当前位置:文档之家› 制氧工艺

制氧工艺

空分制氧技术研究

空气分离制氧技术的研究

摘要:近年来,随着社会工业的发展,化学工业、冶金工业等部门中大量应用氧气,氧气是气体工业中数量最大的品种。本文首先介绍了空气分离制氧气的三种方法:深冷法、变压吸附法(PSA)、膜分离法,并比较了各自的优缺点,最终选用变压吸附法进行研究。随着新型吸附剂的开发、工艺不断改进以及控制手段的逐步完善,PSA制氧工艺的技术已有明显提高。本文又对变压吸附工艺的改进和吸附剂的改进和选型等方面进行介绍,最后对PSA空分制氧技术的发展前景进行展望。 关键词:氧气;深冷法;变压吸附;膜分离;吸附剂;PSA-MS联用 在过去的几个世纪里,物质生活水平不断提高和人口不断增长,人类对资源的需求日益增大,同时对环境的破坏也日趋加剧。如何以最低的环境代价确保经济持续增长,同时还能使资源可持续利用,已成为所有国家新世纪经济、社会发展过程中所面临的一大难题。我国实施了“科教兴国”和“可持续发展”两大战略,明确了依靠科技、资源节约、生态环境友好、人与自然协调的可持续发展道路,并提出了建设资源节约型与环境友好型社会的重要战略举措。从物质形态来说,可供人类使用的资源可以分为固体、液体、气体三大资源,其中气体资源是在常温常压条件下表现为气态的物资资源,它包括自然的空气资源、生物气体资源以及工业排放的尾气资源。气体资源的开发的主导意识主要是空气分离以及根据应用要求直接制备气体。空气是一种主要由氧、氮、氩气等气体组成的复杂气体混合物,其主要组成有氮气、氧气、氩气、二氧化碳、氖气、氦气等,除了固定组分外,空气中还含有数量不定的灰尘、水分、乙炔,以及二氧化硫、硫化氢、一氧化碳、一氧化二氮等微量杂质。 一、研究意义 随着国民经济的飞跃发展和技术进步,工业上对氧的需求与日俱增,应用领域不断扩大。冶金、化工、环保、机械、医药、玻璃等行业都需要大量氧气。就冶金来说,无论钢铁冶金或者有色金属、稀有金属、贵金属的冶金,如果用富氧取代空气供氧,冶金炉(或浸出槽)的产量必将大幅度提高,能源消耗显著降低,冶炼(或浸出)时间大大缩短,产品质量提高,这将使生产成本大幅度降低,还可以节约基建投资。1993年世界工业气体交易的市场价值估计超出200亿美元。如果将最终用户直接在现场生产的气体包括在内,估计数字则超过300亿美元。世界各国气体市场的传统增长率比本国生产总值高出1.5~2.0倍。继续促进这一增长的关键因素包括工业气体在加工业质量和效率改进上所起的重要作用,如节约能量的、环境治理和气体的新应用等。该市场主要集中在已高度发达的国家和新兴的工业化经济区域。未来十年预计在亚洲和南美洲的新兴发展中的经济区域有大的市场出现。1993年世界氧气市场需求统计见图1。

图解工业制氧生产工艺

制氧站生产工艺流程一、制氧/制氮系统工艺流程及主要设备 空气

二、工艺流程中各步骤工作原理及用途 1、空气过滤器 空气过滤器的净气室出口与空气压缩机入口相连接,当空气压缩机启动后,内部气压低于大气压,在负压作用下,从大气中红吸入加工空气。空气经过过滤筒,灰尘灰尘会被滤网阻挡,无数小颗粒粉尘会吸附在过滤筒上,干净的空气进入空气压缩机中,所以过滤器中的滤筒需要经常吹扫。此外空气过滤器外安装有一层粗滤网,起到初步过滤的作用。 2、空气压缩机 空气压缩机是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。 空气压缩机类型为离心式空气压缩机,一个空压机车间里有两台空气压缩机,当空气压力不够的时候会启动另外一台增加压力。 ⑴EZ45-2+1空压机工作原理(简图如图1所示) 空气走向为: 过滤器 冷却

图 1

⑴ 47YD112空压机工作原理 图2 相同颜色代表管径相同 3、空冷塔和水冷塔 工艺流程如图3所示。自空压机压缩后的高温空气②进入空冷塔压缩空气在空冷塔上升过程中,与塔上部喷入低温冷冻水⑧、中部喷入的循环冷却水①进行直接接触换热,将空气冷却后③送入分子筛。从空冷塔中出来的冷却水④返回到冷却水循环系统中。 进入水冷塔的冷却水⑤与从水冷塔底部进入的干燥空气⑥进行逆流接触,干空气吸收水分达到饱和从塔顶释放⑦,冷却水温度降低形成冷冻水⑧,该冷冻水由泵打入空冷塔上部对空气进行冷却。

