当前位置:文档之家› 青山湖水体总悬浮物浓度的高光谱遥感反演

青山湖水体总悬浮物浓度的高光谱遥感反演

青山湖水体总悬浮物浓度的高光谱遥感反演
青山湖水体总悬浮物浓度的高光谱遥感反演

高光谱遥感综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取地物近似连续的光谱反射率曲线,与地面实测值相匹配,将实验室地物光谱分析模型应用到遥感过程中。 (2)地表覆盖的识别能力极大提高。高光谱数据能够探测具有诊断性光谱吸收特征的物质,能够准确区分地表植被覆盖类型、道路的铺面材料等。

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用. 高光谱遥感技术的介绍及应用 在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人 类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,

遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文 简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常 <10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪 为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点

同其他常用的遥感手段相比 ,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度 < 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如 AVIRIS在 0. 4~214 波段范围内提供了224 个波段。研究表明许多这是传统的多光谱等。40 nm~20地物的吸收特征在吸收峰深度一半处 的宽度为 遥感技术所不能分辨的(多光谱遥感波段宽度在 100~200 nm 之间),而高光 谱遥感甚至光谱分辨率更高的超光谱遥感却能对地物的吸收光谱特征进行很好的识别,这使得过去以定性、半定量的遥感向定量遥感发展的进程被大大加快。另外,在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以 使高光谱图像中的每一个像元在各通道的灰度值都能产生一条完整、连续的光谱曲线,即所谓的“谱像合一”,它是高光谱成像技术的一大特点。 2)、由于波段众多,波段窄且连续,相邻波段具有很高的相关性,使得高光数据

空谱联合先验的高光谱图像解混与分类方法

空谱联合先验的高光谱图像解混与分类方法高光谱成像是近年来遥感领域发展较快、较前沿的技术。由于包含丰富的空间、辐射和光谱三重信息,高光谱遥感已被广泛应用于精准农业、矿物勘测、军事目标识别、环境监测、灾害评估等领域。 因此,对高光谱数据的处理与解译具有重要的理论意义和实际应用价值。高光谱解混和分类是高光谱遥感信息处理中的关键科学问题,也是定量分析以及后续应用的重要基础。 由于受仪器、大气辐射、光照不均、地物结构等因素的影响,相同地物的光谱曲线存在一定的差异,使得仅利用光谱信息的解混和分类方法的精度无法得到保障。空间信息可以充分刻画地物结构,有效降低“同质异谱”的影响,空谱联合的方法受到众多学者的重视。 本文研究围绕高光谱线性解混、分类等高光谱数据处理中的热点问题,重点提出基于光谱库的l1/2正则化稀疏回归解混方法、以及空谱联合的高光谱分类方法,并在此基础上设计了相应问题的高效算法。本文所做的主要工作和研究成果如下:1、根据高光谱线性解混模型,利用光谱库作为端元字典,将解混问题转化为稀疏回归问题;针对模型解的唯一性要求进行光谱库预优,利用l1/2范数对丰度系数向量进行稀疏正则化约束,在“和为一”、“非负性”条件下,提出了一种约束的l1/2正则化稀疏回归解混模型,并通过迭代重加权的l1算法进行优化求解。 模拟和真实高光谱数据实验表明,基于光谱库的l1/2正则化稀疏回归解混方法能够有效地从光谱库字典中选择出端元并准确反演出其对应的丰度系数。2、针对高光谱监督分类问题,在贝叶斯最大后验框架下,利用l1-l2正则化稀疏表

