当前位置:文档之家› 原子钟8130 Militarized Rubidium Frequency Standard

原子钟8130 Militarized Rubidium Frequency Standard

原子钟8130 Militarized Rubidium Frequency Standard
原子钟8130 Militarized Rubidium Frequency Standard

8130 Militarized Rubidium Frequency Standard

OPERA TING MANUAL 8130A M

ILIT

ARIZED R

UBIDIUM

F

REQUENCY

S

T

ANDARD #14830-201, Rev C

8130A Militarized Rubidium Frequency Standard TABLE OF CONTENTS

CHAPTER ONE

Introduction/Product Overview4

Purpose of Equipment5

Options5

Preparation for Shipment6

Contact Information8

CHAPTER TWO

Installation and Operation9

Mounting9

Basic Operation9

Installation10

Connections10

Analog Monitors14

Digital Monitors16

Status Monitors17

CHAPTER THREE

Frequency Adjustments19

CHAPTER FOUR

Use of RS-232 Terminal/Emulator21

Introduction21

Setup21

User Interface Command Syntax24

User Interface Commands25

Software Description27

Command Description28

CHAPTER FIVE

Specifications30

INTRODUCTION/PRODUCT OVERVIEW

This Operating Manual contains procedures and descriptive information for proper installation and operation of the Symmetricom 8130A Militarized Rubidium Frequency Standard.

OPERATING MANUAL SUMMARY

This Operating Manual is divided into the following chapters:

A.CHAPTER ONE – INTRODUCTION/PRODUCT OVERVIEW

This chapter includes a general description of the Symmetricom 8130A and provides some basic product information.

B.CHAPTER TWO – INSTALLATION AND OPERATION

Describes initial inspection; installation and operation of the Symmetricom 8130A.

C.CHAPTER THREE – FREQUENCY ADJUSTMENTS

Describes the procedures for the three means of frequency adjustment.

C.CHAPTER FOUR – USE OF RS-232 TERMINAL/EMULATOR

Describes command structure and rules for using the serial RS-232 port.

D.CHAPTER FIVE – SPECIFICATIONS

Describes the detailed specifications for the 8130A

Chapter One

8130A

8130A

PURPOSE OF EQUIPMENT

The Symmetricom 8130A Militarized Rubidium Frequency Standard is an enhanced version of the pop-

ular M-100 Rubidium Oscillator. This modern off-the-shelf militarized rubidium frequency standard is

ideal for use in tactical applications where shock, vibration, humidity and other environmental factors

are a challenge. The circuit boards are conformally coated for moisture resistance, and special pre-

cautions are taken for improved shock and vibration hardening. Use of a filtered power/monitor con-

nector minimizes EMI emissions and susceptibility. Designed for ease of integration into frequency and

time systems, the Symmetricom Model 8130A offers a smaller size militarized rubidium clock with a

heritage of over 25 years of proven experience in the design, qualification and production of atomic fre-

quency references.

FEATURES

Some of the important features of the Symmetricom 8130A are as follows:

? Modern Militarized Design

? COTS/SMD/PEM Devices for Lower Cost, Enhanced Features and Improved Performance

? RS-232 Digital Control and Monitoring

? Ruggedized High-Performance Rb Physics Package

? Dual 5 or 10 MHz Sine or Square Wave Outputs

? Separate Heater and Electronic Power Lines

? +15 or +22 to 32 Vdc Power Options

? Low Phase Noise Option

? Internal Temperature Compensation Option

OPTIONS

The Symmetricom 8130A is available with several options, including operation from +15 Vdc condi-

tioned power, 5 or 10 MHz sine or square wave outputs, low phase noise, and internal temperature

compensation. Unless stated otherwise, this Operating Manual assumes the standard Symmetricom

8130A configuration that operates from +22 to +32 Vdc, has 5 and 10MHz sine wave outputs with nor-

mal phase noise, and no internal temperature compensation. All currently-available Symmetricom

8130A configurations have a 15-pin male subminiature "D" power/monitor connector with the pin

assignments shown in Table 2-2 in Chapter Two.

8130A

PREPARATION FOR SHIPMENT

To turn off the Symmetricom 8130A prior to shipment, remove all connections from the front panel.

Package the instrument in its original packing if possible. If the original packing materials are not

available, pack in a reinforced cardboard carton using foam to take up any space inside the carton.

Do not use foam popcorn or crushed paper for packing, and follow normal ESD preacuations.

If the instrument is being returned to Symmetricom, contact the Service Department at (800) 938-9888

to advise of the product return.

TYPOGRAPHICAL AND OTHER CONVENTIONS

This Operating Manual uses the following conventions:

Acronyms and Abbreviations – Terms are spelled out the first time they appear in this

Operating Manual. Thereafter, only the acronym or abbreviation is used. In addition, the glossary

defines the acronyms and abbreviations.

Table 1-1 describes the typographical conventions that this Operating Manual uses to

distinguish between the different types of information according to how they are used.

TABLE 1-1. TYPOGRAPHICAL CONVENTIONS

8130A

WARNINGS, CAUTIONS, RECOMMENDATIONS, AND NOTES

Warnings, Cautions, Recommendations, and Notes attract attention to essential or critical

information in this Operating Manual. The types of information included in each are explained as

follows:

WARNING …

All warnings have this symbol. Do not disregard warnings. They are installation,

operation, or maintenance procedures, practices, or statements that if not strictly

observed, may result in personal injury or loss of life.

ELECTRICAL SHOCK HAZARD …

All electrical shock hazard warnings have this symbol. To avoid serious personal injury

or death, do not disregard electrical shock hazard warnings. They are installation,

operation, or maintenance procedures, practices, or statements that if not strictly

observed, may result in personal injury or loss of life.

CAUTION …

All cautions have this symbol. Do not disregard cautions. They are installation, operation,

or maintenance procedures, practices, conditions, or statements that if not strictly

observed, may result in damage to or destruction of equipment or may cause a long-term

health hazard.

CAUTION …

All Electrostatic Discharge (ESD) cautions have this symbol. They are installation,

operation, or maintenance procedures, practices, conditions, or statements that if not

strictly observed, may result in electrostatic discharge damage to, or destruction of,

static sensitive components of the equipment.

RECOMMENDATION …

All recommendations have this symbol. Recommendations indicate manufacturer-tested

methods or known functionality. They contain installation, operation, or maintenance

procedures, practices, conditions, or statements that provide you with important

information for optimum performance results.

NOTE …

All notes have this symbol. Notes contain installation, operation, or maintenance

procedures, practices, conditions, or statements that alert you to important information

which may make your task easier or increase your understanding.

8130A

WHERE TO FIND ANSWERS TO PRODUCT AND DOCUMENT QUESTIONS

If you believe that this product is not performing as expected, or if you have comments about

this Operating Manual, please contact your Symmetricom representative or sales office

We appreciate your suggestions on ways to improve this Operating Manual. Please mark or write

your suggestions on a copy of the page and mail or fax it to …

Symmetricom – Timing, Test & Measurement

3750 Westwind Boulevard

Santa Rosa, CA 95403

US Toll Free:1-888-367-7966

Phone:+1-707-528-1230

Fax:+1-707-527-6640

E-mail:ttmsales@https://www.doczj.com/doc/0718317063.html,

Thank you for providing the information.

NOTE …

Symmetricom offers a number of applicable training courses designed to enhance

product usability. Contact your Symmetricom representative or sales office for a

complete list of courses and outlines.

8130A Chapter Two

INSTALLATION AND OPERATION

MOUNTING

The 8130A is designed to be mounted on its bottom plate, using 4 tapped #8 holes, as shown in Figure

2-1. This mounting surface also serves as a means of heat transfer. The unit is specified for operation

to +68oC baseplate temperature, and the corresponding upper ambient temperature limit will depend

on the thermal properties of the 8130A mounting arrangement. The use of a thermal pad between the

bottom of the 8130A and its heat sink is recommended. Access to the front of the unit is required for

power and RF connections.