4、分子筛 分子筛吸附器为卧式双层床结构,下层为活性氧化铝,上层为分子筛,两只吸附器切换工作。由空冷塔来的空气,经吸附器除去其中的水分,CO2及其它一些碳氢化合物后,除一部分工作仪表之外,其余均全部进入分馏塔及增压机。当一台吸附器工作时,另一台吸附器则进行再生,冷吹备用。由分馏塔来的污氮,经两台电加热炉加热至180度后,入吸附器加热再生,解析掉其中的水分和CO2,后经放空消声器派入大气。 5、换热器 换热器是将热流体的部分热量传递给冷流体的设备 6、膨胀机 增压透平膨胀机,由分子筛吸附器来的洁净空气一部分进入增压器,消耗掉由膨胀机输出的能量,同时使压力得以升高,经增压后的空气入增压机后冷却器,被常温水冷却到38左右,入主换热器冷却到一定温度167K 后入透平膨胀机膨胀,然后经膨胀后换热器进一步冷却入上塔参与精馏。其余空气直接入主换热器冷却到露点100K附近出主换热器,入塔底部参与空气分馏。 7、空气分馏塔 空气分馏塔是一种采用精馏的方法,使各组份分离。从而得到高纯度组份的设备。 空气被冷却至接近液化温度后送入分馏塔的下塔,空气自下向上与温度较低的回流液体充分接触进行传热,使部分空气冷凝为液体。由于氧是难挥发组份,氮是易挥发组份,在冷凝过程中,氧比氮较多的冷凝下来,使气体中氮的纯度提高。同时,气体冷凝时要放出冷凝潜热,使回流液体一部分汽化。由于氮是易挥发组份。因此,氮比氧较多的蒸发出来,使液体中氧纯度提高。就这样,气体由下向上与每一块塔板上的回流液体进行传热传质,而每经过

图解工业制氧生产工艺

图解工业制氧生产工艺 Prepared on 24 November 2020

制氧站生产工艺流程 空气 1 红吸入加工空气。空气经过过滤筒,灰尘灰尘会被滤网阻挡,无数小颗粒粉尘会吸附在过滤筒上,干净的空气进入空气压缩机中,所以过滤器中的滤筒需要经常吹扫。此外空气过滤器外安装有一层粗滤网,起到初步过滤的作用。

2、空气压缩机 空气压缩机是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。 空气压缩机类型为离心式空气压缩机,一个空压机车间里有两台空气压缩机,当空气压力不够的时候会启动另外一台增加压力。 ⑴EZ45-2+1空压机工作原理(简图如图1所示) 空气走向为: 冷却

相同颜色代表管径相同 3、空冷塔和水冷塔 工艺流程如图3所示。自空压机压缩后的高温空气②进入空冷塔压缩空气在空冷塔上升过程中,与塔上部喷入低温冷冻水⑧、中部喷入的循环冷却水①进行直接接触换热,将空气冷却后③送入分子筛。从空冷塔中出来的冷却水④返回到冷却水循环系统中。 进入水冷塔的冷却水⑤与从水冷塔底部进入的干燥空气⑥进行逆流接触,干空气吸收水分达到饱和从塔顶释放⑦,冷却水温