示方法对似然概率进行建模,并利用MRF分类标签的空间先验进行建模,提出了稀疏表示和马尔可夫场空间先验相结合的空谱联合分类模型,并通过图割算法进行了快速近似求解。 真实高光谱数据实验表明,基于稀疏表示与马尔可夫场空间先验相结合的高光谱分类模型能够有效地提升分类精度,且分类精度优于主流的分类方法。3、在贝叶斯推断框架下,采用稀疏多项式逻辑回归方法对似然概率进行建模,并将最大后验(MAP)分布的边际概率作为实值的隐形场引入到马尔可夫空间先验中,提出了一种加权马尔可夫场空间先验的高光谱分类方法。 利用最大后验边际概率上的加权TV函数定义该马尔可夫场的势函数,并将MAP分类模型转化为加权TV正则化的变分模型,同时添加“非负性”、“和为一”以及“训练样本类别标签固定”三个约束项,建立约束条件下的空谱分类模型,并利用ADMM方法提出了SMLR-SpATV (sparse multinomial logistic regression based spatially adaptive total variation method)算法对模型进行了快速求解。实验结果表明所提出的基于隐形场空间先验的空谱分类模型对高光谱分类的有效性,对比实验表明该方法优于主流的分类方法。 4、为了充分挖掘特征空间与原始空间、全局分类与局部分类的特点,提出了一种子空间逻辑回归分类器与稀疏表示分类器融合的空谱分类方法。其中,仅利用光谱信息的分类概率是由子空间逻辑回归分类器和稀疏表示分类器以一定的方式融合求得,空间先验信息由边缘保持的马尔可夫随机场进行建模。 最后,空谱模型采用图割算法进行快速优化求解。真实高光谱数据实验表明:多分类器融合能够充分发挥多个分类器的优点,分类结果大大高于单个分类器,且优于大部分主流的高光谱分类方法。

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

气溶胶光学厚度的高光谱遥感反演及其环境效应

气溶胶光学厚度的高光谱遥感反演及其环境效应 【摘要】:气溶胶是研究全球气候变化和大气污染的重要参数,也是进行定量遥感必须获得的参数。本文针对人口密集、工业化程度高的城市区域范围,探索高光谱数据遥感反演气溶胶光学厚度的方法,应用中科院上海技术物理研究所自行研制的模块化成像光谱仪(OMIS),结合MODIS卫星资料和地面太阳光度计监测,试图形成“星载—机载—地面”三个高度立体遥测,实现城市气溶胶光学厚度的反演,并进一步研究其环境效应。具体工作及结果如下:1)比较分析各种气溶胶光学厚度遥感反演方法的适用性和局限性,并介绍了太阳光度计地基遥测原理。2)分别介绍了MODIS、OMIS和地基高光谱数据的特点及数据预处理过程、分析典型地物的光谱特征。3)采用高反差地表法,对2002年10月7日的机载OMIS高光谱数据,进行了气溶胶光学厚度反演的尝试性试验,给出了初步的反演结果,在502-590nm波段处的气溶胶光学厚度值在0.175-0.314之间。反演结果符合当天的空气质量状况,与能见度进行比较,以证明反演结果的正确性,说明利用高光谱、高空间分辨率的机载遥感数据可以反演城市气溶胶光学厚度。4)进行大气辐射传输模型的模拟与分析,利用MODIS红、蓝通道数据分析地表反射率、气溶胶类型、气溶胶组份、水汽、臭氧等因素对气溶胶反演的影响;建立了表观反射率—地表反射率—气溶胶光学厚度之间的查算表,结合城市地表特点,探索基于MODIS数据的双目标对比法进行气溶胶光学厚度的反演。5)利用地

面站点能见度和卫星遥感的气溶胶光学厚度资料,建立了一个二者之间季节平均的简单关系,得到上海地区各季的气溶胶标高在春季、夏季、秋季和冬季分别为:1251m,1957m,791.7m和776.4m;并利用标高数据和气溶胶光学厚度的季节分布,反演上海地区区域能见度的季节平均分布,证实上海城区在冬春季平均能见度较差,市区中心能见度在10km以下;低能见度中心分布明显,且主要分布在杨浦、桃浦、吴淞等工业区范围。6)利用MODIS气溶胶产品及太阳光度计实测数据,分析上海及周边地区气溶胶光学厚度的时空变化特征;将MODIS气溶胶产品与地面污染资料、气象资料进行比较分析,发现AOD与PM_(10)的相关性最好,出现AOD大值的日子里相对湿度大,风速较低,能见度低,大气相对比较稳定,不利于污染物的稀释扩散。 7)通过因子分析,选取公因子F1(污染因子)、F2(温度气压因子)、F3(湿度和辐射因子)、F4(风速因子)、F5(气溶胶光学厚度)作为评价大气污染程度的主要影响因子,以MODIS遥感的气溶胶产品作为衡量大气浑浊度和气溶胶污染等级划分的指标,将气溶胶污染划分为:弱、较弱、中等、较强、强五级。【关键词】:气溶胶光学厚度(AOD)模块化成像光谱仪(OMIS)中分辨率成像光谱仪(MODIS)太阳光度计 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2006

