当前位置:文档之家› 基于ANSYS的轮对过盈配合微动分析

基于ANSYS的轮对过盈配合微动分析

基于ANSYS的轮对过盈配合微动分析
基于ANSYS的轮对过盈配合微动分析

第47卷第5期2011年3月

机械工程学报

JOURNAL OF MECHANICAL ENGINEERING

Vol.47 No.5

Mar. 2011

DOI:10.3901/JME.2011.05.121

基于ANSYS的轮对过盈配合微动分析*

曾飞1, 2陈光雄1周仲荣1

(1. 西南交通大学摩擦学研究所成都 610031;

2. 中国工程物理研究院总体工程研究所绵阳 621000)

摘要:铁道机车车辆在运行过程中,轮对过盈配合面边缘由于微动产生微动损伤。微动幅值是影响轮对过盈配合面微动运动特性的重要因素之一,由于难以用仪器进行测量,利用通用有限元软件ANSYS对RD2轮对过盈配合面在210 kN轴重载荷作用下的微动情况进行了模拟分析。以轮对受轴重载荷静止于轨道上的弯曲变形情况来表征其运行过程中某一时刻的弯曲变形情况,通过计算,获得轮对过盈配合面内、外侧区域的轮座与轮毂某接触节点副的相对滑动规律和应力分布。结果表明,在轮对转动过程中,轮座与轮毂配合面内、外侧接触区内的节点副相对运动模式为变方向、变应力的复合微动。在210 kN 轴重载荷作用下,轮对过盈配合面间所计算节点副的最大轴向相对位移为32 μm,最大切向相对位移为2.6 μm。

关键词:铁路轮对过盈配合复合微动有限元

中图分类号:TH117

Fretting Analysis of Interference Fitting of Wheel-set Based on ANSYS

ZENG Fei1, 2 CHEN Guangxiong1 ZHOU Zhongrong 1

(1.Tribology Research Institute, Southwest Jiaotong University, Chengdu 610031;

2. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621000)

Abstract:During wheel-set of railway vehicle rolling, the edges of the interference fitting surfaces between wheel seat and wheel hub are worn due to fretting. Fretting amplitudes between wheel and axle are difficult to be measured, which is one of the important factors influencing fretting characteristics. The fretting of the interference fitting of RD2 wheel-set under a load of 210 kN is simulated and analyzed by using ANSYS. The bending deformation of the wheel-set at a moment during its rolling is characterized by that of the wheel-set under a load of 210 kN which is statically on railway. The relative sliding mode and stress distribution of a certain contact node pair on the interference fitting surfaces between the wheel seat and wheel hub are obtained. The result shows that during the wheel-set rolling the contact node pair is subjected to a composite fretting consisting of reciprocating sliding and varying stress. Under an applied load of 210 kN, the maximum relative displacement in the axial direction of the contact node pair is about 32 μm and the maximum relative displacement in the circumferential direction is about 2.6 μm.

Key words:Railway wheel-set Interference fitting Composite fretting Finite element

0 前言

微动是两个接触面之间极小幅度(通常为微米量级)的周期性运动[1]。在铁道机车车辆的运行过程中,车轴受到弯曲交变载荷的作用,由于轮座与轮毂结构之间的刚性不同,轮对过盈配合面边缘存在不同程度的相互微滑,即为微动。

?国家自然科学基金(50821063)和国家重点基础研究发展计划(973计划,2007CB714700)资助项目。20100210收到初稿,20101222收到修改稿

黄梦妮等[2]为了观察轮座边缘的微动损伤情况,并避免因为退轮给轮座带来二次损伤,采用了原位剖切的方法,将一个使用了20年但未经过退轮维修的轮对轴向剖开,观察到轮座与轮毂配合面边缘约20 mm的范围为微动区,其表面分布有许多磨坑,且堆积了大量的磨屑及油垢,同时还观察到早期疲劳裂纹。由此可见,微动使轮对配合表面产生磨损、腐蚀,并萌生疲劳裂纹[3],随着机车车辆的运行,疲劳裂纹发生扩展,最终导致车轴断裂[4]。

轮对的微动现象十分复杂,它受轮对过盈配

机械工程学报第47卷第5期122

合表面间相对滑移幅值、轴应力、接触载荷、几何形状、切向力、摩擦因数等诸多因素的影响[5],而在这些因素中,滑移幅值是影响微动运动特性的重要因素之一[6]。

张进德等[7]测量出RD2型车轴的轮毂边缘与轮座的相对滑移幅度为27~63 μm,但是轮对过盈配合面微动区中部的相对滑移幅值却难以用仪器来测量。因此,本文利用有限元软件ANSYS对轮座与轮毂过盈配合面上内、外侧微动区内某节点副的相对位移和应力进行计算[8],获得了该节点副的相对滑移幅值和应力变化规律。