4、分子筛 分子筛吸附器为卧式双层床结构,下层为活性氧化铝,上层为分子筛,两只吸附器切换工作。由空冷塔来的空气,经吸附器除去其中的水分,CO2及其它一些碳氢化合物后,除一部分工作仪表之外,其余均全部进入分馏塔及增压机。当一台吸附器工作时,另一台吸附器则进行再生,冷吹备用。由分馏塔来的污氮,经两台电加热炉加热至180度后,入吸附器加热再生,解析掉其中的水分和CO2,后经放空消声器派入大气。 5、换热器 换热器是将热流体的部分热量传递给冷流体的设备 6、膨胀机 增压透平膨胀机,由分子筛吸附器来的洁净空气一部分进入增压器,消耗掉由膨胀机输出的能量,同时使压力得以升高,经增压后的空气入增压机后冷却器,被常温水冷却到38左右,入主换热器冷却到一定温度167K 后入透平膨胀机膨胀,然后经膨胀后换热器进一步冷却入上塔参与精馏。其余空气直接入主换热器冷却到露点100K附近出主换热器,入塔底部参与空气分馏。 7、空气分馏塔 空气分馏塔是一种采用精馏的方法,使各组份分离。从而得到高纯度组份的设备。 空气被冷却至接近液化温度后送入分馏塔的下塔,空气自下向上与温度较低的回流液体充分接触进行传热,使部分空气冷凝为液体。由于氧是难挥发组份,氮是易挥发组份,在冷凝过程中,氧比氮较多的冷凝下来,使气体中氮的纯度提高。同时,气体冷凝时要放出冷凝潜热,使回流液体一部分汽化。由于氮是易挥发组份。因此,氮比氧较多的蒸发出来,使液体中氧纯度提高。就这样,气体由下向上与每一块塔板上的回流液体进行传热传质,而每经过一块塔板,气相中的氮纯度就提高一次,当气体到达下塔顶部时,绝大部分氧已被冷凝到液体中,使气相中的氮纯度达到%。一部分氮气进入冷凝蒸发器中,冷凝成液氮.作为下塔回流液。同时上塔底部的液氧汽化,作为上塔的上升气体,参与上塔的分馏,将下塔底部得到的含氧38~40%的富氧液空节流后送入上塔,作为上塔的一部分回流液与上升气体接触传热,部分富氧液空汽化。由于氧是难挥发组份,氮是易挥发组份,因此,氮比氧较多的蒸发出来,使液体氧纯度提高。液体由上向下与上升气体多次传热传质,液相中的氧纯度不断提高,当液体到达上塔底部时就可得到%的液氧。

空分制氧工艺流程

空分制氧工艺流程 空分设备的工作原理是根据空气中各种气体沸点不同,经加压、预冷、纯化并利用大部分由透平膨胀机提供的冷量使之液化再进行精馏从而获得所需的氧/氮产品。空分制氧系统包括空压机系统、预冷系统、分子筛纯化系统、增压膨胀机系统、分馏塔系统、氧/氮压机系统、调压站系统。 流程简述:原料空气由吸入塔吸入,经滤清器去除灰尘和机械杂质,在离心式空压机中被压缩,压缩之空气经空气冷却塔洗涤冷却至8~10℃,然后进入自动切换使用的分子筛吸附器,以清除H2O、CO2和C2H2,出分子筛的空气为12℃~4℃,然后进入分馏塔。在分馏塔中,空气首先经过主换热器与返流气体换热,然后被冷却至接近饱和温度(-172℃)进入下塔。另一部分空气作为作为膨胀气体,经增压机增压并经冷却器冷却后也进入主换热器与反流气体换热。这部分气体被冷却至-103℃左右,从主换热器中抽出进入透平膨胀机,膨胀后的空气进入热虹吸蒸发器,在热虹吸蒸发器内,被从主冷引出的液氧冷却至-175℃,进入上塔中部,部分液氧复热汽化后夹带液氧返回主冷,形成液氧自循环,进一步除去液氧中的碳氢化合物。少量空气从分子筛吸附器后抽出做为仪表气。在下塔,空气被初步分离成氮和负氧液空,在塔顶获得99.99%N2的气氮,进入主冷与液氧换热冷凝成液氮,部分掖氮回下塔作为下塔的回流液。另一部分液氮,经过冷器过冷节流后进入上塔顶部作为上塔回流液。下塔负液38% O2的液空

经过冷器过冷后进入上塔中部参加精馏。以不同状态的四股流体进入上塔再分离后,在上塔顶部得到纯氮气,经过冷器、主换热器复热后出分馏塔;上塔底部的液氧在主冷被下塔氮气加热而蒸发,其中一部分氧气经氧主换热器复热后出分馏塔,其余部分作为上升蒸汽参加精馏。在上塔冲中部抽出污氮气,经过冷器、主换热器复热引出分馏塔。从分馏塔出来的污氮气分为两路,一路进入纯化系统作为分子筛再生气,其余的污氮气进入预冷系统,进入其中的水冷塔中,以进一步回收污氮中的冷量。从分馏塔出的的合格氧气出分馏塔后,送至压氧系统。部分液氧作为产品抽出。 附:流程图

制氧工序各岗位职责(全)

制氧厂岗位职责 一.制氧空分工段长岗位职责 1.工作职能范围: 在厂长的领导下,负责本机组的生产经营管理及行政事务工作。 2.工作质量与数量: 每天检查所属的机械设备运转情况,及时了解生产和所要处理的任务。抓好产品质量和设备检修质量,不断降低消耗。 3.服从厂领导的统一安排与指挥,认真检查本机组各项规章制度标准,贯彻落实情况并及时向厂内汇报。 4.具备制氧空分压缩机岗位的应知内容。 5.掌握制氧工艺全过程中各部位的调节及参数变化时对其它部位工艺参数的影响。 6.掌握制氧工艺全过程中各个部位的工作原理,设备结构技术要求,遥控自控及其工作状况。 7.应会组织新安装或大、中修全套设备的验收、试车、调试工作。 8.应能提出设备及制氧工艺中合理化建议或改进措施。 9.应提出重大事故或故障的分析判断理论分析的正确处理方案。 1 0."组织全制氧系统开、停车及紧急事故处理等工作。 1 1."参与修订安全技术规程,生产技术操作规程和设备的使用维护规程。 1