高光谱遥感

高光谱遥感

? ? ? ?
高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况

高光谱遥感的基本概念
? 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。

国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、
光谱区域(nm) : 400 700 1100 2500 5500 14000
VIS VNIR
PIR
MIR
Sunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20
IRT
MIR 100-200 10-50
IRT 1000-2000 100-500

高光谱遥感图像研究意义及现状

高光谱遥感图像研究意义及现状 1研究高光谱遥感图像的意义 (1) 2高光谱遥感图像分类以及其基本现状 (2) 2.1图像预处理 (3) 2.2定义感兴趣地物类别并标记训练样本 (3) 2.3特征提取与特征选择 (4) 2.4分类判决 (4) 1研究高光谱遥感图像的意义 遥感图像是按一定比例尺,客观真实地记录和反映地表物体的电磁辐射的强弱信息,是遥感探测所获得的遥感信息资料的一种表现形式,因此遥感技术应用的核心问题是根据地物辐射电磁辐射强弱在遥感图像上表现的特征,判读识别地面物体的类属及其分布特征。遥感图像特征取决于遥感探测通道、地物光谱特征、大气传播特征及传感器的响应特征等因素。只要了解这些因素对遥感图像特征的影响,则可按图像特征判读地面物体的属性及其分布范围,实现遥感图像的分类识别。 高光谱遥感图像是一种高维图像,可反映地物的空间信息和光谱信息,其数据量庞大。随着传感器的不断更新,人们已经可以在不同的航空、航天遥感平台上获取不同时空间分辨率和光谱分辨率的遥感影像。高光谱遥感与以往遥感技术相比,具有图谱合一的特征和从可见光到红外甚至热红外的一系列波段,是一种综合性的遥感技术手段。特别是在地面的信息比较微弱的情况下,高光谱遥感具有识别微弱信息和定量探测的优势。 发展高光谱遥感技术,满足军事和民用对该技术的需求,开展该领域的研究是非常必要而有实际意义的。发展以地物精确分类、地物识别、地物特征信息提取为目标的超光谱遥感信息处理模型,提高超光谱数据处理的自动化和智能化水平。 高光谱遥感技术将确定物质或地物性质的光谱与揭示其空间和几何关系的图像结合在一起,而许多物质的特征往往表现在一些狭窄的光谱范围内,高光谱遥感实现了获取地物的光谱特征同时又不失其整体形态及其与周围地物的关系。 高光谱技术产生的一组图像所提供的丰富信息可以显著地提高数据分析的质量、细节性、可靠性以及可信度,可有效地用于地物类型的像素级甚至亚像素级识别,己广泛应用于地质勘探与地球资源调查、城市遥感与规划管理、环境与

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

01高光谱遥感第一讲

研究生选修课:《高光谱遥感》2009-2010学年第二学期 高光谱遥感 Lecture 1:An Overview of Hyperspectral Remote Sensing 主讲:张显峰 北京大学地球与空间科学学院 遥感与GIS研究所 2010年3月1日 研究生选修课:《高光谱遥感》2009-2010学年第二学期 Who am I? ?张显峰,副教授,北京大学遥感与地理信息系统研究所 ?1993~2000,中国科学院遥感应用研究所工作 ?1997~2000,获中国科学院遥感所地图学与地理信息系统专业博士学位 ?2001~2005,获加拿大西安大略大学遥感信息科学专业博士学位 ?Contact Information(联系方式): Email: xfzhang@https://www.doczj.com/doc/0f4916957.html,, Tel:62759123 RM: 遥感楼427