1 计算过程

1.1实体建模

选取RD2型车轴为研究对象,根据铁道部相关标准尺寸进行建模。车轴长2 146 mm,轮座直径D1=194 mm。轮座与轮毂配合过盈量为轮座直径的0.08%~0.15%(0.155~0.291 mm),计算选取过盈量为0.2 mm,因此轮毂内径D2=193.6 mm。由于轮对的对称性,取1/4轮对建立模型。

1.2 划分网格

选取单元类型为实体单元SOLID185,为了简化计算,将车轴与轮毂设定为相同的结构钢材料,其弹性模量E x=206 GPa,泊松比μ=0.3。对1/4的轮毂与轮座进行网格划分,同时将轮座部位网格进行细化,共划分网格数为11 732个,见图1。

图1 1/4轮对网格图

1.3 加载与求解

对轮对运行过程中轮座与轮毂配合面间的微动情况进行模拟,为了简化计算,以轮对在实际工况下静止于轨道上时的应力与变形情况来表征轮对运行过程中某一时刻的应力与变形情况。

计算进行两个载荷步,第一步计算轮座与轮毂装配好后,无其他约束与载荷的情况下,过盈配合面之间的应力;第二步对车轮与轨道的接触点施加约束,同时对车轴轴颈施加轴重载荷,计算轮座与轮毂之间的应力及变形情况。

1.3.1载荷步一

利用ANSYS的接触向导设置轮座与轮毂的配合面,设定二者间的摩擦因数为0.2,进行大变形非线性计算,计算出轮对过盈配合等效应力如图2,轮座与轮毂配合表面轴向等效应力分布如图3。可以看出,轮毂内表面的等效应力大于轮座表面,最大值约为329 MPa;轮毂内表面两边缘应力大于中部应力,存在应力集中的现象;轮座表面两边缘应力小于中部应力。

图2 轮对过盈配合等效应力云图

图3 轮座与轮毂配合表面轴向等效应力分布

1.3.2载荷步二

(1) 受力分析。以轮对轴颈受轴重载荷,静止在轨道上时的状态来施加约束与载荷。对车轮与轨道接触处节点施加x、y、z方向的约束,在轴颈与轴承配合的上表面中心节点施加指向地面的力52 500 N,以模拟210 kN轴重,计算后等效应力云图见图4。由图4知,最大应力发生在轮毂内孔表面下侧外边缘处,应力值约为375 MPa,轮座下表面的应力小于上表面的应力。

2011年3月曾飞等:基于ANSYS的轮对过盈配合微动分析

123

图4 轮对等效应力分布图

(2)微动分析。从轮对的变形中可以分析出轮座与轮毂配合表面的微动情况。通过计算后的变形显示,轮对在轴重载荷F的作用下,车轴中部向上弯曲,车轮绕与轨道的接触点各向两侧转过了一个微小的角度,见图5(为了便于叙述,定义轮座轴颈一侧为外侧,另一侧为内侧)。由图5中可以看出,车轴以轮座与轮毂的配合部位为支点产生了弯曲,轮座表面因此而变形,轮毂内孔表面随轮座的变形而变形,但变形程度较轮座小。在轮对的反复循环滚动中,轮座与轮毂之间的配合单元产生了持续的变形差与错位,这即是产生微动的主要原因。

图5 实际工况下轮对弯曲变形示意图

以车轴轴线上某点为坐标原点,如图6a建立坐标系,曲线ab表示轴线在Oxz平面内的弯曲变形。如图6b所示等角度均匀选取轮座表面上距内侧边缘约10 mm的半圆周上的17个节点,分别命为节点Z1~Z7,与该17个节点相配合的轮毂内表面的节点分别为节点G1~G17,其中,节点Z1在轮座顶部,节点Z17在轮座底部。

图7列出了节点Z1~ Z17分别相对于节点G1~G17沿轴向及圆周切向的相对位移,由图7可见,轮座节点相对于与其配合的轮毂节点的轴向位移为负,表示轮座表面节点向–z方向做相对运动;轴向相对位移在顶部最大,约22 μm,到底部逐渐减小;在1~17个节点副中,仅有第1个和第17个节点副的相对切向位移为0,它们分别位于轮座的顶部及底部,其余节点副均存在不同幅度的切向相对位移,且均偏向Oyz平面。由此说明,在轮座与轮毂的微

