火如荼的发展态势。其中最具代表性的有蜂窝移动通信、宽带无线接入,也包括集群通信、卫星通信,以及手机视频业务与技术。 蜂窝移动通信从上世纪80年代出现到现在,已经发展到了第三代移动通信技术,目前业界正在研究面向未来第四代移动通信的技术;宽带无线接入也在全球不断升温,近几年来我国的宽带无线用户数增长势头强劲。宽带无线接入研究重点主要包括无线城域网(WMAN)、无线局域网(WLAN)和无线个域网(WPAN)技术;模拟集群通信的应用开始得比较早,但随着技术的发展,数字集群通信技术越来越赢得大家的关注;卫星通信以其特殊的技术特性,已经成为无线通信技术中不可忽视的一个领域;手机视频广播作为一种新的无线业务与技术,正在成为目前最热门的无线应用之一。 无线通信技术演进路线 2.1 无线技术与业务发展趋势

无线技术与业务有以下几个发展趋势: (1)网络覆盖的无缝化,即用户在任何时间、任何地点都能实现网络的接入。 (2)宽带化是未来通信发展的一个必然趋势,窄带的、低速的网络会逐渐被宽带网络所取代。 (3)融合趋势明显加快,包括:技术融合、网络融合、业务融合。 (4)数据速率越来越高,频谱带宽越来越宽,频段越来越高,覆盖距离越来越短。 (5)终端智能化越来越高,为各种新业务的提供创造了条件和实现手段。 (6)从两个方向相向发展—— ①移动网增加数据业务:1xEV-DO、HSDPA等技术的出现使移动网的数据速率逐渐增加,在原来的移动网上叠加,覆盖可以连续;另外,WiMAX的出现加速了新的3G增强型技术的发展;

无线通信技术热点应用领域及发展方向分析

无线通信技术应用及发展 近几年来,全球通信技术的发展日新月异,尤其是近两三年来,无线通信技术的发展速度与应用领域已经超过了固定通信技术,呈现出如火如荼的发展态势。其中最具代表性的有蜂窝移动通信、宽带无线接入,也包括集群通信、卫星通信,以及手机视频业务与技术。 蜂窝移动通信从上世纪80年代出现到现在,已经发展到了第三代移动通信技术,目前业界正在研究面向未来第四代移动通信的技术;宽带无线接入也在全球不断升温,近几年来我国的宽带无线用户数增长势头强劲。宽带无线接入研究重点主要包括无线城域网(WMAN)、无线局域网(WLAN)和无线个域网(WPAN)技术;模拟集群通信的应用开始得比较早,但随着技术的发展,数字集群通信技术越来越赢得大家的关注;卫星通信以其特殊的技术特性,已经成为无线通信技术中不可忽视的一个领域;手机视频广播作为一种新的无线业务与技术,正在成为目前最热门的无线应用之一。 无线通信技术演进路线 2.1 无线技术与业务发展趋势 无线技术与业务有以下几个发展趋势: (1)网络覆盖的无缝化,即用户在任何时间、任何地点都能实现网络的接入。 (2)宽带化是未来通信发展的一个必然趋势,窄带的、低速的网络会逐渐被宽带网络所取代。 (3)融合趋势明显加快,包括:技术融合、网络融合、业务融合。 (4)数据速率越来越高,频谱带宽越来越宽,频段越来越高,覆盖距离越来越短。 (5)终端智能化越来越高,为各种新业务的提供创造了条件和实现手段。 (6)从两个方向相向发展—— ①移动网增加数据业务:1xEV-DO、HSDPA等技术的出现使移动网的数据速率逐渐增加,在原来的移动网上叠加,覆盖可以连续;另外,WiMAX的出现加速了新的3G增强型技术的发展; ②固定数据业务增加移动性:WLAN等技术的出现使数据速率提高,固网的覆盖范围逐渐扩大,移动性逐渐增加;移动通信、宽带业务和WiFi的成功,促成802.16/WiMAX等多种宽带无线接入技术的诞生。 (7)B3G的概念兼顾了移动性和数据速率。 近几年来,全球移动通信市场经历了一个繁荣的发展时期。从移动通信用户

无线通信技术基础知识

无线通信技术 1、传输介质 传输介质就是连接通信设备,为通信设备之间提供信息传输的物理通道;就是信息传输的实际载体。有线通信与无线通信中的信号传输,都就是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即就是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。

2、1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机与发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2、2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,就是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,就是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值与传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展就是对信道色散效应的描述; (4)多普勒扩展:就是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,就是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2、3无线信道模型 无线信道模型一般可分为室内传播模型与室外传播模型,后者又可以分为宏蜂窝模型与微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点就是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般就是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