研究生选修课:《高光谱遥感》2009-2010学年第二学期 课程说明 课程名称(中文):高光谱遥感 课程名称(英文):Hyperspectral Remote Sensing 学分/学时:2 / 34 课程类型:专业选修 星期一:7、8节(14:40 -15:30);理教116 https://www.doczj.com/doc/0f4916957.html,/persons/zhangxianfeng/HyperRS 研究生选修课:《高光谱遥感》2009-2010学年第二学期 课程目标 为“摄影测量与遥感”专业研究生开设的专业选修课程,重点介绍高光谱遥感的基本理论与概念、高光谱数据处理、专题信息提取与应用; 作为遥感技术的重要研究前沿,本课程将重点介绍数据处理方法与前沿研究领域与问题; 以高光谱数据在岩性矿物信息提取和生态遥感研究中的应用为实例,揭示高光谱遥感的应用特点与前景。

高光谱遥感实习报告

高光谱遥感实习报告 目录 一.数据预处理 (2) 1. 数据说明 (2) 2.数据转换 (3) 2.FLAASH大气校正 (4) 3.图像裁剪 (7)

二.光谱识别与地物分析 (8) 1.波段相关性分析 (8) 2.MNF变换 (8) 3.端元提取 (10) 3.1 2-D散点图法 (10) 3.2基于PPI的端元提取(N维散点图法) (13) 三.实习心得 (19) 一.数据预处理 1.数据说明 环境与灾害监测预报小卫星星座A、B星(简称环境小卫星,简写HJ-1A /1B)于2009

年3月30日开始正式交付使用,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B 星搭载了CCD相机和红外相机(IRS)。HJ-1A /1B卫星是继我国继气象、海洋、国土资源卫星之后一个全新的民用卫星。卫星投入使用后,对自然灾害、生态破坏、环境污染进行大范围、全天候、全天时的动态监测,对灾害和环境质量进行快速和科学评估,提高灾害和环境信息的观测、采集、传送和处理能力,为紧急救援、灾后救助及恢复重建和环境保护工作提高科学依据。 HSI 对地成像幅宽为50 km, 星下点像元地面分辨率为100 m,115个波段,工作谱段:459~ 956nm。具有30度侧视能力和星上定标功能。HJ-1数据应用于自然灾害、生态环境之前,需要进行几何及光谱方面的预处理。ENVI在数据读取、图像配准、精确大气校正等方面提供了非常好的工具。 2.数据转换 目前,网上免费获取的HJ-1A /1B卫星CCD和HSI影像的分发的格式主要有两种:CCD 为Geotiff,每一个波段为一个Geotiff文件,并提供一个元数据说明(.XML); HSI为HDF5格式,也提供一个元数据说明(.XML)。 使用HJ-1数据读取补丁,启动ENVI->File->Open External File->HJ-1->HJ-1A /1B Tools工具。直接读取CCD、HIS、IRS数据,之后选择Basic Tools->Convert Data(BSQ,BIL,BIP),将刚才生成的文件转成BIL储存顺序的文件。至此,已经将HSI数据转成BIL储存顺序、带有中心波长信息、波段宽度信息的ENVI格式文件。 图1.1 HJ-1A /1B Tools面板

