当前位置:文档之家› Anylogic建模实例

Anylogic建模实例

Anylogic建模实例
Anylogic建模实例

Call Center

到达联络中心需要处理的有两种。的达到服从一个泊松分布,分布的到达率分别为ArrivalRate1和ArrivalRate2。对于每种都有一个队列,而且有些来电在经过一段服从指数分布的时间后会被放弃而离开队列,指数分布的期望分别是AbandonmentTime1和AbandonmentTime2。

有两个代理组,第一个组被培训处理第一种,服务时间的期望是ServiceTime1;第二个组被培训来处理第二种,服务时间的期望是ServiceTime2。然而,这些代理也要被交叉培训以便第一组的成员也能处理第二种,服务时间的期望是ServiceTime12,第二组的成员也可以处理第一种,服务时间的期望是ServiceTime21。理所应当,交叉培训的代理在他们不擅长的岗位的绩效是相对较低的。

安排的逻辑是可以多种多样的。在本模型中,当一个正在被处理时,如果有空闲的代理,它就被安排到相对应的代理上,否则就安排的旁边组的代理上,重复这个过程如果后者是空闲的。

本模型的输出标准是两种的队长和服务水平。服务水平的概念指的是在20

秒之处理完毕的来电所占的比例。

第一步:创建新模型(同模型一)

第二步:建立流程逻辑模型

1.点击General,拖入12个Parameter,分别命名为ArrivalRate1、

AbandonmentTime1、ServiceTime1、ServiceTime12、NAgents1、

allowRouting12、ArrivalRate2、AbandonmentTime2、ServiceTime2、

ServiceTime21、NAgents2和ServiceTimeDeviation。其中NAgents1和

NAgents2在Type处选择int型,分别代表处理两种代理人数,

allowRouting12在Type选择boolean型,用来判断第一种能否被第二种

代理处理,其他则选择double型,代表服务时间,到达率等。该12个

Parameter的default value分别为1、100、100、200、100、true、1、

100、100、200、100、150。

2.点击General,拖入7个Plain Variable,分别命名为nOK1、nLate1、

nAbandoned1、nAbandoned2、nLate2、nOK2、nRouted12,并全部选择int 类型。

3.点击Enterprise Library,拖入两个Source,分别命名为source1和

source2,代表两种的到达,如下图所示:

4.再从Enterprise Library中拖入两个Queue,分别命名为queue1和

queue2,之后利用Presentation中的Polyline和Rounded Rectangle 画出如下图的图形:

5.从Enterprise Library中拖入两个Enter,分别命名为enter1和enter2,

再拖入两个Service,分别命名为service1和service2,之后拖入两个

ResourcePool,分别命名为agents1和agents2,最后再在Enterprise

Library中拖入一个Sink,并将其一一连接起来,如下图:

第三步:设置流程逻辑模型参数

1.创建Java Class(步骤如Billing Department)。命名为Bill,其具体

的代码如下:

2.点击General,从中拖入三个Function,分别命名为setCallParameters、

callAnswered、serviceTime,分别用来设置不同call的参数、统计在

20秒处理完毕的数量、设置的服务时间。

其中setCallParameters在Return type里面选择void,Function

argument中写入两个参数:Call类型的call和int类型的type。Code

里面写入:

callAnswered的Return type选择void,Function arguments写入Call 类型的call。在Code里面写入:

serviceTime的Return type选择double,Function argument选择Call 类型的call,int类型的agentType,Code中写入:

3.点击source1,在Entity class处写Call,Arrivals defined by选择

Rate,Arrival rate填写ArrivalRate1,Entities per arrival填写1,New entity填写new Call(),On exit填写setCallParameters( entity,

1 ); 在source2处在以上各处分别填写ArrivalRate2、1、new Call()、

setCallParameters( entity, 2 )。

5.点击service1,在Entity class出填写Call,Resource quantity填写

1,Delay time写serviceTime( entity, 1 ),ResourcePool object 为null,On enter delay填写callAnswered( entity );,On exit填写routingLogic();,Queue capacity为100。点击agents1,Resource units are选择Individual objects,Capacity defined选择Directly,Capacity填写NAgents1。service2与service1设置基本相同,在上述各处分别填写Call、1、serviceTime( entity, 2 )、null、

callAnswered( entity );、routingLogic();、100。agents2与agents1设置基本相同,各处分别为Individual objects、Directly和NAgents2 6.从General中拖入一个Function,命名为resetStats,返回类型选择void,

Code中写入:

7.从Analysis拖入两个Histogram data,分别命名为histWait1和

histWait2。二者设置相同,Number of intervals填写为20,Values range

选择fixed,minimum为0,Maximum为100。

第四步:建立安排逻辑

1.点击Actionchart,通过其下面的部件创建如下逻辑图:

2.设置参数。在idleAgents1处,Type选择int,Initial value为

agents1.idle(),idleAgents2与idleAgents1类似,只不过在initial value处填写agents2.idle()。在第一个while循环处的条件是

idleAgents1 > 0 && queue1.size() > 0,在该循环里面的code为

数据挖掘案例分析--啤酒与尿布讲课稿

前言 “啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长! 商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是我们小组乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。 购物篮分析的算法很多,比较常用的有A prior/ ?’ p r i ?/算法、FP-tree结构和相应的FP-growth算法等等,上次课我们组的邓斌同学已经详细的演示了购物篮分析的操作流程,因此在这里我不介绍具体的购物篮分析算法,而是在已经获得的结果的基础上剖析一下数据身后潜藏的商业信息。目前购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分,客户购买了这些软件产品后就等于有了购物篮分析的工具,比如我们正在使用的Clementine。 缘起 “啤酒与尿布”的故事可以说是营销界的经典段子,在打开Google搜索一下,你会发现很多人都在津津乐道于“啤酒与尿布”,可以说100个人就有100个版本的“啤酒与尿布”的故事。故事的时间跨度从上个世纪80年代到本世纪初,甚至连故事的主角和地点都会发生变化——从美国跨越到欧洲。认真地查了一下资料,我们发现沃尔玛的“啤酒与尿布”案例是正式刊登在1998年的《哈佛商业评论》上面的,这应该算是目前发现的最权威报道。 “啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。 在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。 当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal (个人翻译--艾格拉沃)提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提出了商品关联关系的计算方法——A prior算法。沃尔玛从上个世纪90年代尝试将A prior算法引入到POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。 “啤酒和尿布”的故事为什么产生于沃尔玛超市的卖场中

SAS+8.2+Enterprise+Miner数据挖掘实例

SAS 8.2 Enterprise Miner数据挖掘实例 目录 1.SAS 8.2 Enterprise Miner简介 (2) 2.EM工具具体使用说明 (2) 3.定义商业问题 (3) 4.创建一个工程 (4) 4.1调用EM (4) 4.2新建一个工程 (5) 4.3应用工作空间中的节点 (6) 5.数据挖掘工作流程 (6) 5.1定义数据源 (6) 5.2探索数据 (8) 5.2.1设置Insight节点 (8) 5.2.2察看Insight节点输出结果 (9) 5.3准备建模数据 (11) 5.3.1建立目标变量 (11) 5.3.2设置目标变量 (13) 5.3.3数据分割 (21) 5.3.4替换缺失值 (22) 5.4建模 (23) 5.4.1回归模型 (23) 5.4.2决策树模型 (25) 5.5评估模型 (28) 5.6应用模型 (30) 5.6.1抽取打分程序 (30) 5.6.2引入原始数据源 (31) 5.6.3查看结果 (32) 6.参考文献: (34)

1.SAS 8.2 Enterprise Miner简介 数据挖掘就是对观测到的庞大数据集进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其有价值的新颖方式来总结数据。[1] 一个数据挖掘工程需要足够的软件来完成分析工作,为了计划、实现和成功建立一个数据挖掘工程,需要一个集成了所有分析阶段的软件解决方案,包括从数据抽样到分析和建模,最后公布结果信息。大部分专业统计数据分析软件只实现特定的数据挖掘技术,而SAS 8.2 Enterprise Miner是一个集成的数据挖掘系统,允许使用和比较不同的技术,同时还集成了复杂的数据库管理软件。SAS 8.2 Enterprise Miner把统计分析系统和图形用户界面(GUI)集成在一起,并与SAS协会定义的数据挖掘方法——SEMMA方法,即抽样(Sample)、探索(Explore)、修改(Modify)建模(Model)、评价(Assess)紧密结合,对用户友好、直观、灵活、适用方便,使对统计学无经验的用户也可以理解和使用。 Enterprise Miner简称EM,它的运行方式是通过在一个工作空间(workspace)中按照一定的顺序添加各种可以实现不同功能的节点,然后对不同节点进行相应的设置,最后运行整个工作流程(workflow),便可以得到相应的结果。 2.EM工具具体使用说明 EM中工具分为七类: ?Sample类包含Input Data Source、Sampling、Data Partition ?Explore类包含Distribution Explorer、Multiplot、Insight、 Association、Variable Selection、Link Analysis (Exp.) ?Modify类包含Data Set Attribute、Transform Variable、Filter Outliers、Replacement、Clustering、SOM/Kohonen、 Time Series(Exp.) ?Medel类包括Regression、Tree、Neural Network、 Princomp/Dmneural、User Defined Model、Ensemble、 Memory-Based Reasoning、Two Stage Model ?Assess类包括Assessment、Reporter

大数据挖掘商业案例

1.前言 随着中国加入WTO,国金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。金融业正在快速发生变化。合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。节约资金、更完善的服务诱使客户转投到竞争对手那里。即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢? 数据挖掘、模式(Patterns>等形式。用统计分析和数据挖掘解决商务问题。 金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。 客户细分―使客户收益最大化的同时最大程度降低风险 市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。 数据挖掘实现客户价值的最大化和风险最小化。SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易、呼叫中心以及相关分支机构的客户数据。采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。 客户流失―挽留有价值的客户 在银行业和保险业,客户流失也是一个很大的问题。例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。 为了留住最有价值的客户,您需要开展有效的保留活动。然而,首先您需要找出最有价值的客户,理解他们的行为。可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。 交叉销售 在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。 研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。 从客户的交易数据和客户的自然属性中寻找、选择最有可能捆绑在一起销售的产品和服务,发现有价值的产品和服务组合,从而有效地向客户提供额外的服务,提高活期收入并提升客户的收益率。