2."总结技术操作经验,推广使用新技术,抓好职工的技术培训工作,具备讲授技术理论与技术操作课的能力,培训新工人。 1 3."负责本工段的常规工作。 二.制氧工班长岗位职责 1.工作能职范围: 负责本班安全生产,行政管理工作,负责落实上级交给的各项任务及制氧班组的生产任务。 2.工作质量与数量: 按时完成生产计划和各项生产技术指标,观察调整制氧机各部位温度、压力、阻力、液面、流量、纯度等,使设备达到最佳运行情况。 3.工作协作关系;了解供水、供电等情况,与化验配合做好纯度分析、对使用设备进行维护,发现问题及时联系机修检查处理。 4.具备制氧机空分操作岗位及压缩机岗位的应知内容。 5.掌握制氧工艺过程中各部位的工作原理,设备结构技术要求,遥控、自控及其工作状况。 6.掌握制氧工艺全过程中各部位的调节及参数变化对其他部位工艺参数的影响。 7.组织制氧全系统开,停车及紧急事故的处理工作。 8.提出制氧工艺中的合理化建议或改进措施。 1 9."具有重大事故或故障的分析判断能力,提出正确处理方案。 1

制氧工艺流程

1.氧气和氮气的生产 原料空气自吸入塔吸入,经空气过滤器除去灰尘及其它机械杂质。空气经过滤后在离心式空压机中经压缩至0.52MPa左右,经空气冷却塔预冷,冷却水分段进入冷却塔内,下段为循环冷却水,上段为低温冷冻水。空气经空气冷却塔冷却后降至约10℃,然后进入切换使用的分子筛吸附器,空气中的二氧化碳,碳氢化合物及残留的水蒸气被吸附。分子筛吸附器为两只切换使用,其中一只工作时另一只再生,纯化器的切换周期为240分钟。 空气经净化后,分为两路:大部分空气在主换热器中与返流气体(纯氧、纯氮、污氮等)换热达到接近液化温度约-173℃进入下塔。另一路空气在主换热器内被返流冷气体冷却至-105℃时抽出进入膨胀机膨胀制冷,然后入上塔参加精馏同时补充冷量损失。 在下塔中,空气被初步分离成氮和含氧38-40%的富氧液空(下塔底部),顶部生成的氮气在冷凝蒸发器中被冷凝为液氮,同时主冷的低压侧液氧被汽化。部分液氮作为下塔回流液,另一部分液氮从下塔顶部引出,经过冷器中过冷后经节流送入上塔中部作回流液和粗氩塔Ⅰ冷凝器冷凝侧的冷源。下塔底部的富氧液空引出后经节流降温送入上塔做为回流液参与上塔精馏。 氧气从上塔底部引出,并在主换热器中与原料空气复热后出冷箱进入氧气压缩机加压后送往用户。 污氮气从上塔上部引出,并在过冷器及主换热器中复热后送出分馏塔外,大部分作为分子筛的再生气体(用量约21000/h)。小部分进入水冷

塔中作为冷源冷却循环水。 氮气从上塔顶部引出,在过冷器及主换热器中复热后出冷箱,经氮气压缩机加压后送往用户。 产品液氧从主冷中排出送入液氧贮槽保存。从液氧贮槽中排出的液氧,用液氧泵加压后的进入汽化器,蒸发成氧气然后进入氧气管网送用户。

制氧原理讲解

【导读】:空气中含氮气78%,氧气21%。由于空气是取之不尽的免费原料,因此工业制氧/制氮通常是将空气中的氧气和氮气分离出来。制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。本专题将详细介绍制氧/制氮的工艺流程,主要工艺设备的工作原理等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 【制氧/制氮目的】:制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。 【制氮原理简介】:以空气为原料,利用物理的方法,将其中的氧和氮分离而获得。工业中有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。 A深冷空分制氮 深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。

B分子筛空分制氮 以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。 C膜空分制氮 以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(≤3分钟)、增容方便等优点,它特别适宜于氮气纯度≤98%的中、小型氮气用户,有最佳功能价格比。而氮气纯度在98%以上时,它与相同规格的PSA制氮机相比价格要高出15%以上。 【制氧原理简介】:工业制氧是指制造大量氧气,注重成本,讲究大量制取,对纯度要求一般不会太高。 工业制氧 工业制氧是指制造大量氧气,注重成本,讲究大量制取,对纯度要求一般不会太高。大致可分为以下几种方法