高光谱遥感数据的大气校正

实验二高光谱遥感数据的大气校正 --GIS0901 赵建平 2009303200901 一. 基本概念: a)大气散射 辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开,称为散射。大气散射是电磁波同大气分子或气溶 胶等发生相互作用,使入射能量以一定规律在各方向重新分布 的现象。其实质是大气分子或气溶胶等粒子在入射电磁波的作 用下产生电偶极子或多极子振荡,并以此为中心向四周辐射出 与入射波频率相同的子波,即散射波。散射波能量的分布同入 射波的波长、强度以及粒子的大小、形状和折射率有关。 b)大气吸收和地面遥感可以利用的主要大气窗口 对遥感传感器而言,只有选择透过率高的波段才对观测有意义。电磁波通过大气层较少被反射、吸收和散射的那些透射 率高的波段成为大气窗口。通常把太阳光透过大气层时透过率 较高的光谱段称为大气窗口。大气窗口的光谱段主要有: 微波波段(即0.8~2.5cm),由于微波穿云透雾能力强,这一区间可以用于全天候观测,而且是主动遥感方式。 远红外波段(即8~14μm),主要通透来自地物热辐射的能量,适用于夜间成像。 中红外波段(即3.5~5.5μm),该波段除了反射外,地面物体也可以自身发射热辐射能量。 近、中红外波段(即1.5~1.8μm和2.0~3.5μm),是白天

日照条件好时扫描成像的常用波段。 紫外、可见光和近红外波段(即0.3~1.3μm)这一波段是摄影成像的最佳波段,也是许多卫星传感器扫描成像的常用波段。 c)天空为什么是蓝色的?太阳升起和落下时天空为什么是红色 或橘红色? 我们所看到的蓝天是因为空气分子和其他微粒对入射的太阳光进行选择性散射的结果。当微粒的直径小于可见光波长时,散射强度和波长的4次方成反比,不同波长的光被散射的比例不同。当太阳光进入大气后,空气分子和微粒(尘埃、水滴、冰晶等)会将太阳光向四周散射。组成太阳光的红、橙、黄、绿、蓝、靛、紫7种光中,红光波长最长,紫光波长最短。 波长比较长的红光透射性最大,大部分能够直接透过大气中的微粒射向地面。而波长较短的蓝、靛、紫等色光,很容易被大气中的微粒散射。因此晴天天空是蔚蓝的。 当太阳将要落山时,太阳光穿透大气层到达观察者所经过的路程要比中午时长得多,更多的光被散射和反射,所以光线也没有中午时明亮。因为在到达所观察的地方,波长较短的光——蓝色和紫色的光几乎已经散射殆尽,只剩下橙色和红色的光,所以随着太阳慢慢落下,天空看起来也从橙色变成红色。 同样道理,当太阳升起的时候,也是橙色或者红色的。 d)为什么要进行大气校正?

高光谱遥感影像的光谱匹配算法研究概要

https://www.doczj.com/doc/0f4916957.html, 中国科技论文在线高光谱遥感影像的光谱匹配算法研究 蔡燕1,梅玲2作者简介:蔡燕,(1984-),女,硕士研究生,主要研究方向:高光谱遥感 通信联系人:梅玲,(1984-),女,助理工程师,主要研究方向:水文地质. E-mail: meilingcumt@https://www.doczj.com/doc/0f4916957.html, (1. 中国矿业大学环境与测绘学院,江苏徐州 221008; 2. 江苏煤炭地质勘探四队,南京 210046) 摘要:在高光谱遥感影像处理中,光谱匹配技术是高光谱地物识别的关键技术之一。本文主要围绕光谱匹配算法的研究展开,分析讨论了常用的几种光谱匹配技术的特点,根据先验知识建立了多种地物标准光谱库,并将其读入程序存储,基于Visual C++平台实现了最小距离匹配,光谱角度匹配,四值编码匹配法,最后基于混淆矩阵对分类图像进行精度比较分析并对三种编码匹配法进行比较。 关键词:高光谱;光谱匹配;最小距离匹配;光谱角度匹配;四值编码 中图分类号:TP751 The Study on the Spectral Matching Technique of hyperspectral romote sensing Cai Yan1, Mei Ling2 (1. School Of Environment Science and Spatial Informatics China University of Mining and Technology, JiangSu XuZhou 221008;