数据挖掘案例2014.04-10

成功案例: 1,Credilogros改善客户信用评分业务(直接数据挖掘,预测统计分析方法/软件) Credilogros是阿根廷第五大信贷公司,它需要识别与潜在预先付款客户(缺乏充分的信用记录数据)相关的潜在风险,以便将承担的风险最小化。Credilogros选择了SPSS Inc.的数据挖掘软件PASWModeler,因为它能够灵活并轻松地整合到Credilogros 的核心信息系统中。数据挖掘的收益包括: 1)处理信用数据和提供最终信用评分的时间缩短到了8秒以内。平均每月使用PASW Modeler处理35000份申请。这使该组织能够迅速批准或拒绝信贷请求。 2)最小化每个客户必须提供的身份证明文档,某些情况,只需一份身份证明即可批准 信贷; 3)风险监控,仅在实施3 个月后就帮助Credilogros 将贷款支付失职减少了20%。 2,中国宝钢集团(直接数据挖掘,分类分析方法) 宝钢自1985年投产至今,积累了大量的生产数据,从每一炉钢到每一块板坯到每一个钢圈,各级计算机系统可以把这些数据完整地收集起来。采用数据挖掘技术对钢材生产的全流程进行质量监控和分析(通过全流程实时监控获得了丰富的生产数据),构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。 宝钢采用了两个数据挖掘工具,一个是自行研发的基于SAS的practical Miner,另一个是美国SAS公司的Enterprise Miner。在冷轧和热轧的产品质量控制中,仅2001年就取得超过3000万元的经济效益。在配矿优化项目中,通过确定不同铁矿石的合理比例,每年可为宝钢降低成本6000万元。另外,通过分析轧制计划,分析和优化库存结构,降低库存成本和平衡物流成本。 3,DHL实时跟踪货箱温度 DHL每辆车都装有持续记录车速、时间及温度的特制“黑匣子”,拥有全球定位系统,并由随车安保人员实时监控。一旦有偏离路线、超时停车和车内温度异常情况,货车必须重新装货。基于“黑匣子”提供的大量数据进行数据挖掘,可以根据温度控制的目标,制定和优化行车线路、司机配置、提供车况评估等决策支持。

复杂系统建模与分析

复杂系统建模与分析 课程内容 1.绪论:系统与模型、概念模型、数学模型、复杂系统、应用示例。 2.概念建模方法:现状、概念建模过程、概念建模方法、概念建模语言。 3.系统的数学描述:系统的抽象化与形式化、确定性数学模型、随机性数学模型。 4.连续系统建模方法:微分方程、状态空间、变分原理。 5.离散事件系统的建模方法:随机数产生与性能检测、实体流图法、活动周期法、Petri网法。。 6.随机变量模型的建模方法:分布类型假设、分布参数估计、分布假设检验。 7.基于系统辨识的建模方法:概述、模型参数的辨识方法、模型阶次的辨识方法。 8.复杂系统的建模方法:神经网络的建模方法、灰色系统的建模方法、基于Agent的行为建模方法。 9.复杂系统的计算机仿真建模方法:概述、基本概念、一般步骤与仿真钟推进、仿真语言介绍(Witness、E-Mplant)、复杂物流系统仿真应用。 参考教材: [1] 系统建模. 郭齐胜等编,国防工业出版社,2006 [2] 复杂系统的分析与建模. 王安麟编,上海交通大学出版社,2004 [3] 复杂系统建模理论与方法. 陈森发编,东南大学出版社,2005 [4] 离散事件动态系统. 郑大钟,清华大学出版社2001年 1.绪论 1.1 系统与模型 1.1.1 系统 系统:按照某些规律结合起来,互相作用、互相依存的所有实体的集合或总体。 可以将港口码头定义为一个系统。该系统中的实体有船舶和码头装卸设备。船舶按某种规律到达,装卸设备按一定的程序为其服务,装卸完后船舶离去。船舶到达模式影响着装卸设备的工作忙闲状态和港口的排队状态,而装卸设备的多少和工作效率也影响着船舶接受服务的质量。 系统有三个要素,即实体、属性、活动。实体确定了系统的构成,也就确定了系统的边界,属性也称为描述变量,描述每一实体的特征。活动定义了系统内部实体之间的相互作用,反映了系统内部发生变化的过程。 状态:在任意时刻,系统中实体、属性、活动的信息总和。

大数据应用案例

四大经典大数据应用案例解析 什么是数据挖掘(Data Mining)?简而言之,就是有组织有目的地收集数据,通过分析数据使之成为信息,从而在大量数据中寻找潜在规律以形成规则或知识的技术。在本文中,我们从数据挖掘的实例出发,并以数据挖掘中比较经典的分类算法入手,给读者介绍我们怎样利用数据挖掘的技术解决现实中出现的问题。 数据挖掘是如何解决问题的? 本节通过几个数据挖掘实际案例来诠释如何通过数据挖掘解决商业中遇到的问题。下面关于“啤酒和尿不湿”的故事是数据挖掘中最经典的案例。而Target 公司通过“怀孕预测指数”来预测女顾客是否怀孕的案例也是近来为数据挖掘学者最津津乐道的一个话题。