图6 轮座节点选择示意图

图7 轮对内侧节点副相对位移

滑区内,除了顶部与底部的节点沿轴线方向相互微滑,其余节点的相互滑移方向均与轴线有很小的夹角;轮对在单纯的过盈配合状态下,轮座表面没有产生弯曲变形,且各节点受对称的正压力作用,没有发生切向位移。由于轴重载荷的作用,轮座表面的弯曲变形使节点产生切向位移,且各节点受到的压力不再跟轮座表面垂直,各节点在切向分力的作用下也产生切向位移,这两种切向位移方向相反。因此,轮座表面节点的切向位移是轮座表面弯曲变形与轮座表面受到的切向力综合作用的结果。根据图7中切向位移的方向,可以推断出,轮座上半部(x轴正向)节点产生的切向位移由弯曲变形起主导作用,下半部节点产生的切向位移由切向力起主导

机械工程学报第47卷第5期124

作用。

由于轮对的循环滚动,Z1~Z17分别相对于节点G1~G17的相对位移可看作是节点Z1与节点G1旋转到各节点位置时的相对位移。轮对相对Oxz平面对称,将所选取的1~17节点副相对Oxz平面进行镜像,即可得整圆周上节点副的相对位移。因此,图7说明了在轮对运行一周的过程中,轮对过盈配合表面内侧节点副同时存在轴向及切向相对位移,且位移幅值时时在变化。

节点Z1~Z17各点的等效应力见图8。由图8所示,在轮对运行过程中,各节点应力均在变化,其中,节点旋转到轮座底部时应力最小(约65 MPa),节点旋转到接近轮座顶部时应力最大(约98 MPa) 到顶部时略有减小,因为此时轮座表面弯曲变形最大,使得轮座与轮毂局部过盈量减小,从而应力减小。

图8 轮座表面内侧半圆周上各节点等效应力

轮座表面外侧微滑区节点副的相对位移与内侧略有不同,在图6的坐标系中选取轮座表面上距外侧边缘约10 mm的半圆周上的17个节点(同样命名为节点Z1~Z17,选取方法同内侧节点),依照上述内侧节点的分析方法,外侧节点副的相对位移如图9。

图9 轮对外侧节点副相对位移

由图9可见,轮对过盈配合面外侧节点副的相对位移与内侧节点副相似,均存在轴向相对位移。轴向相对位移为正,说明轮座表面节点做z向相对运动,轴向相对位移在顶部最大(约32 μm),从顶部至底部逐渐减小;除了轮座顶部及底部的节点副切向相对位移为0外,其余节点副均存在不同程度的切向位移,与内侧节点副不同的是,外侧节点副切向相对位移均偏向–x方向。外侧节点副最大相对位移大于内侧节点副,说明轮座表面外侧端的变形大于内侧端。

节点Z1~Z17的等效应力如图10。图10表明轮座表面外侧节点与内侧节点的应力分布具有相同规律,即在轮对运行过程中,各节点应力均在变化,其中,节点旋转到轮座底部时应力最小(约51 MPa),旋转到接近轮座顶部时应力最大(约79 MPa),到顶部时略有减小。

图10 轮座表面外侧半圆周上各节点等效应力

国内外学者研究微动时,通常将微动形式按球/平面接触方式简化为4种基本运动模式,即切向微动、径向微动、滚动微动和扭动微动[9],根据上述轮对过盈配合面内、外侧微滑区节点副的相对微动位移轨迹可知,轮对过盈配合面的微动模式为变方向、变应力的轴向和切向复合微动[10]。

2 结论

(1) 在本例计算中,轮对微动时最大相对位移发生在过盈配合表面外侧的顶部(节点Z1点处),约32 μm,此处切向位移为0,等效应力约78 MPa;切向最大相对位移发生在轮对过盈配合表面外侧的中下部(节点Z10点处),约2.6 μm,此处轴向位移约19 μm,等效应力约57 MPa。

(2) 在机车车辆运行过程中,轮座外侧表面的弯曲变形幅度大于内侧表面。

(3) 轮座与轮毂配合面微滑区节点副的微动模式为变幅值、变方向特征的轴向和切向复合微动。

2011年3月曾飞等:基于ANSYS的轮对过盈配合微动分析125

参考文献

[1]WATERHOUSE R B. Fretting corrosion[M]. Oxford:

Pergamon Press,1972.