2. JiangSu Geological Prospecting Team Four, NanJing 210046 Abstract: In the hyperspectral image processing, the spectral match technique is one of key techniques to identify and classify materials in the image. This paper addresses some issues of spectral matching methods. Several algorithms are analyzed and compared, such as minimum distance matching, spectral angle mapping and quad-encoding. According to the prior knowledge, standard spectral library including typical land-cover types is built, which is stored and used for spectral matching. All of work is done in the programming environment of Visual C++. Finally, the experimental results are tested and compared when classification accuracies are computed based on confusion matrixes. Keywords:hyperspectral; spectral match; minimum distance matching; spectral angle mapping; quad-encoding 0 引言 高光谱遥感技术的发展和广泛应用是20世纪最具有标志性的科学技术成就之一,与传统的多光谱遥感技术相比,高光谱分辨率遥感的核心特点是图谱合一,即能获取目标的连续窄波段的图像数据[1]。高光谱遥感信息的分析处理集中于光谱 维上进行图像信息的展开和定量分析。 高光谱影像分类与地物识别是建立在传统的遥感图像分类算法基础之上,结合高光谱数据特点,对高光谱图像数据进行目标识别,是对遥感图像基本分类方法的扩展与延伸。高光谱遥感影像有着很高的光谱分辨率,且光谱通道连续,因此对于影像中的任一像元均能获取一条平滑而完整的光谱曲线,将其与地物波谱库中的光谱曲线进行匹配运算,实现地物识别与定量反演[2-4]。光谱匹配技术是成像光谱地物识别的关键技术之一,主要通过对地物光谱与参考光谱的匹配或地物光谱与数据库的比较,求算他们之间的相似性或差异性,突出特征谱段,有小提取光谱维信息,以便对地物特征进行详细分析[5]。本文紧紧围绕光谱匹配的算法分析了最小 距离法,光谱角度匹配法,以及四值编码法,进行精度分析与方法比较。

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

高光谱图像分类讲解学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统

高光谱遥感数据处理基础

泛函分析概括 高光谱遥感应用中,如何度量光谱间的相似性一直高光谱图象处理的核心问题,因而我们有必要先交代下度量空间的一些概念。 度量空间:所谓度量空间,就是指对偶(,)X d ,其中X 是一个集合,d 是X 上的一个度量(或X 上的距离函数),即d 是定义在X X ?上且对所有,,X ∈x y z 满足以下四条公理的函数: (1) d 是实值、有限和非负的。 (2) 当且仅当=x y 时,(,)0d =x y 。 (3) (,)(,)d d =x y y x (对称性)。 (4) (,)(,)(,)d d d ≤+x y x z z y (三角不等式)。 度量空间给出来空间中元素“距离”的度量,因而使得空间中的元素可比较。但是,仍需要在空间中引入代数结构,使得元素之间可进行代数运算。因而,这里需要引入线性空间。 线性空间:所谓域(K R 或C)上的线性空间是指一个非空集合X ,且其元素,,x y (称为矢量)关于X 和K 定义了两种代数运算。这两种运算分别叫做矢量的加法与标量的乘法。 矢量的加法是,对于X 中的每一对矢量(,)x y ,与其相联系的一个矢量+x y ,叫做矢量之和。按这种方式它还具有下述性质:矢量加法是可交换的和可结合的,即对所有矢量都有 ()()+=+++=++x y y x x y z x y z 此外存在零矢量,X ∈0并对每个矢量x ,存在有-x ,使得对一切矢量有 ()+=+-=x 0x x x 0 矢量与标量的乘法是,对于每个矢量x 和每个标量α,与其相联系的一个矢量αx ,叫做α与x 之积。按这种方式对一切,x y 和标量,,αβ具有

