当前位置:文档之家› 三相电压型PWM整流器PI调节器参数整定的原理和方法

三相电压型PWM整流器PI调节器参数整定的原理和方法

三相电压型PWM整流器PI调节器参数整定的原理和方法
三相电压型PWM整流器PI调节器参数整定的原理和方法

三相电压源型PWM整流器

PI调节器参数整定的原理和方法

1引言

1.1 PID调节器简介

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。目前,在工业过程控制中,95%以上的控制回路具有PID结构。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的,其原理图如图1-1所示。

图1-1 PID控制系统原理图

PID控制器传递函数常见的表达式有以下两种:

(1)

()i

p d

K

G s K K s

s

=++

,Kp代表比例增益,Ki代表积分增益,Kd代表微

分增益;

(2)

1

()

p d

i

G s K T s

T s

=++

(也有表示成1

()(1)

p d

i

G s K T s

T s

=++),Kp代表比

例增益,Ti代表积分时间常数,Td代表微分时间常数。

这两种表达式并无本质区别,在不同的仿真软件和硬件电路中也都被广泛采用。

?比例(P,Proportion)控制

比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系,能及时成比例地反映控制系统的偏差信号,偏差一旦产

生,调节器立即产生控制作用,以减少偏差。当仅有比例控制时系统输

出存在稳态误差(Steady-state error)。

?积分(I,Integral)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制

系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制中必须引入“积分项”。积分项对误差取决

于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,

积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误

差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系

统在进入稳态后无稳态误差。积分作用的强弱取决于积分时间常数Ti,

Ti越大,积分作用越弱,反之则越强。

?微分(D,Differential)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现

振荡或者失稳。其原因是在于由于存在有较大惯性组件(环节)或有滞

后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用“超前”,即在误差接近零时,抑制误

差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是

不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微

分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就

能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控

量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)

控制器能改善系统在调节过程中的动态特性。

P环节作为PID调节的灵魂,是必不可少的,I和D不可能单独存在而起到调节作用。常见的调节器有P调节、PI调节、PD调节、PID调节,在实际应用中,PI调节相对于PD、PID调节用的更多。

PID调节器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID调节器的比例增益、积分时间和微分时间的大小。PID调节器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定调节器参数。这种方法所得到的计算结果未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,方法简单,易于掌握,在实际工程中被广泛采用。

1.2 柔性直流控制系统中包含的PI环节

电压源换流器的控制方式主要可以分为间接电流控制和直接电流控制两大类。间接电流控制,实际上就是所谓的“电压幅值相位控制”,即通过控制换流器交流侧输出电压基波的幅值和相位来达到控制目标。此控制方式的特点是结构简单,但存在着交流侧电流动态响应慢、难以实现过电流控制等缺陷。目前,占主导地位的是直接电流控制,也称为“矢量控制”,通常由外环电压控制和内环电流控制两个环构成,具有快速的电流响应特性和很好的内在限流能力,因此很适合应用于高压大功率场合的柔性直流系统。

在直接电流控制策略中,电压外环跟踪系统级控制器给定的参考信号,采用实际值与参考值相比较经PI调节器输出电流指令,可以实现定直流电压、定有功功率、定频率、定无功功率、定交流电压等控制目标。电流内环主要是按电压外环输出的电流指令进行电流控制,电压环输出的电流指令与实际电流相比较经PI调节,最终得到调制电压,再与三角波比较产生触发脉冲信号。

图1-2是一端换流站直接电流控制基本原理示意图。其中A参考为有功功率类

控制量,B参考为无功功率类控制量。

图1-2 一端换流站直接电流控制原理示意图

从上图可以看出,在柔性直流控制系统中,整流侧和逆变侧分别包含4个PI环节,控制对应的有功、无功分量。因此,PI参数的整定在柔性直流控制系统设计中占有重要地位。

1.3 本文研究内容

本文从理论计算和工程经验两个角度,探讨了柔性直流控制回路中PI调节器的参数整定原理和方法。包含以下内容:

(1)根据电压源换流器VSC的电路结构及其在dq坐标系下的数学模型,推导出电流环、电压环的传递函数。按照典型I型、典型II型、二阶

系统三种方案设计电流内环,分析并比较了三种方案下的阶跃响应和

动态性能。基于VSC一般低频模型设计电压外环,并分析了电压外环

的阶跃响应和动态性能。

(2)梳理了几种工程中实用的PI参数整定方法,这些方法较之理论计算,更为简单实用。

(3)通过系统仿真,对通过理论计算和工程经验整定出的PI参数合理性进行验证。

2 理论计算整定法

2.1 电流内环控制系统设计

图2-1 电压源换流器电路结构

电压源换流器电路结构如图2-1所示。在(,)d q 坐标系下,三相VSC 模型可以表示为:

d d d q q q

e i v Lp R L e i v L Lp R ωω??????+-??=+????????+????????

(2-1)

式中,d e 、q e ——电网电动势矢量

d q

E 的d 、q 轴分量;

d v 、

q v ——三相VSC 交流侧电压矢量

dq V 的d 、q 轴分量; d

i 、q i

——三相VSC 交流侧电压矢量

d q

I 的d 、q 轴分量;

p ——微分算子。

从(2-1)式可以看出,由于换流器d 、q 轴变量相互耦合,给控制器设计造

成一定困难。为此,可采用前馈解耦控制策略,当电流环采用PI 调节器时,根据方程(2-1)可以将

d

v 、

q

v 的控制方程改写为:

**()()()()iI d iP d d q d iI q iP q q d q K v K i i Li e s K v K i i Li e s ωω?=-+-++???

?=-+--+?? (2-2)

式中,

iP

K 、

iI

K ——PI 调节器的比例增益和积分增益;

*

d

i 、*

q

i ——d i 、q i

的参考值。

将式(2-2)带入式(2-1),并化简可得

*

*/ 010 /iI iP d d d iI iP q q q iI iP K R K L i i i s K p K i i L s i K R K L s ?????

?--+?? ?????????????????=-+?????? ???????????????????

--+ ???????????

(2-3)

式(2-3)表明:基于前馈的控制算式(2-2)使VSC 电流内环(d i ,q i

)实现了解耦控制。图2-2给出了解耦后的电流内环控制结构图。

图2-2 三相VSC 电流内环解耦控制结构

由于两电流内环的对称性,因而下面以q i

控制为例讨论电流调节器的设计。考虑电流内环信号采样的延迟和PWM 的小惯性特性,取s

T 为电流内环电流采样

周期(即为PWM 开关周期),

PW M

K 为桥路PWM 等效增益,0.5s

T 模拟PWM 的

小惯性特性。已解耦的q i

电流内环结构如图2-3所示。

i 图2-3 电流内环结构

将PI 调节器传递函数改写成零极点形式,即

1iI i iP

iP i iP

iI i K s K K s s K K τττ+?+=??

?

?=??

(2-4) 并将小时间常数0.5s T 、s T 合并,得到简化后电流环结构如图2-4所示。

i

图2-4 电流内环简化结构

2.1.1 典型I 型系统设计电流内环

从图2-4可以看出,该系统本身即为典型I 型系统1,从提高系统稳定性角度考虑,可以将PI 调节器零点抵消电流控制对象传递函数的极点2,即

11(/)i s L R s

τ+=+,此时

/i L R

τ=。

PI 调节器采取零点抵消极点后,若不考虑q e

扰动,电流环的开环传递函数为:

()(1.51)

iP PW M oi i s K K W s R s T s τ=

+ (2-5)

由典型I 型系统参数整定关系[见附录6.2],当阻尼比取0.707ξ=时,可得:

1

对于有限阶(不含延迟因子)的线性定常系统,开环传递函数

0()

G s 可以表示为:

012(1)(1)...(1)(),(1)(1) (1)

a b m N

N N n K T s T s T s G s n m

s T s T s T s +++++=

>+++

1N

s

——N 重积分因子(N 是包括零在内的正整数)

a

T ,

b

T ,…,

m

T ,

1

N T +,

2

N T +,…,

n

T ——时间常数(可以为复常数)

开环传递函数中所包含的积分因子的重数N ,是对系统的稳态误差起决定性作用的因素之一。因此数N 称为系统按稳态误差划分的型。当N=0,1,2,…时,所属系统分别称为0,1,2…型系统。 2

仅是从提高系统稳定性角度出发的一种选择,不是唯一选择。

1.512

s iP PW M

i

T K K R τ=

(2-6)

求解得:

33i iP s PW M

iI s PW M R K T K R K T K τ?