FIGURE 2-1. MODEL 8130A OUTLINE DRAWING Array

BASIC OPERATION

8130A operation requires only the application of DC power. After a short warm-up time, high stability 5

or 10 MHz standard frequency outputs are available. The power supply for the unit must be capable

of supplying +22 to +32 Vdc (+28 Vdc nominal) at 1.5 A.

8130A

INSTALLATION

Installation of the 8130A requires that the unit be mounted as described above, and connected to the

host system as described below.

CONNECTIONS

The 8130A has three connectors, a 15-pin male subminiature "D" power/monitor connector (J1) and

two SMA receptacle RF output connectors (J2 and J3), as shown in Figure 2-2. Detailed information

about these connectors is shown in Tables 2-1 and 2-2.

FIGURE 2-2. SYMMETRICOM 8130A CONNECTIONS

8130A TABLE 2-1. SYMMETRICOM 8130A CONNECTOR TYPES

TABLE 2-2. SYMMETRICOM 8130A CONNECTOR PINOUTS

8130A NOTES …

[1]The electronic and heater power leads are not common.

[2]The electronic and heater voltage is normally +22 to +32 Vdc, (+28 Vdc nominal), but

may be +15 ±0.5 Vdc as an option.

[3]The heater monitors are voltages proportional to the heater currents.

[4]This pin may be used instead for the optional external C-field voltage.

[5]The DC returns are common, apply to all signals, and are connected to the

chassis ground.The heater and electronic returns may be separated as an option.

[6]The TX and RX designations are from the perspective of the Symmetricom 8130A.

Standard bipolar RS-232 levels are used.

[7]The PLL monitor applies to the low noise OCVCXO option.

[8]These pins may be used for other options.

[9] Lock = 0V, unlock = +5V, open collector and reverse logic optional.

J1 POWER, MONITOR AND CONTROL CONNECTIONS

The 8130A J1 power/monitor/control connections are shown in Table 2-2. The only J1 connections

necessary for operation are those to the external DC power supply (pins 1, 7, 8 and 9). The other con-

nections are for optional monitoring and control purposes.

POWER INPUT

The 8130A requires a power supply voltage between +22 and +32 Vdc. Pins 1 and 7 (the heater and

electronic power connections respectively) are normally connected together externally, and should be

connected to the positive lead of a 28 V nominal DC power supply. Pins 8 and 9 (the DC return and

case ground) are connected together internally, and either or (preferable) both should be connected

to the negative lead of the power supply. No internal ground (case) isolation is provided, although this

could be accomplished externally by mounting the unit on an electrical insulator (with consideration

given to the thermal resistance added thereby). Reverse polarity protection is provided by a series

diode, and transient over-voltage protection is provided by a 33-47 V zener diode. The power source

should by current-limited or fused. The maximum supply current is 1.3 A at +32 Vdc during warm-up.

Under steady-state conditions (after the physics package ovens are in control), the power consump-

tion will depend inversely on the baseplate temperature. At constant baseplate temperature, because

the oven power is constant, and an internal DC/DC converter conditions the electronic power, the total

power is essentially independent of supply voltage. A skeleton schematic of the DC input circuit is

shown in Figure 2-3.

8130A FIGURE 2-3. POWER INTERFACE

8130A

ANALOG MONITORS

The 8130A has eight analog monitors that may be used to determine its status. These monitors are

described in Table 2-3.

TABLE 2-3. ANALOG MONITORS

While it is not necessary to do anything with these monitors, it is recommended that, at a minimum,

the Lock (BITE) signal be used to indicate that the unit is functioning properly. A skeleton schematic of

the analog and status monitors is shown in Figure 2-4a.

8130A FIGURE 2-4A. ANALOG AND STATUS MONITORS

8130A

DIGITAL MONITORS

The digital monitors provide a 2-byte (4 hex character) number with a 0 to 4095 count range that

corresponds to a value of 0 to 2.048 volts. This value can be scaled as shown in the table below to

provide the actual monitor reading These monitors are produced by a 12-bit analog-to-digital converter

data acquisition system and are described in Table 2-4.

TABLE 2-4. DIGITAL MONITORS

In addition, the unit has a temperature monitor that indicates the temperature on the motherboard. It

is representative of the internal ambient temperature and is used as the basis for the internal temper-

ature compensation.

It is not necessary to do anything with these monitors.

8130A

STATUS MONITORS

The 8130A has five digital status monitors that may be used to determine its status, as described in

Table 2-5.

TABLE 2-5. STATUS MONITORS

C-FIELD VOLTAGE

The external C-field voltage input can be used to make analog frequency adjustments (such as locking

the Symmetricom 8130A to a GPS time and frequency reference). This control characteristic is shown

in Figure 2-5.

FIGURE 2-5. SYMMETRICOM 8130A C-FIELD CHARACTERISTIC

8130A

RS-232 INTERFACE

The RS-232 interface can be used be used for control and monitoring purposes. Its main function is to

make frequency adjustments. See Chapter Four for detailed information about using the RS-232 user

interface through the Windows Terminal Emulator.

FUNCTIONAL TEST SETUP

A typical 8130A functional test setup is shown in Figure 2-6. Connections to the 8130A power, monitor

and control leads can be facilitated with a breakout box. This device connects between an 8130A

under test, its power supply, a PC serial port, an oscilloscope and a digital voltmeter. The PC can use

a terminal emulation or other program to communicate with the 8130A via its RS-232 interface. In

addition, the oscilloscope can observe the Rb signal, and the digital voltmeter can measure the vari-

ous RFS monitors, and its heater and electronic DC supply currents via the 4-terminal current sensing

resistors.

FIGURE 2-6. 8130A FUNCTIONAL TEST SETUP

8130A Chapter Three

FREQUENCY ADJUSTMENTS

The Symmetricom 8130A has three means of frequency adjustment:

1.RS-232 user interface

2.Analog C-field voltage

3.C-Field circuit resistance

The preferred frequency adjustment method is via the RS-232 user interface using a terminal emulator

or other program that implements the following (upper-case ASCII) commands:

F Read frequency

I Increment frequency

D Decrement frequency

W Write frequency

X Store frequency

The F and W commands each transmit or receive 32 bits (4-bytes) of tuning data as 8 ASCII hex char-

acters to or from the external terminal. The I and D commands make up/down tuning adjustments in

steps of about 3.41x10-13. The X command causes the current tuning data to be permanently stored in

the EEPROM memory within the Symmetricom 8130A.

The analog C-field interface implements a traditional means of frequency adjustment whereby the

value of the internal physics package DC magnetic bias field can be varied. In the Symmetricom

8130A, this adjustment is deliberately limited to a range of about ±5x10-10to reduce sensitivity to exter-

nal magnetic fields. Coarse frequency adjustments must be made with the self-contained digital fre-

quency synthesizer. Fine analog adjustments are supported for applications such as locking the unit

to an external reference or GPS receiver.

The Symmetricom 8130A C-field tuning characteristic is:

Relative Frequency, pp1010 = [(V ext+ 6.9)2? 4.43x10-2] – 8.43

which is plotted in Figure 3-1 below.

The Symmetricom 8130A does not have an internal frequency adjustment potentiometer. If a means

for mechanical frequency adjustment is needed, it can be implemented by connecting a variable

resistance between the J1 Pin 12 C-Field connection and ground. Because of the limited adjustment

range, this method of frequency adjustment is intended only to supplement, not replace, the digital

interface.

8130A If not used for voltage or resistance tuning, the C-Field pin is normally not connected. While it can be

used to monitor the internal C-field reference voltage, for best stability, it should not be externally

loaded.