[2]黄梦妮,曾飞,周仲荣. 轮轴过盈配合面损伤分析及对

策[J]. 铁道机车车辆,2010,30(3):20-25.

HUANG Mengni,ZENG Fei,ZHOU Zhongrong.

Analysis and countermeasure of fretting damage on wheel/axle interface[J]. Railway Locomotive,2010,30(3):20-25.

[3]赵锁忠,王大智. 车轴的微动摩蚀与对策[J]. 铁道车

辆,1995,33(7):10-13.

ZHAO Suozhong,WANG Dazhi. The fretting corrosion of axle and counter measures[J]. Rolling Stock,1995,33(7):10-13.

[4]罗玉胜,李俊发. 轮对加工组装对防止车轴早期断裂失

效的重要性[J]. 铁道车辆,2001,39(5):27-29.

LUO Yusheng,LI Junfa. Importance of wheel-set processing and assembling in preventing axles from early-stage fracture failure[J]. Rolling Stock,2001,39(5):27-29.

[5]DOBROMIRSKI J M. Variables of fretting process:Are

there 50 of them?[C]// Standardization of Fretting Tests Methods and Equipment,1992,USA,Philadelphia. 1992:60-66.

[6]周仲荣. 关于微动磨损与微动疲劳的研究[J]. 中国机

械工程,2000,11(10):1146-1150.

ZHOU Zhongrong. On fretting wear and fretting fatigue[J]. China Mechanical Engineering,2000,11(10):

1146-1150.

[7]张进德,曹志礼. RD2型实物车轴疲劳实验报告[J]. 铁

道车辆,1987(5):1-9, 50.

ZHANG Jinde,CAO Zhili. The fatigue test report of real

RD2 axles[J]. Rolling Stock,1987 (5):1-9, 50.

[8]FREDERIC L,AURELIAN V,BERNARD S. Finite

element analysis and contact modelling considerations of

interference fits for fretting fatigue strength calculations[J]. Simulation Modeling Practice & Theory,

2009,17(10):1587-1602.

[9]周仲荣,罗唯力,刘家浚. 微动摩擦学的发展现状与趋

势[J]. 摩擦学学报,1997,17(3):272-280.

ZHOU Zhongrong,LUO Weili,LIU Jiajun. Recent

development in fretting research[J]. Tribology,1997,

17(3):272-280.

[10]周仲荣,朱旻昊. 复合微动磨损[M]. 上海:上海交通

大学出版社,2004.

ZHOU Zhongrong,ZHU Minhao. Composite fretting

wear[D]. Shanghai:Shanghai Jiao Tong University Press,

2004.

作者简介:曾飞,男,1978年出生,博士研究生。主要研究方向为微动

磨损。

E-mail:zengfei78@https://www.doczj.com/doc/0a18902386.html,

ansys经典例题步骤

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

[整理]《ANSYS120宝典》习题.

第1章 习题 1.ANSYS软件程序包括几大功能模块?分别有什么作用? 2.如何启动和退出ANSYS程序? 3.ANSYS程序有哪几种文件类型? 4.ANSYS结构有限元分析的基本过程是什么? 5.两杆平面桁架尺寸及角度如习题图1.1所示,杆件材料的弹性模量为2.1×1011Pa,泊松 比为0.3,截面面积为10cm2,所受集中力载荷F=1000N。试采用二维杆单元LINK1计算集中力位置节点的位移和约束节点的约束反力。 习题图1.1 两杆平面桁架 第2章 习题 1.建立有限元模型有几种方法? 2.ANSYS程序提供了哪几种坐标系供用户选择? 3.ANSYS程序中如何平移和旋转工作平面? 4.试分别采用自底向上的建模方法和自顶向下的建模方法建立如习题图2.1所示的平面图 形,其中没有尺寸标注的图形读者可自行假定,并试着采用布尔运算的拉伸操作将平面图形沿法向拉伸为立体图形。

习题图2.1 平面图形 5.试分别利用布尔运算建立如习题图2.2所示的立体图形,其中没有尺寸标注的图形读者 可自行假定。 习题图2.2 立体图形 6.试对习题图2.3所示的图形进行映射网格划分,并任意控制其网格尺寸,图形尺寸读者 可自行假定。 习题图2.3 映射网格划分