=???

?=

??

(2-7) 式(2-7)即为按照典型I 型系统设计时,电流内环PI 调节器的理论推导值。 另外,此时电流内环闭环传递函数为:

2

1

() 1.51ci i s i ip PW M

ip PW M

W s R T R s s

K K K K ττ=

+

+

(2-8) 当开关频率足够高,即s

T 足够小时,忽略二次项2

s ,并将式(2-7)带入式

(2-8),可以得到电流内环简化等效传递函数为:

1()13ci s W s T s

=

+ (2-9)

式(2-9)表明,当电流内环按典型I 型系统设计时,电流内环可近似等效成一个惯性环节,其惯性时间常数为3s

T 。显然,当开关频率足够高时,电流内环

具有较快的动态响应。

2.1.2 典型II 型系统设计电流内环

由控制理论可知,典型II 型系统的抗干扰性大于典型I 型系统。当c L R

ω>>(

c

ω为电流环截止频率)时,可以忽略掉VSC 交流侧电阻R ,此时,电流内环

控制结构简化为图2-5所示。

i

图2-5 忽略R 后的电流环简化结构

从图2-5可以看出,该系统为典型II 型系统,若不考虑q e

扰动,其电流内环开环传递函数为:

2

1

()(1.51)

iP PW M

i oi i s K K s W s L

s T s ττ+=

+ (2-10)

在工程应用上,为兼顾控制系统跟随性和抗扰性,常取中频宽

/(1.5)5

i i s h T τ==。按照典型II 型系统参数整定关系[见附录6.3],可得

2

12iP PW M

i i i

K K h L

ττ+=

(2-11)

求解得

26156112.5iP s PW M

iI s PW M L K T K L K T K ?

=???

?=

??

(2-12) 式(2-12)即为按照典型II 型系统设计时,电流内环PI 调节器的理论推导值。 2.1.3 二阶系统设计电流内环

当电流采样频率,即PWM 开关频率s

f 足够高时,可以忽略电流内环等效小

时间常数(1.5s T )的影响。此时,电流内环控制结构简化为图2-6所示。

i

图2-6 忽略小时间常数后的电流环简化结构

若不考虑

q

e 扰动,其电流内环闭环传递函数为:

2/(),P I P ci P

I P PW M iP I PW M iI

K s K K W s R K K L s s L L

K K K K K K +?

=?+?++?

?==?? (2-13) 典型二阶系统传递函数表达式为:2

2

2

2n

n n

s s ωξωω++,故式(2-13)相当于附

加零点的二阶系统。可令

2

/n I K L

ω=,2/n P R K L ξω=+,解得:

2

2n iP

PW M

n iI PW M L R K K L K K ξωω-?=??

??=??

(2-14) 工程上,可取电流内环自然振荡频率2/20n s f ωπ≤,阻尼比ξ=0.707,将n ω

ξ参考值代入式(2-14),即可得到按典型二阶系统设计的PI 调节器参数iP K 和iI K 。

2.1.4 阶跃响应及动态特性分析

取仿真参数如下:

0.005L H =,0.01R =Ω,6600*2C uF =,1350s f H z =,2

PW M K =

(1) 典型I 型系统

由式(2-7)可得,

1.125

iP K =,

2.25

iI K =。分别带入开环和闭环传递函数

(2-5)和式(2-8)中,得到按照I 型系统设计的电流内环阶跃响应和幅频、相频特性如下:

图2-7 按照I型系统设计的电流内环阶跃响应

图2-8按照I型系统设计的电流内环bode图

ξ=)3:动态指标计算如下(取delta=0.02,阻尼比0.707

3Matlab实现的计算过程见附录6.4。

表2-1 按照I 型系统设计的电流内环动态指标

动态指标 值

阻尼比 0.707ξ=

超调量 σ=5.0%

上升时间 tr=0.0053 调整时间 ts=0.0094

相位裕度 65.5o

γ=

截止频率

409.53

c ω=

(2) 典型II 型系统

由式(2-12)可得,

1.35

iP K =,243iI K =。代入式(2-10),按照II 型系统

设计的电流内环阶跃响应和幅频、相频特性如下:

图2-9按照II 型系统设计的电流内环阶跃响应

图2-10按照II 型系统设计的电流内环bode 图

动态指标计算如下(取delta=0.02,阻尼比0.707ξ=):

表2-2 按照II 型系统设计的电流内环动态指标

动态指标 值

阻尼比 0.707ξ=

超调量 σ=36.2%

上升时间 tr=0.0032 调整时间 ts=0.0113

相位裕度 41.5

o

γ= 截止频率

501.8

c ω=

(3) 典型二阶系统

按照典型二阶系统设计,取

2/20

n s f ωπ=,0.707ξ=。由式(2-14)可得,

1.494iP K =,449.694iI K =。按照二阶系统设计的电流内环阶跃响应和幅频、相

频特性如下:

图2-11 按照二阶系统设计的电流内环阶跃响应

图2-12 按照二阶系统设计的电流内环bode图

ξ=):动态指标计算如下(取delta=0.02,阻尼比0.707

表2-3 按照二阶系统设计的电流内环动态指标

动态指标值

阻尼比0.707

ξ=

超调量σ=21.0%

上升时间tr=0.0028

调整时间ts=0.0116

相位裕度65.5o

γ=

截止频率657.3

ω=

c

(4)三种设计方案对比

考虑q e扰动影响,在0.02s的时候加入信号幅值为-0.5的阶跃扰动。三种设计方案下阶跃响应对比如下:

图2-13 按照二阶系统设计的电流内环阶跃响应

从图2-13可以看出,按典型I型系统设计电流内环时,电流q i具有良好的跟随性能,但一旦出现q e扰动时,q i抗扰动恢复时间较长。而按典型II型和二阶系统设计,虽在跟随电流阶跃指令时超调较大,但若电流内环存在q e扰动时,都能快速抑制扰动的影响。

2.2 电压外环控制系统设计

2.2.1 基于VSC 一般低频模型的电压外环设计

在柔直控制系统中,为了保持系统的有功功率平衡,必须有一端换流器采用定直流电压控制,采用定直流电压控制的换流器,其控制系统原理图如2-14所示。若外环采用定有功、定无功等控制策略,其控制系统结构和调节规律与定直流电压方式相似,甚至可以直接根据瞬时功率计算出参考电流,从而去掉PI 环节以简化控制系统的设计。

U sdref

图2-14 电压外环控制原理图

下文以定直流电压为例进行分析,将内外环结合起来,形成完整的控制系统结构如图2-15所示:

图2-15 电压外环控制结构

图中:v τ—电压外环采样小惯性时间常数;

当按典型I 型系统设计内环时,电流环等效为

()1/(13)

ci s W s T s =+,将电压

采样小惯性时间常数v τ

与电流内环等效小时间常数

3s

T 合并,即

3ev v s

T T τ=+,且

不考虑负载电流L i

扰动,经简化的电压环控制结构如图2-16所示:

U

图2-16 简化后的电压外环控制结构

图中:v K ,v T —电压外环PI 调节器参数;

由于电压外环的主要作用是稳定直流电压,故其控制系统整定时,应着重考虑电压环的抗扰性能。因此,可按典型II 型系统设计电压调节器,由图2-16可得电压环开环传递函数为

2

0.75(1)()(1)

v v ov v ev K T s W s C T s T s +=

+ (2-15)

由典型II 型系统参数整定关系得:

2

2

0.7512v v v

v ev K h C T h T += (2-16)

其中v v ev

T h T =

,表示中频宽,工程上一般取5。将5v h =代入式(2-16),可算

得:

5(3)

45(3)v v s v v s T T C K T ττ=+??