工业制氧原理及流程

工业制氧原理及流程 空气中含氮气78%,氧气21%。由于空气是取之不尽的免费原料,因此工业制氧/制氮通常是将空气中的氧气和氮气分离出来。制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。本专题将详细介绍制氧/制氮的工艺流程,主要工艺设备的工作原理等信息。 【制氧/制氮目的】:制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。 【制氮原理简介】:以空气为原料,利用物理的方法,将其中的氧和氮分离而获得。工业中有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。 A:深冷空分制氮 深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。 B:分子筛空分制氮 以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。 C:膜空分制氮 以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维

变压吸附制氧技术方案

ZY-1000/80Nm3/h变压吸附制氧 技术案 目录 第一章:公司简介 第二章:变压吸附制氧简介 第三章:技术案

第四章:近两年变压吸附设备部分业绩表 第五章:公司投资成功案例 一、公司简介 宏达新元科技有限公司是一家专业从事气体设备及气体产品应用研究开发的专业公司。公司的核心业务包括: 设备销售、租赁、整改 ★VPSA真空变压吸附制氧 ★PSA变压吸附制氧设备 ★制氮设备、氮气纯化装置 ★LNG系统成套设备和LNG泵

企业拥有现代化标准生产车间和大批专业从事VPSA真空变压吸附、PSA变压吸附、气体分离及机械技术人员,为气体及气体设备领域用户提供独特的产品、服务、技术咨询和解决案。 我公司下辖的企业有简阳天欣气体公司和广西聚源气体公司,为客户提供优质高纯度的气体。企业还在省与欣国力低温公司、简阳川空通用机械厂建立了良好的合作关系。 我公司于2011年3月17日在市苍梧县工商行政管理处登记注册成立的广西川桂气体科技有限公司。其性质为有限责任。注册资金2000万元人民币。 我们将不断完善售后服务、改善设备工艺、加强质量管理,并与研究机构密切配合,为广大用户提供更出色的产品与服务。。。。。。 二、变压吸附制氧技术简介 变压吸附制氧技术是近几十年发展起来的一种空分制氧工艺。与传统的深冷空分制氧装置相比,变压吸附制氧装置具有投资少、能耗低、运行维护费用低、工艺条件温和(常温、低压)、工艺流程简单、自动化程度高、操作灵活性高(可随时开停)、建设工期短和安全性好等优点,因此得到国外大型气体公司和研究机构的广泛关注,并纷纷投入巨大的人力物力研究开发。自九十年代国外开发成功高效锂基制氧分子筛后,变压吸附空分制氧技术开始迅猛发展并得到广泛应用。目前,在很多用氧场合下变压吸附空分制氧可替代深冷空分制氧,并且装置的经济性明显

制氧站设计流程

制氧站设计流程 1 制氧站厂区总图位置选择: 1.1 从工程设计人员来说,选定总图位置时,应明确制氧车间与一些污染源及相关建、构筑物之间的安全距离。 参考《制氧站设计规范》GB50030-91中“第二章氧气站的布置”和《氧规》GB16912-2008中“4.2总图布置”。 2 制氧站厂区内平面布置 2.1 各车间平面布置 工程设计人员应明确各车间建、构筑物的生产类别、防火等级及建、构筑物与其它工业、民用设施的防火间距 (1)生产车间各建、构筑物的生产类别及最低防火等级按照《氧规》GB16912-2008中“4.3.1表2”的内容进行设计。 补充:氧气站室外布置的空分塔或惰性气体贮罐,应按一、二级耐火等级的乙类生产建筑(空分塔)或戊类生产建筑(惰性气体贮罐)确定其与其他各类建筑之间的最小防火间距。(选自《制氧站设计规范》GB50030-91中“第二章氧气站的布置第2.0.3(11)条”) 注意:氧气贮罐(包括液氧储罐)、惰性气体贮罐、室外布置的工艺设备与其制氧厂房的间距,可按工艺布置要求确定。 (2)生产车间各建、构筑物与特定地点的最小防火间距参见《氧规》GB16912-2008中“4.3.2表3”的内容。 (3)生产车间各建、构筑物与其它工业、民用设施的防火间距还应符合《建筑设计防火规范》GB50016-2006中的有关规定。 2.2各车间内、外部设备布置 根据设备厂家提供的设备制造图纸布置设备。要求符合工艺布置要求、安全规范并便于设备操作检修。 2.3各设备之间管道的连接 按照设备厂家提供的工艺流程图布置管道。要求符合工艺流程要求、布置合理并便于操作维修。其中氧气管道按照《氧规》 GB16912-2008中“8 氧气管道”的内容进行设计。