第3章 习题 1.试阐述ANSYS载荷类型及其加载方式。 2.试阐述ANSYS主要求解器类型及其适用范围。 3.如何进行多载荷步的创建,并进行求解? 4.试建立如习题图3.1所示的矩形梁,并按照图形所示施加约束和载荷,矩形梁尺寸及载 荷位置大小读者可自行假定。 习题图3.1 矩形梁约束与载荷 5.试建立如习题图3.2所示的平面图形,并按照图形所示施加约束和载荷,平面图形的尺 寸及载荷大小读者可自行假定。 习题图3.2 平面图形约束与载荷 第4章 习题

ANSYS新手入门学习心得

(1) 如果你模拟结构体中裂缝扩展过程的模拟,在Ansys中可以用全解耦损伤分析方法来近似模拟裂缝扩展,我曾用Ansys软件中提供的可以定义10,000个材料参数和单元ekill/alive 功能完成了层状路面体中表面裂缝和反射裂缝在变温作用下的扩展过程的模拟。我模拟的过程相对来说比较简单,模拟过程中我们首先要知道裂缝的可能扩展方向,这样在裂缝可能扩展的带内进行网格加密处理,加密到什么程度依据计算的问题来确定。 (2) 如果采用断裂力学理论计算含裂缝结构体的应力强度因子,建模时只需在裂尖通过命令kscon生成奇异单元即可。Ansys模块中存在的断裂力学模块可以计算I、II、III型应力强度因子(线弹性断裂力学)和J积分(弹塑性断裂力学),在Ansys中verification里面有一个计算I型应力强度因子的例子vm143,参见该例子就可以了。 (3) 如果通过断裂力学模拟裂缝的扩展过程,需要采用动态网格划分,这方面我没有做,通过Ansys的宏命令流应该可以实现。技术参考可参阅文献:杨庆生、杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4). (4) 我现在做动荷载作用下路面结构体中应力强度因子的分布规律,我是通过位移插值得到不同时间点处的应力强度因子。如果想这样做,可参阅理论参考中关于应力强度因子计算说明。 1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中;

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模

ANSYS框架结构分析

有限元分析大作业报告 一、结构形式及参数 1、结构基本参数 某框架结构如下图所示,为两榀、三跨七层框架。结构由梁板柱组成,梁板柱之间刚结。材料为C35混凝土,弹性模量为3.15e10N/m2,泊松比取0.25,质量密度为2500kg/m3,梁截面为300mm×700 mm,柱截面为500mm×500mm,楼板厚度为120mm。梁和柱采用beam44 单元,板采用shell 63单元。单位采用国际单位制。 二、静力分析及结果 1、荷载详情 荷载包括自重荷载,采用命令acel,0,0,9.8施加;以及垂直板面向下的均布恒荷载0.35 kN/m2和活荷载0.15 kN/m,两者合并后采用命令*do,mm,204,245,1 sfe,mm,2,pres,,500,500,500,500 *end do施加。 2、结构变形:最大变形发生在91号节点,数值为1.573mm,方向竖直向下(-Z方向)。

3、位移云图 4、等效应力云图:最大等效应力发生在78号节点,数值为175064Pa。

5、支座反力(保留两位小数,单位如表中所示) 节点编码FX(kN) FY(kN) FZ(kN) MX(kN﹒m) MY(kN﹒m) MZ(kN﹒m) 1 -3.87 5.33 514.15 -5.19 -3.74 0.00 2 -6.36 0.09 774.5 3 -0.12 -6.13 0.00 3 -6.36 -0.09 774.53 0.12 -6.13 0.00 4 -3.87 -5.33 514.1 5 5.19 -3.74 0.00 5 0.00 8.2 6 693.8 7 -8.00 0.00 0.00 6 0.00 0.06 107.28 -0.08 0.00 0.00 7 0.00 -0.06 107.28 0.08 0.00 0.00 8 0.00 -8.26 693.87 8.00 0.00 0.00 9 3.87 5.33 514.15 -5.19 3.74 0.00 10 6.36 0.09 774.53 -0.12 6.13 0.00 11 6.36 -0.09 774.53 0.12 6.13 0.00 12 3.87 -5.33 514.15 5.19 3.74 0.00 三、模态分析结果 1、各阶振型频率及类型 振型阶次自振频率(Hz)振动形式 1 1.838 2 弯曲振型 2 1.8627 弯曲振型 3 2.2773 扭转振型 4 5.6636 弯曲振型 5 5.7097 弯曲振型