()()1αβαβ==x x x x 和分配律 ()()ααααβαβ+=++=+x y x y x x y 在很多情况下因为线性空间X 上定义了度量d ,所以X 同时也是一个度量空间。然而,如果X 的代数结构与度量没有什么关系的话,我们就不能指望把代数的概念和度量的概念结合在一起。为了保证X 的代数性质与几何性质有如此的关系,我们首先需要引入一个辅助的所谓“范数”的概念,其中要用到线性空间的代数运算。然后再用范数诱导出我们希望的度量d ,这一想法就导出了赋范空间的概念。简单的说,赋范空间把线性空间的代数结构和其作为度量空间的度量紧密结合在一起。 赋范空间:所谓赋范空间X ,就是指在其上定义了范数的线性空间X 。而所谓线性空间X 上的范数,就是指定义在X 上的一个实值函数,它在X ∈x 的值记为x ,并且具有如下性质: (1)0≥x (2)0=?=x x 0 (3)αα=x x (4)+≤+x y x y 其中,x y 是X 中的任意矢量,α为任意标量。 巴拿赫空间:所谓巴拿赫空间就是完备的赋范空间(这里的完备性是按范数定义的度量来衡量的,见下面公式) (,)d =-x y x y ,X ∈x y 此度量叫做由范数所诱导的度量。 由范数所诱导的度量具备以下基本性质: 引理(平移不变性):在赋范空间X 上,由范数诱导的度量d ,对所有的,X ∈x y 及每个标量α,都满足

高光谱图像简介

高光谱遥感是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据,高光谱遥感技术作为20世纪80年代兴起的对地观测技术,始于成像光谱仪的研究计划。 目前,我国研制的224波段的推扫高光谱成像仪(PHI)与128波段的实用型模块化机载成像光谱仪(OMIS)已经进行了多次成功的航空遥感实验。另外,中国科学院上海技术物理研究所研制的中分辨率成像光谱仪于2002年随“神州”三号飞船发射升空,这是继美国1999年发射的EOS平台之后第二次将中分辨率成像光谱仪发送上太空,从而使中国成为世界上第二个拥有航天成像光谱仪的国家。 高光谱遥感图像和常见的二维图像不同之处在于,它在二维图像信息的基础上添加光谱维,进而形成三维的坐标空间。如果把成像光谱图像的每个波段数据都看成是一个层面,将成像光谱数据整体表达到该坐标空间,就会形成一个拥有多个层面、按波段顺序叠合构成的三维数据立方体。 高光谱遥感具有不同于传统遥感的新特点: (1)波段多——可以为每个像元提供几十、数百甚至上千个波段 (2)光谱范围窄——波段范围一般小于10nm (3)波段连续——有些传感器可以再350~2500nm的太阳光谱范围内提供几乎连续的地物光谱 (4)数据量大——随着波段数的增加,数据量呈指数增加 (5)相邻谱带间相关——由于相邻谱带间高度相关,冗余信息也相对增加,这一特点也为其降维处理(包括波段选择、特征提取等)和谱间压缩提供可能 (6)随着维数的增加,超立方体的体积集中于角端,超球体和椭球体的体积集中在外壳,该特点进一步为高光谱图像的降维和压缩处理提供了理论依据。 根据高光谱图像的特点及其相关技术处理的需要,高光谱数据与其所携带的信息一般采用如下的三种空间表达方式:图像空间、光谱空间和特征空间。 1、图像空间(有空间几何位置关系) 2、光谱空间,光谱信息 3、特征空间(在光谱空间进行取样,将得到的n个数据用一个n维向量来表示,它是表示光谱响应的另一种方式。N维向量包含了对应像素的全部光谱信息。在三种表示方法中,特征空间表示法适合于模式识别中的应用。) 高光谱遥感技术将确定物质或地物性质的光谱与揭示其空间和几何关系的图像结合在一起。 支持向量机是1992~1995年由Vapnik等人在统计学习理论的基础上提出来的一种新的模式识别方法。SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。目前SVM已经被广泛应用于解决高维数据的监督分类中。支持向量机的核心思想是以构造风险最小化思想为归纳原则,通过非线性映射把样本投影到高维特征空间,在高维空间中构造VC维尽可能低的最优分类面,使分类风险上界最小化,从而使分类器对未知样本具有最优的推广能力。 我国尚未解决的SVM问题:目前支持向量机应用中,判别阈值都是以理论值0作为阈值,这在线性支持向量机情况下不会产生偏差,但是在非线性情况下,由于核函数的引进,SVM 的分类判别阈值会发生偏移而不再保持为0.这样仍然采用0作为阈值,势必会影响分类效

相关主题
文本预览
相关文档 最新文档