一、尿不湿和啤酒 很多人会问,究竟数据挖掘能够为企业做些什么?下面我们通过一个在数据挖掘中最经典的案例来解释这个问题——一个关于尿不湿与啤酒的故事。超级商业零售连锁巨无霸沃尔玛公司(Wal Mart)拥有世上最大的数据仓库系统之一。为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行了购物篮关联规则分析,从而知道顾客经常一起购买的商品有哪些。在沃尔玛庞大的数据仓库里集合了其所有门店的详细原始交易数据,在这些原始交易数据的基础上,沃尔玛利用数据挖掘工具对这些数据进行分析和挖掘。一个令人惊奇和意外的结果出现了:“跟尿不湿一起购买最多的商品竟是啤酒”!这是数据挖掘技术对历史数据进行分析的结果,反映的是数据的内在规律。那么这个结果符合现实情况吗?是否是一个有用的知识?是否有利用价值? 为了验证这一结果,沃尔玛派出市场调查人员和分析师对这一结果进行调查分析。经过大量实际调查和分析,他们揭示了一个隐藏在“尿不湿与啤酒”背后的美国消费者的一种行为模式: 在美国,到超市去买婴儿尿不湿是一些年轻的父亲下班后的日常工作,而他们中有30%~40%的人同时也会为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫不要忘了下班后为小孩买尿不湿,而丈夫们在买尿不湿后又随手带回了他们喜欢的啤酒。另一种情况是丈夫们在买啤酒时突然记起他们的责任,又去买了尿不湿。既然尿不湿与啤酒一起被购买的机会很多,那么沃尔玛就在他们所有的门店里将尿不湿与啤酒并排摆放在一起,结果是得到了尿不湿与啤酒的销售量双双增长。按常规思维,尿不湿与啤酒风马牛不相及,若不是

数据挖掘商业案例

金融行业应用 1.前言 随着中国加入WTO,国内金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。金融业正在快速发生变化。合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。节约资金、更完善的服务诱使客户转投到竞争对手那里。即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢? 数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。用统计分析和数据挖掘解决商务问题。 金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。 客户细分―使客户收益最大化的同时最大程度降低风险 市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。 数据挖掘实现客户价值的最大化和风险最小化。SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易网站、呼叫中心以及相关分支机构的客户数据。采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。 客户流失―挽留有价值的客户 在银行业和保险业,客户流失也是一个很大的问题。例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。 为了留住最有价值的客户,您需要开展有效的保留活动。然而,首先您需要找出最有价值的客户,理解他们的行为。可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。 交叉销售 在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。 研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。

工业工程系统建模与仿真期末复习

工业工程系统建模与仿真期末复习

第一章绪论 1、系统是指相互联系又相互作用者的对象的 有机组合。系统包括工程系统和非工程系 统,自然系统和人工系统,也可分为复杂系 统和简单系统、中小系统和大系统。 2、系统具给定的边界、输入和输出,其三要素 为:实体、属性、活动。 3、模型是实际系统本质的抽象和简化。分为: 物理模型和数学模型。 4、建模:为了达到系统研究的目的,用于收集 和描述系统有关信息的实体。 5、仿真的意义:系统是研究对象,建模是系统 特性的描述,仿真则包含建立模型及对模型 进行实验两个。 6、根据模型类型,系统仿真分为物理仿真、数 学~和物理—数学~。 7、系统仿真的步骤及基本功能:1)调研系统, 明确问题;2)设立目标,制定计划;3)建 立系统数学模型;4)模型校核、验证及确 认;5)数据采集;6)数学模型与仿真模型 的转换;7)仿真实验设计;8)编制程序, 仿真实验,运行模型,计算结果;9)数据

处理,统计分析;10)优化与决策。 8、仿真技术的分类。按什么分,按什么分…… 9、仿真技术不足:建模方法尚不完善,须通过 建模和仿真人员分析。 10、发展趋势:一体化建模与仿真环境。 11、研究热点:面向对象仿真、定性仿真、智能 仿真、分布交互仿真、可视化仿真、多媒体 仿真、虚拟现实仿真、internet网上仿真。 12、系统辨识:在对被识系统进行输入和输出观 测的基础上,从设定的一类系统中确定出一 个与被识系统等价的系统。(两种方式:在 线辨识和离线辨识) 13、系统辨识过程要解决:模型框架、模型结构、 模型参数。系 14、互逆的技术手段:系统辨识与系统分析。 15、系统分析:通过一系列步骤,帮助决策者选 择决策方案的一种系统方法。(五大要素: 目标、替代方案、费用、模型和准则) 第二章 1、系统模型分类:1)按照变量情况:确定型模型、随机型模型;2)按数学方法:初等模型、微分方程模型、优化模型、控制模型;3)按实

数据挖掘实例

Apriori算法: 实例描述: 以下是用户访问WEB日志的事务数,通过Apriori算法发掘其中的关联关系。 (1)算法开始时,扫描事务数据库D,对组成每个事务的所有项进行累加计数,得到候选1_项集Ci,如表4-3所示。定义min_sup=2,删除支持计数小于2的项,可以得到频繁1一项集L1,如表4-4所示。 (2)为发现频繁2一项集集合1, 2,算法使用生成候选2一项集集合C2, (3)扫面事务数据库D,计算C2中每一个候选项集的支持度,将支持度小于2的候选2一项集删除,将得到频繁2一项集L2,如表4-6所示。

(3)使用频繁2一项集Lz来求候选3一项集,从连接步开始,首先令C3={{ABC}, {ABE}, fABF}, FACE}, fACF}, {AEF}}。由Apriori反单调性质,即频繁项集子项集也是频繁集的,即任何一个k一项集,只要它其中的任何一个(k-1)一项子集不属于频繁-项集,则说明这个k一项集也不是频繁的。所以,根据Apriori算法的剪枝步操作就不需要再把这条k一项集选到候选项集k一项集中。例如:由上面我们得到的ACF项集,有三个子集:AC,AF,CF。其中CF不属于L2中的频繁2一项集,所以通过剪枝步ACF就不是候选3一项集里的项。根据该方法,可以确定5个候选不可能是频繁的,因此,把它们从C3中删除,得到如表4-7所示的候选3一项集。然后,扫描事务数据库D计算C3中每个项的候选计数,得到频繁3一项集L},如表4-8所示。 最后得到了频繁3一项集,由该频繁项集可以得到关联规则,并可对这些关联规则进行分析,得到事务数据集中相关事务间的信息。 支持度: 置信度: 最后得到关联规则:

复杂系统建模论文

复杂系统建模简述 目前,我们面临的社会正迅速从制度经济转入知识经济,其中所涉及的各种研究系统越来越复杂,人在之中的作用也变得越来越不可忽略。而网络化的加速发展,更是极大地加剧了各类系统的复杂性程度。因此现有的系统分析方法已远远不能有效地解决这些复杂系统所面临的许多关键性问题,我们需要新的理论、新的方法、新的技术有针对性的进行复杂系统建模,所以复杂系统建模的知识就越来越重要。下面就我所学到的复杂系统建模做一个简述。 一、系统理论概述 平常说的系统是具有一定功能,相互间具有有机联系,由许多要素或构成部分组成的整体。可以将港口码头定义为一个系统。该系统中的实体有船舶和码头装卸设备。船舶按某种规律到达,装卸设备按一定的程序为其服务,装卸完后船舶离去。船舶到达模式影响着装卸设备的工作忙闲状态和港口的排队状态,而装卸设备的多少和工作效率也影响着船舶接受服务的质量。 系统一般有三个要素,即实体、属性、活动。实体确定了系统的构成,也就确定了系统的边界,属性也称为描述变量,描述每一实体的特征。活动定义了系统内部实体之间的相互作用,反映了系统内部发生变化的过程。 系统建模则是建立一个新系统,用来模拟或仿真原有系统。模型是对实际系统的简化表示,它提取和反映了所研究系统的基本性质。模型的表现形式有直觉模型、实物模型、模拟模型、图表模型、数学模型。其中数学模型的种类包括参数模型、非参数模型、模糊及神经元模型、区域规划模型、网络模型、黑箱模型、黑板模型、遗传算法模型等。 二、复杂系统理论概述 典型的复杂系统有工程技术大系统,社会经济大系统,生态环境大系统. 复杂系统则是能够被解耦或者分解成若干个互连子系统,从而进行有效计算或者满足实际需要的系统,或传统的建模、系统分析、控制器设计及优化技术不能处理的、具有多个互连子系统的系统。

数据挖掘应用案例:RFM模型分析与客户细分完整版

数据挖掘应用案例:R F M模型分析与客户 细分 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

数据挖掘应用案例:RFM模型分析与客户细分 分类:| 标签: 2012-01-21 21:39阅读(16854) 这里,我先给各位朋友拜年,祝大家新春快乐! 兔年就要过去了,本命年的最后一天再不更新博客有点对不住大家!正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求。 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)。 我早期两篇博文已详述了RFM思想和IBM Modeler操作过程,有兴趣的朋友可以阅读! RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。一般原始数据为3个字段:客户ID、购买时间(日期格式)、购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,进而可以进行客户细分,客户等级分类,Customer Level Value得分排序等,实现数据库营销!

这里再次借用@数据挖掘与数据分析的RFM客户RFM分类图。 本次分析用的的软件工具:IBM SPSS Statistics 19,IBM SPSS ,,EXCEL和PPT 因为RFM分析仅是项目的一个小部分分析,但也面临海量数据的处理能力,这一点对计算机的内存和硬盘容量都有要求。 先说说对海量数据挖掘和数据处理的一点体会:(仅指个人电脑操作平台而言) 一般我们拿到的数据都是压缩格式的文本文件,需要解压缩,都在G字节以上存储单位,一般最好在外置电源移动硬盘存储;如果客户不告知,你大概是不知道有多少记录和字段的; Modeler挖掘软件默认安装一般都需要与C盘进行数据交换,至少需要100G 空间预留,否则读取数据过程中将造成空间不足 海量数据处理要有耐心,等待30分钟以上运行出结果是常有的现象,特别 是在进行抽样、合并数据、数据重构、神经网络建模过程中,要有韧性,否则差一分钟中断就悲剧了,呵呵; 数据挖掘的准备阶段和数据预处理时间占整个项目的70%,我这里说如果是超大数据集可能时间要占到90%以上。一方面是处理费时,一方面可能就只能这台电脑处理,不能几台电脑同时操作; 多带来不同,这是我一直强调的体验。所以海量数据需要用到抽样技术,用来查看数据和预操作,记住:有时候即使样本数据正常,也可能全部数据有问题。建议数据分隔符采用“|”存储; 如何强调一个数据挖掘项目和挖掘工程师对行业的理解和业务的洞察都不为过,好的数据挖掘一定是市场导向的,当然也需要IT人员与市场人员有好 的沟通机制;