无线通信专业(专业基础知识和专业技术知识)

一、无线通信专业 (一)无线通信专业基础知识 1.无线通信原理: (1)无线收发信设备知识; (2)无线信道的特性; (3)调制技术; (4)编码技术; (5)天线基本原理及相关参数; (6)跳频技术。 2.无线通信系统基础知识: (1)无线通信传输系统的组成及工作原理; (2)无线通信系统的制式、性能及分布状况、系统联网常识; (3)无线接口信令; (4)各种传输方式; (5)无线通信系统工作原理; (6)无线通信系统网络结构。 3.无线通信业务知识: (1)移动交换机的组成及电路结构; (2)移动交换机的工作原理; (3)移动交换机的维护常识;

(4)相关仪器、仪表的使用和基本知识。 4.各种传输方式、工作原理、网络结构。 5.其他知识: 本专业维护规程。 (二)无线通信专业技术知识 无线通信专业分为无线传输系统、微波传输系统、卫星通信传输系统、无线接入四个职业功能,每个职业功能还分为不同的工作内容。每个工作内容为一个考试模块,考生只需选择某一考试模块参加考试。 一、无线传输系统 ●工作内容:长波、中波、短波、超短波 ●专业能力要求:1.掌握测试仪表、工具的使用方法。 2.能够对分析测试结果,提出改进质量的技术措施。 3.掌握设备的软硬件构成及所使用的软件语言。 4.掌握各种电源设备的工作原理和性能。 5.熟练掌握主要测试仪表的原理和使用方法。 6.具备主持制定大中型工程计划并组织实施的能力。

7.完成设备的大修、更新、改造,组织新设备的安装、测试开通。 ●相关知识:1.电波传播特性。 2.针对大功率发射机设备的风冷、水冷循环系统原理。 3.无线通信原理。 4.无线通信系统基础知识。 5.无线通信业务知识。 二、微波传输系统 ●工作内容:微波终端、微波中继 ●专业能力要求:1.微波通信传输系统的结构。 2.监控系统的原理和组成。 3.掌握测试仪表、工具的使用方法。 4.能够对分析测试结果,提出改进质量的技术措施。 5.掌握设备的软硬件构成及所使用的软件语言。 6.掌握各种电源设备的工作原理和性能。 7.熟练掌握主要测试仪表的原理和使用方法。 ●相关知识:1.无线通信原理。 2.无线通信系统基础知识。 3.无线通信业务知识。 三、卫星通信传输系统

常见无线通信技术

常见无线通信技术 蓝牙 超宽带技术 ZigBe Wi一F zigBee的产生 ZigBee的优势 zigBee的应用 1.典型的短距离无线数据网络技术 典型的短距离无线系统由一个无线发射器(包括数据源、调制器、RF源、RF功率放大器、天线、电源组成)和一个无线接收器(包括数据接收电路、RF 解调器、译码器、RF低噪声放大器、天线、电源)组成。 随着无线的发展,网络化、标准化、要求逐渐出现在人们的面前。因此各种无线网络技术标准纷纷被制订出来。下面我们来看看目前比较热门的几种无线网络技术标准、 5种短程无线连接技术正在成为业界谈论的焦点,它们分别是ZigBee、无线局域网(Wi-Fi)、蓝牙(Bluetooth)、超宽频(Ultra Wide Band)和近距离无线传输(NFC)。

1.ZigBee ZigBee是一种新兴的短距离、低速率无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。它此前被称作HomeRF Lite或FireFly无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。最后,这些数据可以进入计算机,用于分析或者被另一种无线技术如WiMax收集。 ZigBee的基础是IEEE 802.15.4,这是IEEE无线个人区域网(PAN,Personal AreaNetwork)工作组的一项标准,被称作IEEE 802.15.4(ZigBee)技术标准。 ZigBee不仅只是 802.15.4 的名字。IEEE仅处理低级MAC层和物理层协议,所以ZigBee联盟对其网络层协议和API进行了标准化。完全协议用于一次可直接连接到一个设备的基本点的4KB或者作为Hub、路由器的协调器的32KB。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。、