FIGURE 3-1. C-FIELD CHARACTERISTIC

8130A Chapter Four

USE OF RS-232 TERMINAL/EMULATOR

INTRODUCTION

The most basic way to communicate with a Symmetricom 8130A Rubidium Frequency Standard via its

user interface is by means of an RS-232 terminal or terminal emulator. This can be useful to test the

interface, to perform simple operations, or to control the unit automatically. For example, sending the

"N" command will provide the serial number of the unit, and sending the A00 01 command will turn on

the internal temperature compensation. The screen of a PC running the Microsoft Terminal program

and connected to an 8130A is shown in Figure 4-1 below.

FIGURE 4-1. MICROSOFT TERMINAL PROGRAM

SETUP

Before the 8130A RS-232 interface can be used, the unit must be connected via a custom cable to the

serial port of an RS-232 terminal (or a PC running a terminal emulator program). Three wires are

required (in addition to those supplying power to the unit and providing other control and monitoring

functions), as shown below:

Signal Name 8130A PC Serial Port

& Abbreviation J2 Pin 9-Pin25-Pin

Transmit Data TD1132

Receive Data RD10 23

Signal Ground SG8 & 957

科研阅读大作业 光钟相关技术研究进展

光钟相关技术研究进展 1.时间频率标准 1.1时间频率标准发展历史 时间和授时系统是人类文明发展中的一个重要组成部分,很难想象如果没有了钟、手表或者手机来告诉我们时间,我们的生活将会怎样?在进行时间测量时,人们总是选取某种周期运动过程。人类进行测量时间的周期运动过程大体可分为三类[1]:一、转动体的自由旋转。如地球自转,由此导出了恒星时系统和太阳时系统,后者演变为应用广泛的世界时系统;二、开普勒运动。即伴星体在引力作用下绕主星体轨道运动,例如地球绕太阳的运动,月球绕地球的运动,由此导出了历书时系统;三、谐波振荡。绝大多数机械钟和电子钟所依据的振荡运动都属于此类,包括原子辐射或吸收电磁波的振荡运动,其中前两类周期运动是天文学测量时间的基础,第三类谐波振荡产生了一般意义上的时钟,以原子钟最为精确。 直到1928年,时间才有了明确的定义。国际天文学协会(The InternationalAstronomicalUnion)推荐由天文年鉴来确定时间,称为“世界时”。而对于时间的基本单位“秒”的国际定义当时还没有,直到20年后才形成。20世纪50年代,1秒被定义为1个平均太阳日的1 /86400;然而,由于太阳日在一年中并非完全相同,所以在1956 年国际单位制“秒”被修改成1900年1月1日历书12时开始地球公转一周时间的1/31556925.9747,该定义在1960年的第11届国际计量大会(the General Conference on WeightsandMeasure, CGPM)上被批准通过。 随着原子物理的发展,科学家们认识到那些未受干扰的原子的能级跃迁可以提供近乎完美的时间标准,其非常尖锐的共振跃迁可以用作为频率参考基准。由于频率是时间的倒数,所以时间标准本质等价于频率标准。因此时间/频率标准的本质是将一个稳定度尽可能好、频谱尽可能纯的电磁波(光波、微波)频率锁定到一个频率稳定度最好、准确度最高的参考谐振频率上。经过多年努力,“秒”终于脱离了地球物理学的范畴,在1967的第13届国际计量大会上,第一次由原子时间来定义“秒”,即铯原子133同位素基态的两个超精细能级之间跃迁所对应的辐射波的9192631770个周期所持续的时间[2]。由秒定义可知其跃迁频率在微波频段,约9GHz,因此利用微波跃迁频率建立起来的时间/频率标准有时称为“原子微波钟”,我们现行的秒定义就是基于该跃迁的“微波钟”,这一定义一直延续至今。 1.2原子钟简述 所谓原子钟,就是利用量子力学原理制成的高稳定度和高准确度的时间/频率信号产生系统。由于跃迁波长的不同,原子钟又可分为微波钟和光钟,它们都是由振荡器和计数器两个基本部分组成。原子钟主要有两个性能指标:不确定度和稳定度都是相对值。其中不确定度表示原子钟输出频率与标称频率值的符合程度,稳定度表示在取样时间内原子钟输出频率的变化程度。 如图1所示为原子钟的基本原理图[3]。本地振荡(本振)发出的频率信号通过频率综合系统,将信号频率转换到原子跃迁线附近。将此信号输入原子系统,使原子与辐射场发生相互作用。辐射场频率偏离原子跃迁线频率的大小和方向决定着原子在不同能级间布居数的变化,通过探测布居数的变化得到鉴频信号。鉴频信号再通过伺服电路得到反馈信号,将反馈信号输出至本振,使其对本振的频率进行纠正。本振同时还会向外输出信号,经过上述反馈控制作用,该输出信号即为频率稳定在原子跃迁线上的信号。

用于GNSS的SpT星载原子钟及时间系统介绍

第36卷第10期2011年10月武汉大学学报 信息科学版 Geo matics and Informat ion Science of W uhan U niver sity Vo l.36N o.10 Oct.2011 收稿日期:2011-09-12。 文章编号:1671-8860(2011)10-1177-05文献标志码:A 用于GNSS 的SpT 星载原子钟及时间系统介绍 王庆华1 Droz Fabien 1 Rochat Pascal 1 (1 S pectraT ime 公司,Vauseyon 29,瑞士纳沙泰尔,2000,瑞士) 摘 要:研究了空间铷钟和被动型氢钟的地面批量和寿命试验测试结果,以及卫星在轨试验所达到的最新性能结果。基于这些星载钟的试验结果,对全球卫星导航系统的地面时间站的关键设备及其相关算法作了简要描述,并介绍了一种新颖的在轨技术,即从星载原子钟组(ON CLE)直接产生高度稳健的时间频率信号。关键词:星载原子钟;卫星导航系统;氢钟;铷钟;时间系统中图法分类号:P228.42 准确及高稳定度的宇航级原子钟是精密卫星导航系统中的关键设备,现有的美国全球定位系统(GPS )和俄罗斯全球导航卫星系统(GLONASS),以及即将到来的中国北斗卫星导航系统、欧洲伽利略卫星导航系统、印度区域性卫星导航系统(IRNSS )和日本准天顶卫星系统(QZSS)都装载着不同类型的原子钟。 宇航级原子钟必须满足从发射到多年自动运行条件下的严格要求:确保在整个项目寿命期间满意可靠的工作性能,满足对其质量、体积及功耗的限制,经受发射环境(如冲击、加速度、振动)和工作环境(真空、热循环、电磁干扰和电磁兼容、辐射、磁场及其他空间危害)的能力。 不同航天任务对空间原子钟类型的选择是通过对可靠性、质量、性能及价格等诸多因素综合权衡后的结果。表1列出了各导航系统中应用的不同类型的星载原子钟,其中伽利略星载钟的选择考虑到可靠性(技术多样性)和12a 伽利略任务的寿命要求,采用了 双钟技术 。 表1 不同导航卫星系统中的星载原子钟T ab.1 Onbo ard A tomic Clo cks on Different Nav igat ion Systems 美国GPS 俄罗斯GLONASS 欧洲伽利略中国北斗印度IRNSS 日本QZSS 铷钟铯钟 氢钟铷钟 铷钟 铷钟 铯钟铷钟 (未用于GPS IIR) SpectraTime 公司(SpT ,原T em ex Neuch -a ^tel Time 公司)为欧洲、中国和印度的多个导航系统以及其他空间项目提供空间铷钟和被动型氢钟[1],并为全球卫星导航系统的地面精密时间主站和未来星载频率系统提供高性能的时频同步设备和解决方案。 SpT (Spectra T ime)公司为多个导航系统(欧洲、中国和印度)及其他空间项目提供空间铷钟和被动型氢钟。伽利略在轨验证试验卫星(GIOVE)于2005-12和2008-04的两次发射,以及北斗卫星的相继发射,使这两种原子钟技术拥有了若干年的飞行经历。迄今为止(2011-01)SpT 公司已生产交付了60多台铷钟和15台被动型氢钟的飞行件,并进行了批量钟的特性鉴定。 1 空间铷钟(RAFS)和被动型氢钟 (PHM) 伽利略在轨验证试验卫星(GIOV E)于2005-12和2008-04的两次发射,以及北斗卫星自2009-04的相继发射,使这两种原子钟技术拥有了若干年的飞行经历。迄今为止SpT 公司已生产交付了60多台铷钟和15台氢钟的飞行件(正样),并进行了批量钟的特性鉴定。1.1 铷钟地面性能 在于1991年启动的为Radio -Astron 航天任务设计的铷钟基础上,SpT 公司自1996年起开展了铷钟在导航领域的研制工作。