数据挖掘经典案例

数据挖掘经典案例 当前,市场竞争异常激烈,各商家企业为了能在竞争中占据优势,费劲心思。使用过OLAP技术的企业都知道,OLAP技术能给企业带来新的生机和活力。OLAP技术把企业大量的数据变成了客户需要的信息,把这些信息变成了价值,提高了企业的产值和效益,增强了客户自身的竞争实力。 “啤酒与尿布”的故事家喻户晓,在IT界里,几乎是数据挖掘的代名词,那么各商家企业受了多少启发,数据挖掘又给他们带来了多少价值呢? 客户需求 客户面对大量的信息,用OLAP进行多维分析。如:一个网上书店,用OLAP技术可以浏览到什么时间,那个类别的客户买了多少书等信息,如果想动态的获得深层次的信息,比如:哪些书籍可以打包推荐,哪些书籍可以在销售中关联推出等等,就要用到数据挖掘技术了。 当客户在使用OLAP技术进行数据的多维分析的时候,联想到“啤酒与尿布”的故事,客户不禁会有疑问,能不能通过数据挖掘来对数据进行深层次的分析呢,能不能将数据挖掘和OLAP结合起来进行分析呢? SQL Server 2005 数据挖掘: SQL Server 2005的Data Mining是SQL Server2005分析服务(Analysis Services)中的一部分。数据挖掘通常被称为“从大型数据库提取有效、可信和可行信息的过程”。换言之,数据挖掘派生数据中存在的模式和趋势。这些模式和趋势可以被收集在一起并定义为挖掘模型。挖掘模型可以应用于特定的业务方案,例如:预测销售额、向特定客户发送邮件、确定可能需要搭售的产品、查找客户将产品放入购物车的顺序序列。 Microsoft 决策树算法、Microsoft Naive Bayes 算法、Microsoft 聚类分析算法、Microsoft 神经网络算法 (SSAS),可以预测离散属性,例如,预测目标邮件活动的收件人是否会购买某个产品。 Microsoft 决策树算法、Microsoft 时序算法可以预测连续属性,预测连续属性,例如,预测下一年的销量。 Microsoft 顺序分析和聚类分析算法预测顺序,例如,执行公司网站的点击流分析。 Microsoft 关联算法、Microsoft 决策树算法查找交易中的常见项的组,例如,使用市场篮分析来建议客户购买其他产品。 Microsoft 聚类分析算法、Microsoft 顺序分析和聚类分析算法,查找相似项的组,例如,将人口统计数据分割为组以便更好地理解属性之间的关系。 巅峰之旅之案例一:网上书店关联销售 提出问题 网上书店现在有了很强的市场和比较固定的大量的客户。为了促进网上书店的销售量的增长,各网上书店采取了各种方式,给客户提供更多更丰富的书籍,提供更优质服务,等方式吸引更多的读者。

系统建模方法

系统建模方法 2.1系统抽象与数学描述 2.1.1 实际系统的抽象 本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像”。 为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。 从外部对系统施加影响或干扰的可观测变量称为输入变量。 系统对输入变量的响应结果称为输出变量。 输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。 综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

(可观测) 输出变量 (可观测) 输入变量 黑箱 灰箱 白箱 ωt ) ω(t )、ρ(t )---输入输出变量对 真实系统建模的抽象过程

2.1.2 系统模型的一般描述及描述级(水平) 2.1.2.1 系统模型的一般描述: 一个系统的数学模型可以用如下七元组集合来描述: 2.1.2.2 系统模型描述级(水平): 按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平): ⑴ 性状描述级 性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得出一个输入-输出对:(ω,ρ) 及其关系R s ={(ω,ρ):Ω,ω,ρ}。 ()λδ,,,,,,Y Q X T S Ω= 其中: :T 时间基,描述系统变化的时间坐标,T 为整数则称为离散时间系 统,为实数则称为连续时间系统; :X 输入集,代表外部环境对系统的作用。 :Ω输入段集,描述某个时间间隔内的输入模式,是()T X ,的一个 子集。 :Q 内部状态集,描述系统内部状态量,是系统内部结构建模的核心。 :δ状态转移函数,定义系统内部状态是如何变化的,是一个映射。 :Y 输出集,系统通过它作用于环境。 :λ输出函数,是一个映射,给出了一个输出段集。

数据挖掘应用案例

网上书店关联销售 应用背景: 网上书店现在有了很强的市场和比较固定的大量的客户。为了促进网上书店的销售量的增长,各网上书店采取了各种方式,给客户提供更多更丰富的书籍,提供更优质服务,等方式吸引更多的读者。但是这样还不足够,给众多网上书店的商家们提供一种非常好的促进销售量增长,吸引读者的方法,就是关联销售分析。这种方法就是给客户提供其他的相关书籍,也就是在客户购买了一种书籍之后,推荐给客户其他的相关的书籍。这种措施的运用给他们带来了可观的效益。 这里介绍的关联销售并不是,根据网上书店的销售记录进行的比例统计,也区别于简单的概率分析统计,是用的关联规则算法。“啤酒和尿布”的故事足以证明了该算法的强大功能和产生的震撼效果。 那么,怎么来实现这样一个效果呢? 解决步骤: 首先,通过数据源,也就是销售记录。这里做数据挖掘模型,要用到两张表,一张表是会员,用会员ID号来代替;另一张表是那个会员买了什么书。应用SQL Server 2005的Data Mining工具,建立数据挖掘模型。 具体步骤如下: 第一步:定义数据源。选取的为网上书店的销售记录数据源(最主要的是User表和Sales表)。 第二步:定义数据源视图。在此建立好数据挖掘中事例表和嵌套表,并定义两者之间的关系,定义User为事例表(Case Table),Sales为嵌套表(Nested Table)。 第三步:选取Microsoft Association Rules(关联规则)算法,建立挖掘模型。 第四步:设置算法参数,部署挖掘模型。 第五步、浏览察看挖掘模型。对于关联规则算法来说,三个查看的选项卡。 A:项集:“项集”选项卡显示被模型识别为经常发现一起出现的项集的列表。在这里指的是经过关联规则算法处理后,发现关联在一起的书籍的集合。