光通信与无线通信融合新技术

光通信与无线通信融合新技术 学校:北京邮电大学 作者:宋国伟

微波通信技术 一、微波通信概述 微波通信是指用微波频率作载波携带信息,通过无线电波空间进行中继(接力)通信的方式。数字微波通信是指利用微波(射频)携带数字信息,通过在大气中传输的一种通信方式。 微波通信的工作频段。微波频率指300MHz~300GHz,波长为1m-1mm范围的电磁波。人们习惯上将微波划分为分米波、厘米波、毫米波和亚毫米波等波段。通常用不同的字母代表不同的微波波段,如:S代表10 cm波段,C代表5 cm 波段,X代表3 cm波段,Ka代表8 mm波段,U代表6 mm波段,F代表3 mm波段等。 二、微波通信的发展历史 微波的发展是与无线通信发展是分不开的。1901年马克尼使用800KHz中波信号进行了从英国到北美纽芬兰的世界上第一次横跨大西洋的无线电波的通信试验;无线通信初期,人们使用长波及中波来通信;20世纪20年代初,人们发现了短波通信,直到20世纪60年代卫星通信的兴起,它一直是国际远距离通信的主要手段,并且对目前的应急和军事通信仍然很重要。 由于电磁波各波段的传播特性各异,因此,可以用于不同的通信系统。中波主要沿地面传播,绕射能力强,适用于广播和海上通信。而短波具有较强的电离层反射能力,适用于环球通信。超短波和微波的绕射能力较差,可作为视距或超视距中继通信。 微波通信由于其通信的容量大而投资费用省(约占电缆投资的五分之一),建设速度快,抗灾能力强等优点而取得迅速的发展。20世纪40-50年代产生了传输频带较宽,性能较稳定的微波通信,成为长距离大容量地面干线无线传输的主要手段。模拟调频传输容量高达2700路,也可同时传输高质量的彩色电视,而

移动通信基础知识培训(全)

移动通信基础知识培训

移动通信基础知识培训 一移动通信常用的专业术语 基站:即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。都是以主设备加基站天线的形式呈现,最直观的就是我们现实中看到的铁塔,抱杆,桅杆型的基站。 直放站:是在无线通信传输过程中起到信号增强的一种无线电发射中转设备。直放站的基本功能就是一个射频信号功率增强器。实际上基站在其覆盖范围内并不是100%的覆盖到每个角落,难免会由于某些原因而在有些地方出现信号弱,更甚者出现盲区的现象,这时候就需要直放站进行覆盖,达到消除弱信号或者盲区的目的。因此直放站就是通过各种方式将基站信号接入并进行放大,进而改善信号不良区域。 天线(Antenna)——天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。简单的理解,天线就是负责信号中转的无源器件。 室内分布系统:室内分布系统是将基站信号引入室内,解决室内盲区覆盖;它可以有效解决信号延伸和覆盖,改善室内通信质量;它将基站信号科学地分配到室内的各个房间、通道,而又不产生相互干扰。它是基站和微蜂窝的补充和延伸,有不能被基站和直放站所代替的优势,是大都市中移动通信不可缺少的组成部分。 盲区:在移动通信中,盲区表示信号覆盖不到的地区,在这样的地区移动信号非常微弱,甚至是没有。由于建筑物的隔墙、楼层等障碍对电磁波产生阻挡、衰减和屏蔽作用,使得大型建筑物的底层、地下商场、停车场、地铁隧道等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区。 通话质量(RXQUAL):顾名思义,就是手机通话时的语言质量即清晰程

移动通信基础知识培训(全)

移动通信基础知识培训会议记录 一移动通信常用的专业术语 基站:即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。都是以主设备加基站天线的形式呈现,最直观的就是我们现实中看到的铁塔,抱杆,桅杆型的基站。 直放站:是在无线通信传输过程中起到信号增强的一种无线电发射中转设备。直放站的基本功能就是一个射频信号功率增强器。实际上基站在其覆盖范围内并不是100%的覆盖到每个角落,难免会由于某些原因而在有些地方出现信号弱,更甚者出现盲区的现象,这时候就需要直放站进行覆盖,达到消除弱信号或者盲区的目的。因此直放站就是通过各种方式将基站信号接入并进行放大,进而改善信号不良区域。 天线(Antenna)——天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。简单的理解,天线就是负责信号中转的无源器件。 室内分布系统:室内分布系统是将基站信号引入室内,解决室内盲区覆盖;它可以有效解决信号延伸和覆盖,改善室内通信质量;它将基站信号科学地分配到室内的各个房间、通道,而又不产生相互干扰。它是基站和微蜂窝的补充和延伸,有不能被基站和直放站所代替的优势,是大都市中移动通信不可缺少的组成