从访谈看我国原子钟研制水平

从访谈看我国原子钟研制水平 弄虚作假,夸大其词——真TM恶心! 编者按:十年前,国家为落实“科教兴国“的伟大战略,启动了在中国教育和科学发展史上具有开创性意义的“211工程”。工程的实施,在学科建设、人才培养、科技创新等方面为北京大学这样一所百年名校的发展,提供了重要的物质支持和精神支撑。在短短的十年左右的时间中,全体师生团结进取,开拓创新,以奋发向上的精神面貌和丰硕的学术科研成果,为中华民族的进步不断作出着新的贡献。我们将陆续推出——回眸北大“211工程”的系列报道,让大家在了解和思考中,进一步增强建设世界一流大学的豪情壮志,在新阶段的历史征程中,不负国家和人民的期望,书写更加辉煌的篇章。 2006年4 月17,18号北京大学将接受“211”工程二期项目的验收。“构建新一代原子钟研究平台”正是“211工程”中重要的一个项目。在迎接验收前夕,记者特地采访了该项目的带头人、北京大学信息科学技术学院副院长、博士生导师、量子电子学研究所所长、教育部量子信息与测量实验室主任陈徐宗教授。 记者:陈教授您好!首先非常感谢您在百忙中接受我的采访!您知道再过10天我们北京大学就要接受“211”工程二期项目的验收,您可以谈一下在过去几年中我们这个项目获得“211”工程资助的资金数额以及在这些资金的资助下推动了哪些研究项目,进展如何呢? 陈教授(以下简称陈):好的,我也正想利用这个机会向大家汇报一下。在过去几年中我们这个项目获得了“211工程”二期资金300百万,利用这批资金我们主要做了三件事: 第一,研制成功我国(也是世界上)第一个长期连续运转的光轴运铯原子钟(至今已连续运转2年多),长期稳定度达:10-10,准确度到达10-11打破了美国等的禁运,满足国内地面高精度小型化原子钟的需求;第二,研制出高性能的铷原子钟,使铷原子钟稳定度从目前的1×10-13/日提高到2-3×10-14/日的国际先进水平,该原子钟已被选为我国二代卫星导航系统的核心部分; 第三,我们建立了新型原子钟的基础研究平台,该平台可以开展以超冷原子与超高精度光学梳状发生器为基础的新型原子钟研究,取得的成果为: (1)实现了玻色—爱因斯坦凝聚,获得了中国稳定最低的物质材料,温度为50纳开尔文,而绝对零度是0开尔文,我们知道绝对零度是无法实现只能靠近。 (2)实现了多种原子激光(包括:脉冲原子激光、连续原子激光、准联系原子激光、磁场加速原子激光等)。国际上共有43个实验室获得了玻色—爱因斯坦凝聚,其中只有8个获得了脉冲原子激光,我们北大量子电子实验室就是其中之一。而连续原子激光世界上只有2个实验室获得,一个是2005年诺贝尔物理学奖获得者德国慕尼黑大学教授、马克斯普朗克-l量子光学研究所所长Theodor.W.Hansch教授领导的小组,另一个就是我们北大的实验室。 (3)建立了高精度飞秒锁相光梳与半导体激光频率标准测量系统。利用此平台,我们获得了国际973项目:“超冷原子光晶格微波原子钟”、“主动式钙原子光钟”、“主动式钙原子光钟”与国家自然科学重大基金项目“光学频率向微波频率精密传递”等项目的支持。 记者:听了陈教授的介绍,真是欢欣鼓舞!陈教授,我对您刚才提到的一些比较专业的术语比如玻色—爱因斯坦凝聚、一些数据的实际概念都不是完全了解。另外我也想问一下原子钟的工作原理。 陈:首先玻色—爱因斯坦凝聚是爱因斯坦在70年前提出的,我们知道在常温下原子是很活跃的,很难控制,而到达一定低温后所有的原子会表现出同一个状态形成一种“凝聚”。打个不恰当的比方——本来操场上有很多穿着各种衣服在锻炼的同学,他们打球、踢球、跑步等等,而现在让他们都穿上统一服装做广播体操,并且假设每个人都是一模一样的。而玻色—爱因斯坦凝聚状态下的原子就类似这个情形。至于上面所说的一些数据,10-12也就是说原子钟30万年差一秒,我们现在研制成功的10-15也就是说3000万年差一秒。 而天稳定度我们这样说吧,卫星在运转过程会出现偏差,每天都要调整,如果卫星携带的原子钟天稳定度高,那么调整幅度就比较小,调整起来就比较方便。至于原子钟的工作原理嘛,我们知道电子在原子内进

大象版小学科学,五年级上册第二单元《时间的脚步》(弋增涛)

第二单元时间的脚步 课题:精确时间的步伐 课时:1课时 设计者:郑州市中原区伊河路小学弋增涛 【目标确定的依据】 一、课程标准相关要求 《课程标准(2011年版)》与本课内容相关的要求是: (一)探究能力 1.会查阅书刊及其他信息源。 2.能利用简单表格、图形、统计等方法整理有关资料。 3.懂得交流与讨论可以引发新的想法。 4.能对自己或小组提出的探究问题作出书面解释。 (二)科学概念 1.以一定的时间间隔,自然界中一些事件规律性地出现。 2.在一年中,每天太阳光照射形成的物体阴影的位置和形状在有规律地改变。 3.测量物体可以帮助人们对不同的物体和现象进行比较。 (三)情感态度与价值观 1.想知道,爱提问。 2.愿意合作与交流。 3.尊重他人的劳动成果。 二、教材分析 《精确时间的步伐》是本单元的第一课,是全单元的总领部分。本课侧重于引导学生通过对钟表资料的广泛搜集、查找以及对各种钟表问题的探讨,丰富学生的钟表知识,加深对钟表的认识,为之后的三课做好知识上的铺垫和准备。 在本课的学习中,应指导学生通过考察、查阅书刊、上网等途径获得丰富的钟表知识,对钟表有较全面、系统的认识,同时对钟表的研究产生浓厚的兴趣和探究热情。本课教学需要前期将调查任务提前布置给学生,让学生有充分的时间搜集、整理资料以备课堂交流。在课堂集

体论证环节中,注重培养学生认真倾听,积极思考、质疑的好习惯。除此之外,教材中安排的“整理汇报”、“分类”等活动更是对学生科学素养的针对性锻炼和提升。 从概念体系来看,本课所需要建立的科学概念有: 1.“时间”有时是指某一时刻,有时则表示一个时间间隔(即时长)。 2. 时间可以通过对太阳运动周期的观察和投射形成的影子来测量,一些有规律运动的装置也曾被用来计量时间。 3.长期以来,人们一直在寻求精确的计时方法,随着科学和技术的发展,人们制作的计时工具越来越精确。 三、学情分析 钟表知识与学生日常生活联系密切,但学生只是从实际体验中获得一些零碎的感性认识。对钟表知识并没有系统的了解和深入的研究,认识仅停留在表象。经调查,大部分学生对挂钟、电子表、机械手表熟知,但并不深知。学生不能够相对充分地解释出这些钟表工作的原理,并且对于一些古老的计时方法非常陌生。 对于部分物体的规律性运动变化,学生们的原有经验并不匮乏。如“滴水、摆动、影长的位置变化等”。 【学习目标】 1.通过小组交流的形式,小组成员每人至少能够说出两种计时工具的工作原理。 2.小组成员能够通过合作共同在“计时工具分类表”中将搜集到的各种计时工具根据一 定的标准分类填写出来。 3.60%的学生能够说出接近于“人类能够利用自然界中有规律运动的事物和现象帮助计时。”的观点。 4.65%的学生个人能够根据自己的兴趣对某一种计时工具有针对性地写出研究计划并展开研究。 【教学重难点】 重点: 1.指导学生根据资料在班级内进行集体交流。 2.小组内有效合作,为各种计时工具整理分类。 难点: 1. 启发学生根据各种钟表的本质特点,总结出“规律运动的事物可以帮助计时”。 2. 学生根据个人研究兴趣有计划地进行选择性研究。