互联网数据挖掘基本概念

【最新资料,Word版,可自由编辑!】 介绍邦弗朗尼原理(Bonferroni’sprinciple),该原理实际上对数据挖掘的过度使用提出了警告。本章还概述了一些非常有用的思想,它们未必都属于数据挖掘的范畴,但是却有利于理解数据挖掘中的某些重要概念。这些思想包括度量词语重要性的TF.IDF权重、哈希函数及索引结构的性质、包含自然对数底e 的恒等式等。最后,简要介绍了后续章节所要涉及的主题。 1.1数据挖掘的定义 最广为接受的定义是,数据挖掘(datamining)是数据“模型”的发现过程。而“模型”却可以有多种含义。下面介绍在建模方面最重要的几个方向。 1.1.1统计建模 最早使用“datamining”术语的人是统计学家。术语“datamining”或者“datadredging”最初是贬义词,意指试图抽取出数据本身不支持的信息的过程。1.2节给出了这种挖掘情况下可能犯的几类错误。当然,现在术语“datamining”的意义已经是正面的了。目前,统计学家认为数据挖掘就是统计模型(statisticalmodel)的构建过程,而这个统计模型指的就是可见数据所遵从的总体分布。 例1.1假定现有的数据是一系列数字。这种数据相对于常用的挖掘数据而言显得过于简单,但这只是为了说明问题而采用的例子。统计学家可能会判定这些数字来自一个高斯分布(即正态分布),并利用公式来计算该分布最有可能的参数值。该高斯分布的均值和标准差能够完整地刻画整个分布,因而成为上述数据的一个模型。 1.1.2机器学习 有些人将数据挖掘看成是机器学习的同义词。毫无疑问,一些数据挖掘方法中适当使用了机器学习算法。机器学习的实践者将数据当成训练集来训练某类算法,比如贝叶斯网络、支持向量机、决策树、隐马尔可夫模型等。 某些场景下上述的数据利用方式是合理的。机器学习擅长的典型场景是人们对数据中的寻找目标几乎一无所知。比如,我们并不清楚到底是影片的什么因素导致某些观众喜欢或者厌恶该影片。因此,在Netflix竞赛要求设计一个算法来预测观众对影片的评分时,基于已有评分样本的机器学习算法获得了巨大成功。在9.4节中,我们将讨论此类算法的一个简单形式。 另一方面,当挖掘的目标能够更直接地描述时,机器学习方法并不成功。一个有趣的例子是,WhizBang!实验室1曾试图使用机器学习方法在Web上定位人们的简历。但是不管使用什么机器学习算法,最后的效果都比不过人工设计的直接通过典型关键词和短语来查找简历的算法。由于看过或者写过简历的人都对简历包含哪些内容非常清楚,Web页面是否包含简历毫无秘密可言。因此,使用机器学习方法相对于直接设计的简历发现算法而言并无任何优势。 1.1.3建模的计算方法 1 该初创实验室试图使用机器学习方法来进行大规模数据挖掘,并且雇用了大批机器学习高手来实 现这一点。遗憾的是,该实验室并没有能够生存下来。

第2章控制系统描述方式及建模方法

第2章 控制系统描述方式及建模方法 (1)数学模型 一个实际的系统针对所控的变量经一定的合理的假设就变成了物理模型,再根据物理定律和机械定律等进行推导就得到了数学模型。 数学模型只能对某些特定的输入响应,故它不能包含实际系统对输入响应的全部真实的信息,且数学模型是实际系统的简化,所以在建模时就有很大学问。 太复杂和精细的模型可能包含难于估计的参数,也不便于分析。过于简单的模型不能描述系统的重要性能。这就需要我们在建模时掌握好复杂和简单的度,作合理的折中。 (2)仿真数学模型 建立数学模型意味着在计算机上建立起对象的可以计算的模型。 一般来说,系统的数学模型都必须改写成适合于计算机处理的形式才能使用,这种模型被称为仿真数学模型。 (3)仿真模型分类 数学模型分为静态模型和动态模型,前者主要用于系统的静态误差分析。动态模型又分为连续模型(用微分方程表述)和离散模型(用差分方程表述)。 系统的数学模型还可按目的分为三大类,即 1)用来帮助对象设计和操作的模型; 2)用来帮助控制系统设计和操作的模型; 3)用来系统仿真的模型。 本书主要研究后两种情况。 2.1 控制系统描述方式 控制系统主要有如下6种系统描述方式: (1)微分方程(组) (状态空间) 这种方法比较直观,特别是借助于计算机,可以迅速而准确地求得结果。但是,如果系统结构形式改变,便需要重新列写并求解微分方程,因此不便于对系统进行分析和设计。 典型的状态方程如式(2-1-1)所示。 Du CX Y Bu AX X +=+=& (2-1-1) (2)传递函数 运用拉氏变换求解系统的线性常微分方程,可以得到系统在复数域的数学模型,称其为传递函数。传递函数不仅可以表征系统的动态特性,而且可借以研究系统的结构或参数变化对系统性能的影响。 在经典控制理论中广泛应用的频率法和根轨迹法,就是在传递函数基础上建立起来的。因此,传递函数是经典控制理论中最基本也是最重要的概念。