空分制氧工艺流程1

第一章空分设备工艺流程 第一节空气分离设备术语 在学习空分设备基本知识之前,我们先来了解空分设备上使用的一些术语。 一、空气分离设备术语基本术语 1、空气 存在于地球表面的气体混合物。接近于地面的空气在标准状态下的密度为 1.29kg/m3。主要成分是氧、氮和氩;以体积含量计,氧约占20.95%,氮约占78.09%,氩约占0.932%,此外还含有微量的氢及氖、氦、氪、氙等稀有气体。根据地区条件不同,还含有不定量的二氧化碳、水蒸气及乙炔等碳氢化合物。 2、加工空气 指用来分离气体和制取液体的原料气。 3、氧气 分子式O ,分子量31.9988(按1979年国际原子量),无色、无臭的气体。在标 2 准状态下的密度为1.429kg/m3,熔点为54.75K,在101.325kPa压力下的沸点为 90.17K。化学性质极活泼,是强氧经剂。不能燃烧,能助燃。 4、工业用工艺氧 用空气分离设备制取的工业用工艺氧,其含氧量(体积比)一般小于98%。 5、工业用气态氧 用空气分离设备制取的工业用气态氧,其氧含量(体积比)大于或等于99.2%。 6、高纯氧 用空气分离设备制取的氧气,其氧含量(体积比)大于或等于99.995%。 7、氮气 分子式N ,分子量28.0134(按1979年国际原子量),无色、无臭、的惰性气体。 2 在标准状态下的密度为1.251kg/m3,熔点为63.29K,在101.325kPa威力下的沸点为77.35K。化学性质不活泼,不能燃烧,是一种窒息性气体。 8、工业用气态氮 用空气分离设备制取的工业用气态氮,其氮含量(体积比)大于或等于98.5%。

9、纯氮 用空气分离设备制取的氮气,其氮含蓄量(体积比)大于或等于99.995%。 10、高纯氮 用空气分离设备制取的氮气,其氮含蓄量(体积比)大于或等于99.9995%。 11、液氧(液态氧) 液体状态的氧,为天蓝色、透明、易流动的液体。在101.325kPa压力下的沸点为90.17K,密度为1140kg/m3。可采用低温法用空气分离设备制取液态或用气态氧加以液化。 12、液氮(液态氮) 液体状态的氮,为透明、易流动的液体。在101.325kPa压力下的沸点为77.35K,密度为810kg/m3。可采用低温法用空气分离设备制取液态氮或用气态氮加以液化。 13、液空(液态空气) 液体状态的空气,为浅蓝色、易流动的液体。在101.325kPa压力下的沸点为78.8K,密度为873kg/m3。液空是空气分离过程中的中间产物。 14、富氧液空 指氧含量(体积比)超过的20.95%的液态空气。 15、馏分液氮(污液氮) 在下塔合适位置抽出的、氮含量(体积比)一般为95%~96%的液体。 16、污氮 由上塔上部抽出的、氮含量(体积比)一般为95%~96%的液态体。 17、标准状态 指温度为0°C、压力为101.325kPa时的气体状态。 18、空气分离 从空气中分离其组分以制取氧、氮和提取氩、氖、氦、氪、氙等气体的过程。 19、节流 流体通过锐孔膨胀而不作功来降低压力。 20、节流效应(焦耳—汤姆逊效应) 气体膨胀不作功产生的温度变化。

制氧操作规程

6000m3/h制氧机组操作规程 编制: 审核: 批准:

前言 制氧厂主要生产氧气、氮气、液氧,氧气、氮气通过管道输送至炼铁、炼钢、轧钢等后续工序使用,液氧汽化输入管网,其整个作业过程接触的有助燃物品氧气、液氧,易窒息物品氮气,发生事故的种类有燃烧、爆炸、窒息、冻伤。每个作业过程都存在着严重危险因素,危及人身、设备安全,为此特编写此规程以规范各种作业细节,杜绝事故的发生,确保制氧厂长期、安全稳定生产。 本次编写是在2003年版基础上,并据现扩大规模后生产实际,广泛征求一线员工意见,并经领导组严格审核而定,为此对本规程所有编写、审核人员及提出宝贵意见的员工表示感谢。 编写组 2011年3月1日