LPRO-101(铷原子钟)

LPRO Rubidum Oscillator USER’S GUIDE and INTEGRATION GUIDELINES S/O/102502D LPRO Rubidium Oscillator for Time & Frequency Reference

Datum — Proprietary Copyright 2000 Datum All Rights Reserved Printed in U.S.A. This material is protected by the copyright and trade secret laws of the United States and other countries. It may not be reproduced, distributed or altered in any fashion, except in accordance with applicable agreements, contracts or licensing, without the express written consent of Datum Irvine. For permission to reproduce or distribute please contact: Publications Supervisor, Datum Irvine, 3 Parker, Irvine, CA 92618-1605. Ordering Information The ordering number of this document is S/O/102502D. To order this document, call 949 598 7600 and ask for the Datum Irvine Sales Department. Notice Every effort was made to ensure that the information in this document was complete and accurate at the time of printing. However, the information presented here is subject to change. Applicable Patents This product is protected under the following U.S. patent numbers: 4,661,782; 5,457,430; 5,489,821; 5,656,189; 5,721,514 and patents pending. Trademarks X72 is a registered trademark of Datum. Other trademarked terms may appear in this document as well. They are marked on first usage. Warranty Datum provides a 2 year warranty on this product.

最新大象版四年级科学下册第四单元一课一练习题加测试卷及答案

大象版四年级科学下册第四单元一课一练习题加测试卷及答案 第四单元精确时间的步伐 1 原子钟寻亲记 一、能谋善断 1.最小精确值单位越小,精确度越高。( ) 2.沙漏用于短时计时比较准确。( ) 3.日晷是我们现在常用的计时工具。( ) 二、火眼金睛 1.下列有关最小精确值描述正确的是( ) A.最小精确值是工具可以测量出来的最小单位 B.单位越小,精确度越低 C.沙漏的最小精确值可以达到1秒 2.下列属于计时工具的是( ) A.华表 B.日历 C.蜡烛钟 科学探究 1.整理资料:计时工具从古到今经历了多次变革,请整理搜集到的计时工具发展史的资料,并用自己喜欢的形式(如流程图、漫画、诗歌、文字介绍等)展示出来。 2.分类:面对种类繁多的事物,我们常用分类的方法来研究。对事物进行分类要依据一定的标准,比如按时间、外形特征、工作原理等。认识了这么多的计时工具,你能对它们进行分类吗? 你确定的分类标准是:________________________________________ 按照这个标准,在下面写出你的分类结果吧!

2 日晷 一、能谋善断 1.赤道式日晷的晷针只要指向北方就可以。( ) 2.在赤道式日晷的结构中,晷针与晷面平行。( ) 3.夏季太阳靠北,要从上晷面读取时间;冬季太阳靠南,要从下晷面读取时间。( ) 二、火眼金睛 1.利用天文现象来确定时辰的仪器是( ) A.原子钟 B.日晷 C.摆钟 2.在安装赤道式日晷的晷针时,以下哪一项不是我们要考虑的?( ) A.晷针朝向正北方 B.晷针仰角保持45度 C.晷针垂直插入晷面中心 科学探究 1.任务:选择合适的材料制作赤道式日晷,要求尽可能准确地计时。 选择材料和工具 2.设计:请画出你的日晷设计图。 3 水钟 一、拾遗补缺

空间冷原子钟

空间冷原子钟 从日晷、漏刻计时器(水钟、沙漏等)的出现,到摆钟、石英晶体钟的发明,人类对于时间的把握越来越精确。而从1948年第一台原子钟发明至今,人类计时的精度更是以几乎十年一个数量级的速度提高。2016年9月,由中国科学家研制的世界上第一台在轨进行科学实验的空间冷原子钟(space cold atomic clock),随着中国的天宫二号空间实验室发射升空。空间冷原子钟这一“高冷”的术语带着国人的热情与自豪,成为热词。空间冷原子钟的原理是将激光冷却原子技术与空间微重力环境相结合,在空间轨道上获得比地面上的线宽要窄一个数量级的原子钟谱线,从而进一步提高原子钟精度。这是原子钟发展史上又一个重大突破,在计量学、基础物理、守时、全球导航定位系统等方面都有非常重大的科学研究和工程应用价值。 ●中科院上海光机所研制的“空间冷原子钟”搭载“天宫二号”发射升空,将成为国际上首台在轨运行并开展科学实验的“空间冷原子钟”,同时也是目前在空间运行的最高精度的原子钟。“空间冷原子钟”将激光冷却技术和空间微重力环境结合,有望实现10-16量级的超高精度(约3000万年误差1秒),将目前人类在太空中的时间计量精度提高

1~2个数量级。――《空间冷原子钟专题》(中国科学院上海光学精密机械研究所官网,2017年9月) ●空间冷原子钟主要包括物理单元、微波单元、光学单元和控制单元四大组成部分,每个单元都有非常高的技术指标,其工作原理是利用激光冷却和俘获技术获得接近绝对零度(μK量级)的超冷原子团,然后采用移动光学黏团技术将其沿轴向抛射。在微重力环境下,原子团可以做超慢速均速直线运动。处于纯量子基态上的原子经过环形微波腔,与分离微波场两次相互作用后产生量子叠加态,经由原子双能级探测器测出处于两种量子态上的原子数比例,获得原子跃迁几率,改变微波频率即可获得原子钟的谱线Ramsey条纹。预计微重力环境下所获得的Ramsey中心谱线线宽可达0.1 Hz,比地面冷原子喷泉钟谱线窄一个数量级,利用该谱线反馈到本地振荡器即可获得高精度的时间频率标准信号。――《超高精度空间冷原子钟》(中国科学院空间应用工程与技术中心官网,2016年9月6日) ●空间冷原子钟研制和运行的成功对于基础物理学的研究及科技的应用都意义非凡,比如:空间站内的冷原子钟对卫星上的传统热原子钟进行不受地球大气影响的校准,以及与地面喷泉原子钟形成空-地、地-空、地-地的完整校准。由于卫星全球定位系统的核心技术就在于原子?的精准度,空间冷原子钟的在轨持续运行会大幅度地提高GPS的定位精

现代授时技术及其用途

现代授时技术及其用途–概述 摘要:涵盖的内容 1、基本的准备知识:单位制、频率基、标准器、频标比对方 法和测量技术。一些内容在“时间与频率测量”中学习,而针对性的频标比对和时间测量等内容在本课程中讲。教材,根据情况不断重复和复习。 2、各种可用的传输载体和途径(无线),时间–空间关系 3、时间和频率信号在授时传递中信号的特点及其处理、测量 技术(扩展) 4、重要的基础:时间同步、相位同步(同频、同相)、相位群 同步。源端和用户端的区别, 周期性(1pps)和非周期性的区别、灵活性;相互间的相关性 5、特有的授时比对方法:三种,单、双、共 6、关于授时技术的应用–其重要性反映了学习的价值。导航 定位、时间同步、电力故障检测、国防军工、航空航天等。注意时–空关系。 7、同步技术的扩展:频率准确度、稳定度的传递,例如在原 子钟等量子频标中。 8、授时、定位、导航系统中的一些关键技术:星载钟、时频 信号生成和保持、星–地、星间、地–地的同步监测等。 9、最新的技术进展 10、GPS等全球定位系统