ANSYS学习心得

一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一

定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后

用ANSYS进行桥梁结构分析

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

ansys心得

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度 5. 近来我对混凝土单元进行了一点思考,有一些想法,贴在下面,共同探讨: 1)分析混凝土结构,选择合理的材料特性是建立模型的关键,所以有必要弄清混凝土的材料特性。混凝土是脆性材料,并具有不同的拉伸和压缩特性。典型混凝土的抗拉强度只有抗压强度的8%-15%。 在ANSYS中,对于混凝土单元,材料特性ANSYS要求输入以下数据(为了清楚起见,我将几个系数均译为了中文):弹性模量、泊松比、张开与闭合滑移面的剪切强度缩减系数、抗拉与抗压强度、极限双轴抗压强度、周围静水应力状态、静水应力状态下单轴与双轴压缩的

ANSYS谐响应分析命令流

/FILNAME, Beam,1 !定义工作文件名。 /TITLE, Beam Analysis !定义工作标题。/PREP7 !定义单元。 ET,1,BEAM188 !定义材料属性。 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.1e5 MPDATA,PRXY,1,,0.3 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,7.9e-6 ! 定义杆件截面■200。 SECTYPE, 1, BEAM, RECT, , 0 SECOFFSET, CENT SECDATA,10,10,0,0,0,0,0,0,0,0 !建立几何模型。 K,1, ,, , K,2,350,, , !生成立柱。 LSTR, 1, 2 !以上完成几何模型。 !以下进行网格划分。 FLST,5,1,4,ORDE,1 FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义单元大小。!分配、划分平板结构。 LMESH, 1 !分析类型施加载荷并求解。 ANTYPE,2 !定义分析类型及求解设置。MSAVE,0 !模态提取方法。MODOPT,LANB,40 EQSLV,SPAR

MXPAND,40, , ,0 !模态扩展设置。 LUMPM,0 PSTRES,0 MODOPT,LANB,40,0,0, ,OFF !施加约束。 FLST,2,2,3,ORDE,2 FITEM,2,1 FITEM,2,-2 /GO DK,P51X, , , ,0,ALL, , , , , , !求解。 FINISH /SOL /STA TUS,SOLU SOLVE !以下进入谐响应分析模式。 *AFUN,DEG !指定角度单位为度。FLST,2,1,1,ORDE,1 FITEM,2,81 /GO FINISH /SOL !重新进入ANSYS求解器。ANTYPE,3 !分析类型为谐响应分析。HROPT,FULL !求解方法为FULL法。HROUT,ON LUMPM,0 EQSLV,FRONT,0, PSTRES,1 !包含了预应力。 !施加载荷。 FLST,2,1,1,ORDE,1 FITEM,2,24 /GO F,P51X,FY,-400*cos(30),-400*sin(30) FLST,2,1,1,ORDE,1 FITEM,2,36 /GO F,P51X,FY,300*cos(5),300*sin(5)

ANSYS工程分析 基础与观念Chapter04

第4章 ANSYS结构分析的基本观念Basic Concepts for ANSYS Structural Analysis 这一章要介绍关于ANSYS结构分析的基本观念,熟悉这些基本观念有助于让你很快地区分你的工程问题的类别,然后依此选择适当的ANSYS分析工具。在第1节中我们会对分析领域(analysis fields)做一个介绍,如结构分析、热传分析等。第2节则对分析类别(analysis types)作一介绍,如静力分析、模态分析、或是瞬时分析等。第3节解释何谓线性分析,何谓非线性分析。第4节要对结构材料模式(material models)作一个讨论并作有系统的分类。第5节讨论结构材料破坏准则。第6、7节分别举两个实例,一个是结构动力分析,一个是非线性分析来总合前面的讨论。这两个例子再加上第3章介绍过的静力分析例子,这三个例子可以说是用来做为正式介绍ANSYS命令(第5、6、7章)之前的准备工作。最后(第8节)我们以两个简单的练习题做本章的结束。