目录 1、岗位职责 (4) 1.1制氧班长岗位职责 (4) 1.2制氧工岗位职责 (5) 2、制氧厂工艺概述及工艺流程 (5) 2.1工艺概述 (5) 2.2工艺流程图 (5) 3、工艺设备性能参数 (6) 4、技术、标准、规程 (6) 4.1工艺条件 (7) 4.2工艺技术及标准 (7) 4.2.1工艺技术 (7) 4.2.2工艺标准 (7) 4.3车间工艺制度 (7) 4.4制氧工艺操作规程 (8) 4.4.1工艺流程概述 (8) 4.4.2 技术参数和经济指标 (9) 5、6000制氧操作规程 (12) 6、空分设备的启动操作规程 (13) 7、精馏工况调整 (20) 8、正常停车 (21) 9、 PLPK型风机透平膨胀机组 (22) 10、 LTY690/5.3型离心空气压缩机 (33) 11、 ZW-56/30型氧气压缩机操作规程 (43) 12、 ZW-56/30型氮气压缩机操作规程 (47) 13、循环泵房操作规程 (47)

制氧工艺

一、空气分离制氧的主要工艺及其比较 氧气在工业生产和日常生活中有广泛的用途,空气中含有21%(体积浓度)的氧气,是最廉价的制氧原料,因此氧气一般都通过空气分离制取。 ■ 空气分离制氧主要工艺 1.深冷分离工艺: 传统制氧技术,氧气纯度高、产品种类多,适用于大规模制氧。 2.变压吸附工艺(PSA): 新兴技术,投资小、能耗低,适用于氧气纯度不太高、中小规模应用场合。 3.膜分离工艺: 尚不成熟,基本未得到工业应用。 ■ 变压吸附制氧技术特点--与深冷制氧技术相比 l工艺流程简单,不需要复杂的预处理装置; l产品氧气纯度可达95%,氮气含量小于1%,其余为氩气; l制氧规模10000m3/h以下时,制氧电耗更低、投资更小; l装置运行自动化程度高,开停车方便快捷; l装置运行独立性强,安全性高;

l装置操作简单,操作弹性大(部分负荷性优越,负荷转换速度快);l装置运行和维护费用低; l土建工程费用低,占地少。 ■ 深冷空分制氧工艺与变压吸附制氧工艺的比较

二、变压吸附空分制氧工艺原理 ★ 变压吸附空气分离制氧原理 空气中的主要组份是氮和氧,通过选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。 氮和氧都具有四极矩,但氮的四极矩(0.31Å)比氧的(0.10 Å)大得多,因此氮气在沸石分子筛上的吸附能力比氧气强(氮与分子筛表面离子的作用力强,如图1所示)。因此,当空气在加压状态下通过装有沸石分子筛吸附剂的吸附床时,氮气被分子筛吸附,氧气因吸附较少,在气相中得到富集并流出吸附床,使氧气和氮气分离获得氧气。当分子筛吸附氮气至接近饱和后,停止通空气并降低吸附床的压力,分子筛吸附的氮气可以解吸出来,分子筛得到再生并重复利用。两个以上的吸附床轮流切换工作,便可连续生产出氧气。 图1、变压吸附气体分离基本原理示意图 氩气和氧气的沸点接近,两者很难分离,一起在气相得到富集。因此变压吸附制氧装置通常只能获得浓度为90%~95%的氧气(氧的极限浓度为95.6%,其余为氩气),与深冷空分装置的浓度99.5%以上的氧气相比,又称富氧。 ★ 变压吸附空分制氧装置工艺简述

(精选文档)制氧工序各岗位职责(全)

制氧厂岗位职责 一. 制氧空分工段长岗位职责 1. 工作职能范围:在厂长的领导下,负责本机组的生产经营管理及行政事务工作。 2. 工作质量与数量:每天检查所属的机械设备运转情况,及时了解生产和所要处理的任 务。抓好产品质量和设备检修质量,不断降低消耗。 3. 服从厂领导的统一安排与指挥,认真检查本机组各项规章制度标准,贯彻落实情况并及 时向厂内汇报。 4. 具备制氧空分压缩机岗位的应知内容。 5. 掌握制氧工艺全过程中各部位的调节及参数变化时对其它部位工艺参数的影响。 6. 掌握制氧工艺全过程中各个部位的工作原理,设备结构技术要求,遥控自控及其工作状 况。 7. 应会组织新安装或大、中修全套设备的验收、试车、调试工作。 8. 应能提出设备及制氧工艺中合理化建议或改进措施。 9. 应提出重大事故或故障的分析判断理论分析的正确处理方案。 10. 组织全制氧系统开、停车及紧急事故处理等工作。 11. 参与修订安全技术规程,生产技术操作规程和设备的使用维护规程。 12. 总结技术操作经验,推广使用新技术,抓好职工的技术培训工作,具备讲授技术理论与 技术操作课的能力,培训新工人。 13. 负责本工段的常规工作。 二. 制氧工班长岗位职责 1. 工作能职范围:负责本班安全生产,行政管理工作,负责落实上级交给的各项任务及制 氧班组的生产任务。 2. 工作质量与数量:按时完成生产计划和各项生产技术指标,观察调整制氧机各部位温 度、压力、阻力、液面、流量、纯度等,使设备达到最佳运行情况。 3. 工作协作关系;了解供水、供电等情况,与化验配合做好纯度分析、对使用设备进行维 护,发现问题及时联系机修检查处理。 4. 具备制氧机空分操作岗位及压缩机岗位的应知内容。 5. 掌握制氧工艺过程中各部位的工作原理,设备结构技术要求,遥控、自控及其工作状 况。 6. 掌握制氧工艺全过程中各部位的调节及参数变化对其他部位工艺参数的影响。 7. 组织制氧全系统开,停车及紧急事故的处理工作。 8. 提出制氧工艺中的合理化建议或改进措施。