11、 方法、实验(理解)、和科研的关系。 概述 与其他物理量在量值传递等方面很大的不同,时间和频率信号的准确传递可以借助于电磁波信号以无线的方法进行。这主要是因为光和电磁波信号传递速度的高精度以及快速的原因。 高精度传输的参考时间信号是官方的国际时间,协调世界时UTC ;高精度传输的参考频率(时间间隔)信号是国际原子时TAI 。它们都是由国际度量局BIPM 产生的。授时技术的目的是完成全部(全球)或者局部的时间的一致。 授时技术从最初主要是用于时间和频率标准器之间的准确比对及量值传递。这常常表现为频率信号的校准和时间的同步等。而近年来它也更多地被用于导航定位、通讯、大系统的管理和协调、电力传输中的故障检测等。另外,授时技术的用途也更多的表现在导航和长度的精密测量及控制方面。经过了几年对本课程的讲授,我们感觉到应该在更广义的范畴内把授时问题的内涵、相关知识、可应用的领域以及针对不同情况时的灵活应用等交待的更明白。这样才能发挥它的功能。 用符号S 表示电磁波传播的距离、V 表示电磁波传播的速度、d 表示传播延迟,则 d=V S (1) 对于天波一般取V 等于光速c ;对于地波,根据大地导电率的不同,V 不等于光速,要作相应的修正。此外,能否准确的计量出电磁波信号传播的实际距离也是确定各种发播手段准确度高低的关键。 从计量学的发展中,可以看到一条规律。也就是因为时间和频率量的高精度和便于数字化处理等优点,对于其他量值的测量和处理从高精度的考虑就有向频率或者时间量靠近的趋势。同样,又由于时间和频率量便于高精度传输的优点 (其他量值,如电压等就很难通过这样的途径准确的传输),除了利用这种传输单一地进行时间或者频率量的传递和比对外人们还千方百计地把可能转换或者以时间量值为代表情况下实现其他对象的比对、统一等目的。所以在全球定位星系统(GPS)发展的初期,就有人预测这个系统能够发挥的作用的广度和深度将取决于人们的想象力。如果说,在时间和频率领域授时技术主要的功能是完成时间的同步和频率量值的一致,那末在更广泛的领域它将以时间、相位或者频率为纽带实现不同的控制对象在大空间的统一。这里,最明显的例子就是电力系统的管理、控制和故障检测;在通讯方面对于图像和文字资料的传输所需要的系统等。 为了学习方便,我们先把本课程中的关键的缩写词汇列表如下: (有印象,不要求记;在许多文献中大量应用) BIPM: Bureau International des Poids et Mesures C/A 码:进入探测粗码(Coarse Acguisition of Clear Access) CRL: Communications Research Laboratory, Tokyo CV: Common View

原子钟证明原子是带电的

原子钟证明原子是带电的 云南曲靖云维股份大为制焦电仪黄兆荣 原子核与电子的电荷是不会抵消的,电荷是物质,物质是不会扺消的,原子核是高电位,电子是低电位,而不是正电荷和负电荷。 下面的文章是搜弧科技报道,文章就证明这一点。 原子钟是怎样工作的?2017-03-02 16:43 钟表最明显的作用就是记录时间,所有的钟表都是通过计数“谐振器”的“刻度”来做到这一点的。 在摆钟中,谐振器是钟摆,并且时钟中的齿轮通过计数钟摆的谐振(来回摆动)来跟踪时间。摆锤通常以每秒一次的摆动频率共振,时钟的精度由谐振器在指定频率的精度决定,精度最高的也只有每年一分钟左右的误差。原子钟是使用原子的谐振频率作为其谐振器的时钟,其精度高达两千万年才误差一秒。基本上,原子在吸收或发射能量时会出现共振或“振动”。 原子由原子核与外层电子组成,原子核带正电,带负电的电子绕着原子核运动。元素中的电子都处于不同的能级,即它们与原子核的距离不同。但是在每个元素中,电子只能处于一个特定的能级或“轨道”。 当电子吸收能量时,它们会跃迁到更高的能量状态(将其看成是远离原子核)。当电子释放能量时,它们会跃迁到较低能量状态(将其看成是接近原子核),损失的能量作为电磁辐射(微波、光波等)被释放出来。能量状态之间的这种跃迁就是原子钟要测量的“振荡”。 这种方法的优点是原子以非常一致的频率谐振。原子钟使用铯,每个铯原子都会以完全相同的频率共振,铯-133每秒振荡9192631770周期。这种精度与其他类型的时钟完全不同,因为它不受像温度这样的环境问题的影响——这就是原子钟如此精确的原因。 所以用铯我们的时钟可以精确到1/9192631770秒! 如何制造铯原子钟? 为了制造原子钟,首先加热铯,使得原子沸腾,沿着保持高真空的管道传送。首先,它们通过一个磁场,能筛选出处于合适能量状态的原子。然后,它们通过一个很强的微波场。微波能量的频率在一个较小频率范围内向后和向前扫描,使得在每个周期中的某一点,穿过恰好9192631770赫兹的频率。微波发生器的范围已经接近这个精确的频率,因为它来自一个精确的晶体振荡器。当铯原子接收了频率完全精确的微波能量时,它将改变其能量状态。 在管道的远端,另个一磁场把已改变能量状态的原子分离出来,前提是该微波场处于完全精确的频率。管道端部的探测器检测出与其撞击的铯原子数比例,因此当微波频率完全精确时,结果达到峰值。然后,用该峰值进行必要的微小校正,以使晶体振荡器和微波场在频率上达到准确。最后将该锁定频率除以9192631770,就得到现实中所需的每秒一个脉冲。 磁场是对带电粒子有作用力,故原子是带电的

光镊技术在原子物理和生命科学中的应用与发展

光镊技术在原子物理和生命科学中的应用与发展 信息工程系 王 坚 [摘要] 激光陷阱和控制、操作中性微小粒子的光镊技术是以光的辐射压原理为基础的,利用光与物质间动量的传递的力学效应形成三维梯度光学陷阱。光压的实际应用在20世纪激光诞生后才得以实现。由于激光突出的高方向性、高相干性、高亮度产生的辐射压高于一般的光,所以使得基于光压原理的光镊能够被发现并运用。光镊能够捕获和操纵微米尺度粒子成为捕获操纵粒子独特且有效的手段,并且这种方法在物理和生物科学等领域掀起了一场技术革命。本文简要回顾了早期光镊技术在原子物理和生命科学中的应用与发展,以及当代光镊技术研究的最新成就。 [关键词] 激光陷阱,光镊,激光 1. 引言 光镊是基于光的力学效应的一种新的物理工具,它如同一把无形的机械镊子,可实现对活细胞及细胞器的无损伤的捕获与操作。光镊的发明正适应了生命科学深入到细胞、亚细胞层次的研究趋势,也为生物工程技术提供了一种新的手段。仅仅20年光镊的应用已展示其在物理和生命科学领域中无限美好的应用前景。 2. 光镊技术原理 2.1光压原理 光镊技术是基于光压原理的,光压原理在牛顿和开普勒时期就已经提出来了但是一直都没有什么应用。光的压力原理早期只有在天文学中有些应用,德国的天文学家开普勒,在17世纪初提出彗尾之所以背向太阳的原因是,其受到了太阳辐射光压的作用力。因为只有在天文学研究中当光的强度和距离都非常大的时候,光压对物质的影响才会明显的表现出来。1873年Maxwell 从光的波动理论角度根据电磁理论推导出了光压的存在(电磁辐射压)并且给出了垂直入射到部分反射吸收体表面的光束的光压为: ()R c E p +=1 其中,E 为每秒钟垂直入射到12m 上的能量,c 为光速,R 为物体对光的反射系数。