大数据挖掘技术之DM经典模型(上)

大数据挖掘技术之DM经典模型(上) 数据分析微信公众号datadw——关注你想了解的,分享你需要的。 实际上,所有的数据挖掘技术都是以概率论和统计学为基础的。 下面我们将探讨如何用模型来表示简单的、描述性的统计数据。如果我们可以描述所要找的事物,那么想要找到它就会变得很容易。这就是相似度模型的来历——某事物与所要寻找的事物越相似,其得分就越高。 下面就是查询模型,该模型正在直销行业很受欢迎,并广泛用于其它领域。朴素贝叶斯模型是表查找模型中一种非常有用的泛化模型,通常表查询模型适用于较低的维度,而朴素贝叶斯模型准许更多的维度加入。还有线性回归和逻辑回归模型,都是最常见的预测建模技术。回归模型,用于表示散点图中两个变量之间的关系。多元回归模型,这个准许多个单值输入。随后介绍逻辑回归分析,该技术扩展了多元回归以限制其目标范围,例如:限定概率估计。还有固定效应和分层回归模型,该模型可将回归应用于个人客户,在许多以客户为中心的数据挖掘技术之间搭建了一座桥梁。 1、相似度模型 相似度模型中需要将观察值和原型进行比较,以得到相应的相似度得分。观察值与原型相似度越高,其得分也就越高。一种度量相似度的方法是测量距离。观察值与原型值之间的距离越近,观察值的得分就越高。当每个客户细分都有一个原型时,该模型可以根据得分把客户分配到与其最相似的原型所在的客户细分中。 相似度模型有原型和一个相似度函数构成。新数据通过计算其相似度函数,就可以计算出相似度得分。 1.1、相似度距离 通过出版社的读者比一般大众要富有,而且接受教育的程度要高为例。通常前者要比后者在富有程度、教育程度的比例大三倍。这样我们

《数据挖掘:你必须知道的32个经典案例》

第五章 经典的机器学习案例 机器学习是一门成熟的学科,它所能解决的问题涵盖多种行业。本章介绍了四种经典的机器学习算法,它们所关心的重点在于机器学习是如何将统计学和数据挖掘连接起来的。通过学习本章,读者可以见识到机器学习的特殊魅力,并明白机器学习与其他学科的异同。使读者可以熟练地应用机器学习算法来解决实际问题是本章的目标。 5.1 机器学习综述 在正式开始了解机器学习之前,我们首先要搞清楚这样一个问题:世界上是不是所有的问题都可以使用一行一行清楚无误的代码解决?举个例子,倘若我们想让一个机器人完成出门去超市买菜并回家这一任务,我们能不能在程序里详详细细地把机器人所有可能遇到的情况以及对策都写下来,好让机器人一条一条按着执行? 答案是“很难”。机器人在路上可能遭遇塑料袋儿、石头、跑动的儿童等障碍物,在超市可能遇到菜卖完了、菜篮挪动了位置等问题,把这些问题全部罗列出来是不太可能的,因此我们就难以使用硬性的、固定的程序来命令机器人完成这件事,我们需要的是一种灵活的、可以变化的程序。就像你去买菜时不用你妈告诉你路上看见有人打架要躲开,你就知道要躲开一样(即便你以前从来没有遇见过这种情况),我们希望机器人也可以根据经验学习到正确的做法,而不是必须依赖程序员一条一条地输入“IF……THEN……”。 美国人塞缪尔设计的下棋程序是另一个的经典机器学习算法。塞缪尔设计了一个可以依靠经验积累概率知识的下棋程序,一开始这个程序毫无章法,但四年以后,它就能够打败塞缪尔了,又过了三年,它战胜了美国的围棋冠军。这个下棋程序进步的方式和人类学习下棋的过程非常类似,如何让机器像人类一样学习,正是机器学习关心的事情。 不难想象,机器学习是一门多领域交叉的学科,它主要依赖统计学、概率论、逼近论等数学学科,同时也依赖算法复杂度、编译原理等计算机学科。通俗的说,机器学习首先将统计学得到的统计理论拿来进一步研究,然后改造成适合编译成程序的机器学习算法,最终才会应用到实际中。但机器学习和统计学仍有不同的地方,这种差异主要在于统计学关心理论是否完美,而机器学习关心实际效果是否良好。同时,机器学习侧重于归纳和总结,而不是演绎。 机器学习将统计学的研究理论改造成能够移植在机器上的算法,数据挖掘将机器学习的成果直接拿来使用。从这一意义上来说,机器学习是统计学和数据挖掘之间的桥梁。机器学习也是人工智能的核心,机器学习算法普遍应用于人工智能的各个领域。此外,机器学习和模式识别具有并列的关系,它们一个注重模仿人类的学习方式,一个注重模仿人类认识世界的方式。因此机器学习、数据挖掘、人工智能和模式识别等本来就属于一个不可分的整体,离开其他学科的支持,任何学科都难以独立生存下去。 本章介绍了语义搜索、顺序分析、文本分析和协同过滤这四种经典的机器学习算法,它们不仅理论完善,同时也具有广泛的应用。通过本章的学习,读者将看到机器学习在各行各业中的神奇作用以及广阔前景,并学会如何使用机器学习算法来解决实际问题。

相关主题
文本预览
相关文档 最新文档