制氧装置的危险性及安全要素分析

中国石油大学(华东)现代远程教育 毕业设计(论文) 题目:制氧装置的危险性及安全要素分析学习中心: 年级专业:函授08专升本安全工程 学生姓名:学号: 指导教师:职称:讲师 导师单位: 中国石油大学(华东)远程与继续教育学院 论文完成时间:2010 年9 月 3 日

摘要 制氧装置涉及氧、氮、氩等,制氧装置实际运行过程中存在的危险有害因素主要是爆炸、火灾,其次还存在中毒窒息、触电、机械伤害、高处坠落、物体打击、低温、噪音等危险有害因素。通过对制氧装置所涉及到的主要生产装置、设备、设施和物料进行分析,辨识出制氧装置的主要危险有害因素,对相关安全要素进行分析,提出应采取的安全设施和对策措施,提高制氧装置的安全管理。 关键词:制氧,危险因素,分析,安全

Abstract Oxygen device involves oxygen, nitrogen and argon, etc. During the process of the oxygen device, there are some dangerous and harmful factors, namely: explosion; fire; poisoning and asphyxia; shock; mechanical injury, falls, objects beating, low temperature, noise, etc. Through the analysis of the main device, equipment, facilities and materials related to the oxygen device, this passage identifies the main harmful factors, and then analyzes the safe factors, in order to find the best measure during the process. Thus, improve the safe management of the oxygen device. Key words: oxygen device; harmful factor; analysis; safe

图解工业制氧生产工艺

制氧站生产工艺流程 、制氧/制氮系统工艺流程及主要设备 6

、工艺流程中各步骤工作原理及用途 1、空气过滤器 空气过滤器的净气室出口与空气压缩机入口相连接,当空气压缩机启动后,内部气压低于大气压,在负压作用下,从大气中红吸入加工空气。空气经过过滤筒,灰尘灰尘会被滤网阻挡,无数小颗粒粉尘会吸附在过滤筒上,干净的空气进入空气压缩机中,所以过滤器中的滤筒需要经常吹扫。此外空气过滤器外安装有一层粗滤网,起到初步过滤的作用。 2、空气压缩机 空气压缩机是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。 空气压缩机类型为离心式空气压缩机,一个空压机车间里有两台空气压缩机,当空气压力不够的时候会启动另外一台增加压力。 ⑴EZ45-2+1空压机工作原理(简图如图1所示) 空气走向为: 牢 ----- . .过滤器一段进口增缩一段进口 -段进口烽-段进口 冷却 经过中间冷却器 冷却经过末 冷却器 乏气

减速机 叶轮部分 电动机 一段进口 止推轴承 膜片联轴器 图1 空压机结构简图 二段进口 支撑轴承、 尺、 L 膜片联轴器 二段出口 /-段出口

⑴47Y D112空压机工作原理 原理同上,不过增加了压缩空气的级数,经过四级压缩三次冷却,管口分布为: 相同颜色代表管径相同 3、空冷塔和水冷塔 工艺流程如图3所示。自空压机压缩后的高温空气②进入空冷塔压缩空气在空冷塔上升过程中,与塔上部喷入低温冷冻水⑧、中部喷入的循环冷却水①进行直接接触换热,将空气冷却后③送入分子筛。从空冷塔中出来的冷却水④返回到冷却水循环系统中。 进入水冷塔的冷却水⑤与从水冷塔底部进入的干燥空气⑥进行逆流接触,干空气吸收水分达到饱和从塔顶释放⑦,冷却水温度降低形成冷冻水⑧,该冷冻水由泵打入空冷塔上部对空气进行冷却。

相关主题
文本预览
相关文档 最新文档