原子钟

https://www.doczj.com/doc/0718317063.html,/AMuseum/time/index.html NPL:铯:计时技术小史 文/Justin Rowlatt 铯中心:位于科罗拉多州的信号中继站,原子钟时间信号从这里传到美国的千家万户。 作为一个化学元素,铯实际上已经重新对时间进行了定义。 自小时候到现在,在各种场合你都被告知准时很重要。现在,有了铯原子,全世界各个地方的时间都能保持准确,准确到让我们感到需要重新思考时间是什么。而且我们发现计时技术中存在一个奇怪的缺陷。事实上是在近些年来人们才意识到准确及时的重要性。并不是我们的祖先不需要知道时间,他们当然需要。几千年来,人类制造出多种多样精致的仪器来衡量时间的流逝。但事实是直到175年前,在那之前的几千年里,人们对于时间的定义来源都是太阳。不管走到哪里,你总能认出什么时候是正午。晴天里只要看一眼天空或者看一下日晷,你就能知道时间。这一切随着世界上第一条铁路线的开通而改变了,这第一条铁路就在这里,在我们英国。在那之后人们都知道伦敦的正午比布里斯托(Bristol)的正午早10分钟,这是一个精确的值,它是阳光走过两座城市之间的经度差所需要的时间。计时系统出现错误导致的将不只是乘客会误车。由于计时偏差导致的危险事件甚至火车事故越来越多。 1840年11月,英国西部铁路公司(Great Western Railway)解决了这一问题,他们使用了一个叫“铁路时间”(Railway Time)的计时系统。系统内所有城市的时间都是伦敦时间,这是第一次人们根据一个标准将不同地点的时间同步起来。此举引起了很大争议。突然间,皇家格林尼治天文台(Royal Observatory)就可以从遥远的格林尼治控制你的时间系统。埃克赛特大学的校长拒绝将学校大教堂的时钟调整至英国西部铁路公司所要求的时间。布里斯托采用了一个折中的方案:时钟上有两个分针,一个显示当地时间,一个显示“铁路时间”。

数字通信技术与应用1

一、判断题(共10道小题,共50.0分) 1.数字通信系统只需做到位同步和帧同步,便可保证通信的正常进行。 A.正确 B.错误 https://www.doczj.com/doc/0718317063.html,ITT的G.732建议规定后方保护计数n=2。 A.正确 B.错误 3.收端定时系统产生位脉冲、路脉冲等的方法与发端一样。 A.正确 B.错误

4.PCM30/32路系统信令码的编码没有任何限制。 A.正确 B.错误 5.A律13折线编码器和解码器均要进行7/11变换。 A.正确 B.错误 6.某一位码的判定值与所有其它码元均有关。 A.正确 B.错误 7.A律13折线解码器中串/并变换记忆电路的。

B.错误 8.模拟压扩法是实际常采用的非均匀量化实现方法。 A.正确 B.错误 9.N不变时,非均匀量化与均匀量化相比,大、小信号的量化误差均减小。 A.正确 B.错误 10.时分多路复用的方法不能用于模拟通信。 A.正确

二、单项选择题(共10道小题,共50.0分) 1.PCM30/32路系统收端时钟产生的方法是()。 A.用石英晶体震荡器产生 B.定时钟提取 C.外同步定时法 D.用原子钟产生 2.PCM30/32路系统第23路信令码的传输位置(即在帧结构中的位置)为()。 A.F7帧TS16的前4位码 B.F7帧TS16的后4位码 C.F8 帧TS16 的前4位码 D.F8 帧TS16 的后4位码

3.PCM30/32路系统传输复帧同步码的位置为()。 A.Fo帧TS16前4位码 B.Fo帧TS16后4位码 C.F1帧TS16前4位码 D.F1帧TS16后4位码 4.PCM30/32路系统帧同步码的码型为()。 A.0011011 B.0110110 C.0000 D.1101110 5.非均匀量化的特点是()。 A.大、小信号的量化误差相同 B.量化误差>/2

原子钟的几种常见类型

原子钟的几种常见类型 摘要本文按出现的时间顺序介绍几种常用原子钟(光谱灯抽运铷原子钟、光谱灯抽运铯原子钟、磁选态铯原子束钟、激光抽运铯原子束钟、激光冷却冷原子喷泉钟、积分球冷却原子钟)的基本原理。 原子钟是利用原子或分子的能级跃迁的辐射频率来锁定外接振荡器频率的频率测量标准装置的俗称,通称为量子频率标准或原子频标。其工作原理可用图1来描述: 图1 一个受控的标准频率发生器产生的信号经过倍频和频率合成转换成为频率接近于原子跃迁频率的信号,激励原子产生吸收或受激发射的频率响应信号,呈共振曲线形状,称为原子谱线,其中心频率即原子跃迁频率为,线宽为Δν。若经过转换的受控振荡器频率与原子跃迁频率不符,原子做出的响应信号通过伺服反馈系统来矫正振荡频率,直到使其与原子频率符合为止。这样就使受控振荡器频率始终稳定在原子跃迁频率上,从而实现使其振荡频率锁定于原子跃迁频率的目的。 光谱灯抽运铷原子钟光抽运汽室频标用碱金属原子基态两个超精细结构能级之间跃迁的辐射频率作为标准频率,它处在微波波段。在磁场中,这两个能级都有塞曼分裂,作为标准频率的跃迁是其中两个磁子能级=0之间的跃迁,它受磁场影响最小。若用合适频率单色光照射原子系统,使基态一个超精细能级

上的原子被共振激发,而自发辐射回到基态时可能落到所有能级,原子就会集中到一个基态能级,极大地偏离玻尔兹曼分布,这就是光抽运效应。这里选择抽运光起着关键作用。在20世纪60年代初,激光器刚发明尚无法利用,唯一可用的共振光源是光谱灯。一般光谱灯是由同类原子发光,它的光谱成分能使基态两个超精细能级上的原子都被激发,因而不能有效地实现选择吸收,起到光抽运作用。幸好对铷原子,可以有一个巧妙的办法。铷原子有两种稳定同位素:和,其丰度分别为72. 2%和27. 8%。它们各有能级间距为3036MHz和6835MHz的两个超精细能级,其共振光的频率分布如图2所示。这里A,B线为所产生,a,b线属于原子。从它们的位置可见,A,a两线有较多的重合,而B,b线则重合较少。因此,若原子发出的光透过一个充以原子的滤光泡,a线就会被较多地吸收,而剩下较强的b线。原子在这种光作用下,就会有较多的下能级原子被激发,从而使更多原子聚集在超精细结构的上能级上,这就实现了光抽运效应。 图2 光谱灯抽运铯原子钟20世纪60年代初期铯原子没有简单的抽运光源可用,只能利用无极放电光谱灯。这种灯能发出强度大致相等的两条超精细结构谱线,分别可对铯原子基态F=3和F=4两个超精细能级发生作用,引起原子激发。