部分。 盲区:在移动通信中,盲区表示信号覆盖不到的地区,在这样的地区移动信号非常微弱,甚至是没有。由于建筑物的隔墙、楼层等障碍对电磁波产生阻挡、衰减和屏蔽作用,使得大型建筑物的底层、地下商场、停车场、地铁隧道等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区。 通话质量:顾名思义,就是手机通话时的语言质量即清晰程度。在移动通信中通话质量是一个很重要的网络参数,按照语言的清晰程度将通话质量分为0到7不同的8个级别,0最好,客户通话时的感知最好;7最差,通话时的感知最好,客户。一般正常的通话质量应该为0-3。 信号场强:是指信号信号的强弱。在移动通信中信号的强弱用具体的电平值表示,通过测试手机可以测得,一般-40~-90dBm为可正常通话的强度范围,也可直观的从普通手机的信号显示格数看出。 手机发射功率:手机发射功率是指,手机在寻呼基站时的功率。手机发射功率越高,说明上行越弱,客户感知为拨打电话上线慢。 切换:就是指当移动台(用户手机)在通话过程中从一个基站覆盖区移动到另一个基站覆盖区,或者由于外界干扰而造成通话质量下降时,必须改变原有的话音信道而转接到一条新的空闲话音信道上去,以继续保持通话的过程。 掉话:是指用户手机在使用过程中由于出现异常而自动挂断的现象。 单通:是指用户双方正在通话时,由于异常出现只有一方可以听见另一方的

无线通信前沿技术

移动通信是近几年通信各领域中发展最快的领域之一,本文从全球的视角来分析移动通 信的发展态势。 移动通信是近几年通信各领域中发展最快的领域之一。据全球GSM运营商联盟统计,2003 年底GSM用户已达到9.7亿,其中新增用户1.8亿,共占全球新增用户的80%。又据移动通信的另一组织CDMA发展组织(CDG)宣布,2003 年全球CDMA新增用户4200多万,增长率达29%,用户总量突破1.88亿。 在系统技术层面上,第二代数字移动通信( 2G )和第二代半移动通信( 2.5G )技术已发展成熟;第三代移动通信( 3G )技术也在日益发展完善,形成了以欧洲宽带码分多址(WCDMA)、美洲cdma2000和中国TD-SCDMA为代表的几大技术阵营;而且,后3G 技术的研发也已经展开,并取得了一些试验成果。 在系统应用层面上,第一代模拟移动通信系骋淹顺鍪谐。 壳案鞴 毡椴捎?2G 或2.5G 系统,并正在向3G 系统过渡。 从2G 向3G 过渡 2000~2004 年是移动通信系统从2G 向3G 过渡的重要阶段。如果说2G 的发展是由用户需求牵引的话,那么3G 的发展则在很大程度上是由技术发展来引导消费的。通过几年的发展、演变,目前由2G 向3G 过渡逐步形成了两种不同的技术演进途径,即GSM—GPRS—WCDMA和cdmaOne(IS-95)一cdma2000,其中GPRS为2.5G 。 在向3G 过渡的过程中,如何保护现有的网络投资并使其产生最大的效益是首先值得重视的问题。因此,在满足业务发展需要的同时,充分利用已建的2G 网络,保护用户业务的连续性,这就要求新建的3G 网络必须与第二代网络有很好的后向兼容性。 目前GSM从技术成熟度、运营商数量、厂商支持广泛程度、用户数量等方面在全球占据着主导地位,是目前全球最大的移动通信系统,为WCDMA的发展提供了很好的基础。但是,WCDMA最初阶段的发展过程并不顺利。2001 年10月NTT DoCoMo公司在日本首先开通了基于WCDMA技术的3G 服务一一FOMA,可是该系统业务的发展并不如之后KDDI在日本运营的cdma2000 1x系统。其主要原因是技术发展还有待成熟,成本过高,而且3G 手机不能与日本第二代手机PDC手机互通。在欧洲,3G 的发展也受投资过大和不能与GSM兼容的影响而一直不能走上正轨。为了顺利地过渡到WCDMA系统,GPRS系统商用速度加快,目前全球上百家运营商已开通了GPRS业务。同时,通信制造商积极开发WCDMA手机,降低手机成本。到2004 年1月底,已经发放了120份WCDMA牌照,签署了89份商业部署合同,21个网络投入商用,WCDMA用户大约有350万,推出的新型业务包括视频会议、高速数据、多任务。WCDMA系统在未来的3G 市场上将占居有利的地位。 另一方面,由于美国的cdma2000标准在开发之初就考虑到与现有的IS-95网络兼容,在商用后便取得了成功。在日本FOMA业务开通不久,cdma2000系统在日本、韩国、美国及加拿大等地先后开始商用。2002 年1月韩国又在全球率先启动了数据传输速率最高达2.4Mb/s的cdma2000 1x EV-DO系统,使cdma2000技术标准势力进一步得到巩固。预计2006 年cdma2000lxEV-DV系统将投入商用。cdma2000系统由于能很好地与第二代系统CDMA兼容,使得该系统一开始商用就获得了成功,用户发展很快。到2003 年底,cdma2000

相关主题
文本预览
相关文档 最新文档