第4.1节学科领域与元素类型 Disciplines and Element Types 4.1.1 学科领域(Disciplines) 我们之前提过,ANSYS提供了五大学科领域的分析能力:结傋分析、热传分析、流场分析、电场分析、磁场分析(电场分析及磁场分析可统称为电磁场分析),此外ANSYS也提供了偶合场分析(coupled-field analysis)的能力。为了能分析横跨多学科领域的偶合场,ANSYS提供了一些偶合场元素(coupled-field elements),但是这些元素还是无法涵盖所有偶合的可能性(举例来说,ANSYS 并没有流场与结构的偶合场元素)。但是在ANSYS的操作环境下,再加上利用APDL [Ref. 20],理论上可以进行各种偶合场分析(但是计算时间及收敛性常是问题所在)。下一小节将举几个例子来解说偶合场分析的含义,更详细的偶合场分析步骤你必须参阅Ref. 15。 4.1.2 偶合场分析 以下我们举三个例子来说明何谓偶合场分析。 第一个例子是热应力的计算,这是最常会遇到的问题之一。当你进行热应力分析时,通常分成两个阶段:先做热传分析解出温度分布后,再以温度分布作为结构负载来进行结构分析,而解出应力值。在第一个阶段,热边界条件(thermal boundary conditions)是热传分析的负载,我们希望知道在此热边界条件之下,温度是怎么分布的。因为不均匀的温度分布会造成结构的翘曲变形,所以第二个阶段是希望知道在这些温度分布下结构的变形及应力。这是一个很典型的偶合场分析问题,因为结构怎么变形是依温度怎么分布而定,而温度如何分布则与结构如何变形(变形量很大时,几何形状会改变)有关,这种相依的关系就称为偶合(coupling)。严格来说,前述的分析程序(先做热传分析再做结构分析)观念上不是很正确的,较正确的做法应该是热传与结构分析必须同时进行,也就是说温

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

ANSYS分析报告分析

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 2016年 1 月 2 日

简支梁的静力分析 一、问题提出 长3m的工字型梁两端铰接中间1.5m位置处受到6KN的载荷作用,材料弹性模量E=200e9,泊松比0.28,密度7850kg/㎡ 二、建立模型 1.定义单元类型 依次单击Main Menu→Preprocessor→Elementtype→Add/Edit/Delete,出现对话框如图,单击“Add”,出现一个“Library of Element Type”对话框,在“Library of Element Type”左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择3 node 189,单击“OK”。

2设置材料属性 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Linear→Elastic→Isotropic”,出现对话框,输入弹性模量EX=2E+011,PRXY=0.28,单击“OK”。 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Density”弹出对话框,输入DENS为7850 3.创建几何模型 1)设定梁的截面尺寸

利用ANSYS谐响应分析结果导入LMS-Virtual-lab中进行声学分析步骤

1.前期用ANSYS对模型进行动力学分析,然后保存结果文件.rst格式的,然后导入到Vritual lab12中进行声学分析,可能步骤有些长,大家尽量慢慢看,如果有不明白的,或者我的步骤有错误的,大家可以指正,还有我的VL版本是12的,12的版本和以前的微有不同,在后边大家会发现的。我的Q1728993717. 2.进入声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 3.导入Ansys分析结果文件.rst格式:文件—Import—默认即可,看好单位,与模型统一; 4.更改文件名称,便于后续操作:在特征树中点开Nodes and Elements—右键点其子选项 (就是带有齿轮标志那个)—属性—特征属性—更改名称—StructuresMesh. 5.提取声学面网格:开始—Structures—Cavity Meshing—插入—Pre/Acoustics Meshers— Pre/Acoustics Meshers—Skin Meshers,出现一下图框, 在Grid to Skin 区域选择结构网格即:StructuresMesh,其余都默认不用改,之后点击应用,Close。 6.在次回到声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 7.命名声学网格:点开特征树中的Nodes and Elements—右键Skin Meshpar1.—属性—特征 属性—改名称—AcousticsMesh;到这步之后为了方便起见,可以将结构网格StructuresMesh隐藏:右键StructuresMesh—Hide/Show; 8.设定分析类型:工具—Edit the Model Type Definitions—点击“是”出现对话框如下:

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

ansys数据处理总结

!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!! !!!!!~~~~~~~~~ansys数据处理的相关命令流~~~~~~~~~~~!!!!! !(1)数据输入的相关命令 !利用*TREAD命令读取数据文件并填充TABLE表格 *TREAD, Par, Fname, Ext, --, NSKIP !以下利用*TREAD命令读取1维数据表格 !tdata.txt文本文件含有如下内容 STRAIN STRESS 00 0.0025 0.0046 0.0067 *DIM,Ttxy,table,4,1,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取2维数据表格 !要特别注意2维数据的行数 !tdata.txt文本文件含有如下内容 TIME X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 !希望输入地震波激励,X、Y、Z三个方向 *DIM,Ttxy,table,3,3,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取3维数据表格 !tdata.txt文本文件含有如下内容 TEMP X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 5000 0.030.20.30.4 0.050.40.60.8 0.070.60.90.9 !希望读取不同温度下,不同时刻的泊松比 *DIM,Ttxy,table,3,3,2,TIME,NUXP,TEMP *TREAD,Ttxy,tdata,txt,,1 !利用*SREAD命令读取字符文件 *SREAD, StrArray, Fname, Ext, --, nChar, nSkip, nRead 页: 1

学习ansys的一些心得

学习ansys的一些心得 学习ansys的一些心得(送给初学者和没有盟币的兄弟) 1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot 2 标点的输入是在英文状态下,―,‖。 3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps 4 还不会环形阵列。 5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。 6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。 7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。 8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。 9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。 10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines. 11 Ansys中没有Undo命令.需及时保存数据库文件. Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界. 13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.