悖论的三种类别

悖论的三种类型 ——摘自《推理的迷宫》 悖论,这个词有很多含义,其中最基本的含义是“矛盾”。悖论从一系列合理前提出发,而后从这些前提推演出一个结论来颠覆其前提。 依据矛盾的生成方式和生成点(如果能找到生成点的话),可以对悖论进行粗略的分类。 第一种是谬误型悖论。这种悖论是通过一个微妙而隐蔽的推理错误生成一个矛盾。有很多诡计能通过代数的方法“证明”2等于1,在多数情况下这些诡计的核心在于以0为分母,用这种方法迷惑我们。如: 1.令x=1 2.很明显x=x 3.两边取平方x2=x2 4.两边同时减去x2 x2-x2=x2-x2 5.因式分解x2-x2=(x+x)(x-x) 6.消掉相同的因式(x-x)x=x+x 7.即x=2x 8.根据x=1,得1=2 谬误型悖论中,悖论是一个假象。一旦你发现了其中的错误,一切都恢复正常。 第二种是挑战常识型悖论。 著名的例子就是“孪生子悖论”。相对论认为,时间流逝的速度因观察者的运动而不同。设想一对相同的孪生兄弟,让其中一个登上火箭前往天狼星,而后返回地球。根据相对论,此人将发现他比他的孪生兄弟年轻许多。 在日常生活中,没有任何东西令我们相信时间是相对的。从摇篮到坟墓,一对孪生兄弟始终同岁。在孪生子悖论问世之初,它与常识的冲突如此这剧烈,以至于很多人(包括法国哲学家享里·柏格森,Henri Bergson)引用这个悖论证明相对论是错误的。 今天,孪生子悖论已被接受为事实,其结论已被大量实验证实。1972年,物理学家约瑟夫·黑费勒(Joseph Hafele)设计的一个实验把铯原子钟装进喷气客机环球飞行,这个实验证明,当飞机乘客回家时,要比其他所有人年轻,相差一个微乎其微但可以测量的瞬间。如果一个宇航员用接近光速的速度旅行,他返回时,要比呆在家里的原来与他同龄的人年轻——没有哪个物理学家怀疑这个结论。 在这类悖论中,矛盾令人惊奇但可以解决,解决方法是明显的:必须放弃原来的假定。无论最初的假定多么根深蒂固,一旦放弃它,矛盾迎刃而解。 第三种是本质型悖论 这类本质型悖论是难以解决的。其解决难度远远超过了谬误型悖论和挑战常识型悖论。“说谎者悖论”是一个非常简单的例子。比如: “我说的这句话是假的”。这个语句是真的还是假的?假定“我说的这句话是假的”为真。既然此语句为真,那么它陈述的内容是真的,但它说的就是这个语句是假的,于是得出这个语句是假的!

原子钟在导航星和空间站的应用(精)

测量与控制 原子钟在导航星和空间站的应用 □中国计量科学研究院 黄秉英 20制定的可用性选择政策(SA 控制的:它把G PS 定位系统的核心。6, 导航定位区分为精密和普通两个等级, 获得授权的军事

, 用户应用精码接收机, 可以实现高精度导航定位; 民用基准。这些原子钟, 、可靠性高、寿命长, 而且具有高性能水平, 代表着原子钟的顶尖级应用。 一、便携式原子钟 自20世纪50年代发明原子钟以来, 有三种类别的原子钟以其便携式装置迅速进入工业应用, 它们分别是铷原子钟、铯原子钟和氢原子钟。 原子钟是一种以所用原子内部能级跃迁相应辐射频率为参考标准的频率自动控制装置, 其实用频率源为压控晶体振荡器(5MH z 。原子钟工作时, 该振荡器频率将锁在原子参考标准频率固定的分数值上, 如图1所示。 控制 原子标准 分频计时 频率信号 用户和国外一般用户只能应用粗码接收机得到准确度较低的导航定位信息, 在导航星上还配置了进一步降低粗码定位的装置, 并在海湾战争后开始启用。该政策的目的是降低他国将G PS 信息用于与美国相竞争的高科技研究和军事工程的性能, 甚至阻止他们应用。 G PS 系统由空间部分、地面测控部分和用户设备三 大部分组成。空间部分为G PS 卫星星座, 由24颗导航星组成, 均匀配置于6个轨道平面上, 地面测控部分由五个地面监测站、三个数据注入站和一个主控站组成。如图2所示。 时间信号 图1原子钟的组成

经过一代一代的改良, 上述三种原子钟结构愈益紧凑, 性能水平也有很大的提高。它们各有长处、互相补充。在结构方面, 铷钟最小, 其最小体积已达0125L (约相当于6cm 见方 , 铯钟和氢钟次之(1~2个标准机箱大小, 体积约25L ~50L ; 在频率稳定度方面, 氢钟最好; 而在长期频率稳定度和准确度方面, 则以铯钟最佳。 二、G PS 导航星的星载钟 G PS 是美国导航星全球定位系统的缩写, 它从1973年正式开始研制发展(另一全球定位系统为前苏联的G LONASS , 如今成为全球应用价值极高、受益面最广的 图2G PS 系统的组成 导航星和测控站均装备高性能原子钟作为控制核 心。其中星载原子钟的研制和应用, 在不断提高和发展。自1974年发射第一颗试验星以来, 就不断提高星载钟的性能水平, 同时扩展星载钟的类型(铷—铯—氢 , 研制单位也不断在严格筛选中更迭。 由于导航星有一定的工作寿命(10年左右 , 为维持 空间信息资源, 其最高性能水平如下:实时导航定位准所需工作的导航星数目, 需陆续补充新的导航星。确度优于10m; 大地测量事后处理的定位准确度达毫米早期阶段, 星载钟只由铷原子钟充任, 以后加入了量级, 测速准确度优于0101m/s , 时间传递或时间同步准铯原子钟, 且数量逐渐增加, 近期发射的导航星, 其星载 -9 确度达1ns (1×10s 。上述性能水平的实际应用是受美钟含2个铷钟, 2个铯钟, 稍后发射的导航星, 则计划使 46中国计量 2002. 8

GPS卫星原子钟和原子频标介绍

GPS卫星原子钟和原子频标介绍 原子钟最早是用来探索宇宙本质的,并不是用来计时的,直到科学家在研究原子和原子核基本特性过程时,才发明了磁共振的技术,这项技术可以测量出原子的自然共振频率,而自然共振频率的准确性非常高,特别适合制作高精度时钟,这样原子钟成为了研制高精度时钟的基础。 在时间计时领域,钟表是人们日常使用的计时工具,精度每天每年都存在有误差,这对于人们日常使用已经足够了,但在时间精度要求更高的生产和科研领域就不能满足了。为了解决对精度要求很高的领域人们制造了原子钟,之后根据原子钟原理相继发明了铯原子钟、氢原子钟和铷原子钟,其中铯原子钟精度最高常应用于GPS北斗等卫星系统中。 铯原子钟运用内部电子在两个能级间跳跃辐射出的电磁波为标准,从而控制校准电子振荡器和钟的计时。铯原子钟稳定程度为2000万年相差1 秒。氢原子钟运用原子能级跳跃时辐射出的电磁波来控

制校准石英钟,其稳定度每天变化为十亿分之一秒。铷原子钟相对其他原子更为简便紧凑,铷原子钟能使铷振荡器输出频和卫星的铯原子钟信号同步,能提供稳定的频率信号。 原子钟可以应用于守时方面,也可以应用于频率标准方面。在守时方面比如设备SYN2136型北斗NTP网络时间服务器,里面都内置了守时的铷原子钟、驯服铷钟,当设备没有实时的卫星时间信号时,设备内部用铷原子钟进行守时。SYN3204型GPS北斗驯服铷原子频率标准是由西安同步研制的高精度频率标准设备,能溯源同步到GPS卫星铯原子钟上,输出频率信号准确度高并能长期稳定输出,该设备可以提供铯钟级的频率标准,并能代替价格较高的铯钟,是一款高性价比的时频设备。 SYN3204型GPS北斗驯服铷原子频率标准,以卫星信号为基准提供铯钟级的稳定频率标准。该设备有10MHz正弦信号输出、1PPS 脉冲信号和RS232时间信号,其中10MHz正弦信号输出,也可选择为5MHz和1MHz,频率准确度≤1E-12。SYN3204型GPS北斗驯服铷原子频率标准能快速锁定信号,并提供稳定可靠的信号,广泛应用于航空航天、卫星、航海、时频计量、同步广播、测控、通信、天文、气象等行业。 本文章版权归西安同步所有,尊重原创,严禁洗稿,未经授权,不得转载,版权所有,侵权必究!

相关主题
文本预览
相关文档 最新文档