?

=?+?

(2-17) 2.2.2 阶跃响应及动态特性分析

按照低频模型设计,取v s T τ=,由式(2-17)可得,0.015v T =, 3.564v K =,进一步得到电压环比例积分增益分别为: 3.564vP K =,240.81vI K =。该电压环的阶跃响应和幅频、相频特性如下:

图2-17 电压外环阶跃响应

图2-18 电压外环开环bode图

ξ=):动态指标计算如下(取delta=0.02,阻尼比0.707

表2-4电压外环动态指标

动态指标 值

阻尼比 0.707ξ=

超调量 σ=36.6%

上升时间 tr=0.0089 调整时间 ts=0.0298

相角裕度 41.1o

γ=

截止频率

188c ω=

从以上分析结果可以看出,内环截止频率约为外环的2倍。这是因为电流内环按照典型I 型系统设计时,可近似为一个惯性环节

()1/(13)

ci s W s T s =+,此时内

环的截止频率为13ci s

T ω=

,外环的截止频率则为

1

1

1(

)

2cv v

ev

T T ω=

+

,当取

v s

T τ=,

内环的截止频率刚好约为外环截止频率的2倍。从实际仿真的情况来看,依照该理论方法整定的外环PI 参数和下文介绍的用经验法则整定出来的PI 值相差较大,该方法并不实用。可能的原因之一是内外环截止频率相差太小,对于一般的双环控制系统来讲,内环注重快速性,外环注重稳定性,需要考虑两个调节器之间的响应速度、频带宽度的相互影响与协调,一般内外环的截止频率都相差10倍以上,因此,电压外环的设计还值得进一步深入探讨。

3工程经验整定法

理论计算整定方法不仅计算量较大,而且计算出的PI参数一般并不能直接使用,还需要在工程中反复调整,有时结果与实际还会相差较大,甚至事倍功半。特别是有时候,系统的传递函数并不容易得到,此时则无法进行理论计算。因此在工程实际中,常常采用经验法,即根据各调节作用的规律,经过闭环试验,反复试凑,找出最佳调节参数。本章介绍几个在工程中常用的经验整定方法。

3.1 实验试凑法

通过闭环运行或模拟,观察系统的响应曲线,然后根据各参数对系统的影响,反复试凑参数,直至出现满意的响应,从而确定PID的调节参数。增大比例增益Kp,一般将加快系统的响应,这有利于减小静差,但过大的比例增益会使系统有较大的超调,并产生振荡,使稳定性变坏。增大积分时间Ti有利于加快系统响应,使超调量减小,但对于静差的消除作用将减弱。增大微分时间Td有利于加快系统响应,使超调量减小,稳定性增加,但对于干扰信号的抑制能力将减弱。在试凑时,可参考以上参数分析控制过程的影响趋势,对参数进行“先比例,后积分,再微分”的整定步骤,具体如下:

(1)整定比例环节

将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。

(2)整定积分环节

若在比例控制下稳态误差不能满足要求,则需加入积分控制。

先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间设置一个较大值,观测响应曲线,然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。

(3)整定微分环节

若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。

先置微分时间Td=0,逐渐加大Td,同时相应地改变比例增益和积分时

电压调节器工作原理

关闭SIS 上一个画面 产品:GENERATOR SET 型号:3512B GENERATOR SET PTM 配置:3512B Generator Set Oil Field Land Rig PTM00001-UP 系统运统运行行—基本原理 Electrical System for All Caterpillar Products 媒体媒体编编号-SEGV3008-01 发布日期-01/06/2004更新日期-28/06/2004 i02104634 Charging System SMCS -1400 Introduction to the Charging System The charging system converts mechanical energy from the engine into electrical energy in order to charge the battery. The charging system supplies current in order to operate the electrical systems of the machine. AC and DC Charging Circuits Illustration 1g01073297The charging system recharges the battery and generates current during operation.There are two kinds of charging circuits: DC charging circuits that use generators.?