14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。 15 Ansys的模态分析是线型分析。任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。 16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain) 17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:7800 18 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options. 19 弹簧阻尼器单元:Combination-Spring damper 14. 20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。接触问题有两个基本类型:刚体-柔体的接触,柔体-柔体的接触(许多金属成型的接触问题)。在刚体-柔体的接触问题中,有的接触面与它接触的变形体相比,有较大的刚度而被当做刚体。而柔体-柔体的接触,是一种更普遍的类型,此时两个接触体具有近似的刚度,都为变形体。 21 1 点-点接触:过盈装配问题是用点点接触单元模拟面面接触的典型例子。 2 点-面接触:不必预先知道准确的接触位置,接触面之间也不需要保持一致的网格,并且允许有较大的变形和相对滑动。典型实例:模拟插头插入插座里。 3 面-面接触:刚性面作为目标面,柔性面作为接触面。 22 打开自动时间步长:Solution>Load Step Opts>Time Frequenc>Time And Substps.

ansys谐响应分析

问题描述 本实例是对如下图所示的有预应力的吉他弦进行谐响应分析。形状均匀的吉他弦直径为d ,长为l 。在施加上拉伸力F1后紧绷在两个刚性支点间,用于调出C 音阶的E 音符。在弦的四分之一长度处以力F2弹击此弦,要求计算弦的一阶固有频率f1,并验证仅当弹击力的频率为弦的奇数阶固有频率时才会产生谐响应。 几何尺寸:l =710mm c =165mm d =0.254mm 材料特性:杨氏模量EX =1.9E5 Mpa ,泊松比PRXY =0.3,密度DENS =7.92E-9Tn/mm 3 。 载荷为:F1=84N F2=1N 取弹击力的频率范围为从0到2000Hz ,并求解频率间隔为2000/8=250Hz 的所有解,以便观察在弦的前几阶固有频率处的响应,并用POST26时间-历程后处理器绘制出位移响应与频率的关系曲线。 一.选取菜单路径Utility Menu | File | Change Jobname ,将弹出Change Jobname (修改文件名)对话框,如图13.2所示。在Enter new jobname (输入新文件名)文本框中输入文字“CH13”,然后单击对话框中的ok 按钮,完成对本实例数据库文件名的修改。 选取菜单路径Main Menu | Preference ,将弹出Preference of GUI Filtering (菜单过滤参数选择)对话框,单击Structural(结构)选项使之被选中,以将菜单设置为与结构分析相关的选项。单击按钮,完成分析范畴的指定。 二.定义单元类型 1.选取菜单路径Main Menu | Preprocessor | Element Type | Add/Edit/Delete ,将弹出Element Types (单元类型定义)对话框。单击对话框中的按钮,将会弹出Library of Element Types (单元类型库)对话框 2.在图13.4所示的对话框左边的滚动框中单击“Structural Link ”,选择结构连接单元类型。接着在右边的滚动框中单击“2D Spar 1”,使其高亮度显示,选择2维弹性单元。单击对话框中的按钮,关闭单元类型库(Library of Element Types)对话框。 3.在Element Types (单元类型定义)对话框中的已定义单元类型列表框中将会列出定义的单元类型为:“Type 1 LINK1”。单击对话框中的按钮,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 三.定义材料性能和实常数 选取菜单路径Main Menu | Preprocessor | Material Props | Material Models ,2.依次双击Structural , Linear ,Elastic 和Isotropic ,将弹出1号材料的弹性模量EX 和泊松比PRXY 的定义对话框。在EX 文本框中输入1.9E5,PRXY 文本框中输入0.3。定义材料的弹性模量为1.9E5Mpa ,泊松比为0.3。单击对话框中的ok 按钮,关闭对话框。接着双击Density , 在DENS 文本框中输入7.92E-9,设定1号材料密度为7.92E-9Tn/mm 3 。单击ok 按钮,完成

相关主题
相关文档 最新文档