燃油泵以及压力调节器的原理

燃油压力调节器 喷油器的喷油量取决于喷孔截面,喷油时间和喷油压差。ECU通过控制喷油嘴开启时间来控制喷油量,因此,在喷孔面积一定时还要保持一定的压差。 喷油压差是指输油管内燃油压力和进气歧管内气体压力的差值,而进气歧管内气压随转速和负荷(节气门开度)变化,要保持恒定的喷油压力必须根据进气管压力变化来调节燃油压力。不知道你有没有这个东西的图,我这里上不了图,就大概的讲一下:压力调节器的上方一般会有个开口用橡胶软管跟进气管连接,在内部这个开口的下方是个弹簧,弹簧下面是个膜片,膜片下面是个柱塞状的东西,堵住一个孔,这个孔就是连接回油软管的,工作时,膜片上方的压力为弹簧压力和进气压力之和,膜片下方为燃油压力,膜片上下压力相等时就会处在平衡位置,当进气管压力下降时,膜片上移回油阀开度上升,会油量上升,这样油轨中的油压就下降到原来水平。反之,气压上升时,膜片下移,回油阀开度变小,回油量变小油压就会上升到原来水平,这样油压就会控制到制造时要求的大小,也就是膜片位于平衡位置的弹力 燃油压力调节器的功用是调节至喷油器的燃油压力,使油路中的燃油压力与进气管压力之差保持常数,这样从喷油器喷出的燃油量便唯一地取决于喷油器的开启时间,使电控单元能够通过控制电脉冲宽度来精确控制喷油量。 油压调节器的构造如图5.19 所示。膜片4 将油压调节器分隔成上下两个腔。上腔有进油口1 连接燃油分配管,回油口2 与汽油箱连通。下腔通过真空接管6 与节气门后的进气管相连。当燃油压力与进气管压力之差超过预调的压力值时,膜片上方的燃油就推动膜片向下压缩弹簧,打开回油阀,超压的燃油流回燃油箱,以保持一定的燃油压力。燃油供给系统的压力与进气管压力之差由油压调节器中的弹簧5 的弹力限定,调节弹簧预紧力即可改变两者的压力差,也就是改变喷油压力。燃油压力调节器装在燃油分配管的一端,可使燃油压力调节在正常范围内(图5.20)。

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

电压调节器工作电路工作原理

一.发电机的功用 汽车使用的电源有蓄电池和发电机两种。采用交流发电机作为主要电源,蓄电池作为辅助电源。在汽车行驶过程中,由发电机向用电设备提供电源,并向蓄电池充电。蓄电池在汽车启动时提供启动电流,当大电机发出电量不足时,可以协同发电机供电。 二.发电机的分类 1.按磁场绕组搭铁形式分两类 a.外搭铁型(A线路) 磁场绕组的一端(负极)接入调节器,通过调节器后再搭铁。 b.内搭铁型(B线路) 磁场绕组的一段(负极)直接搭铁(和壳体相连)。如下图2-13所示: 2.按整流器结构分四类 a.六管交流发电机(例丰田系列) b.八管交流发电机(例天津夏利轿车所用) c.九管交流发电机(例三菱系列) d.十一管交流发电机(例奥迪、大众汽车用) 三.交流发电机结构 交流发电机一般由转子、定子、整流器、调节器、端盖组成,JF132型交流发电机组件图见图 1.转子 转子的功用是产生旋转的磁场。它由爪极、磁轭、磁场绕组、集电环、转子轴组成,结构图见图

转子轴上压装着两块爪极,两块爪极各有六个鸟嘴形磁极,爪极空腔内装有磁场绕组(转子线圈)和磁轭。 集电环由两个彼此绝缘的铜环组成,集电环压装在转子轴上并与轴绝缘,两个集电环分别与磁场绕组的两端相连。2.定子 定子的功用是产生交流电。它由定子铁心和定子绕组组成。见图 定子铁心由内圈带槽的硅钢片叠成,定子绕组的导线就嵌放在铁心的槽中。定子绕组由三相,三相绕组采用星型接法或三角形(大功率)接法。三相绕组必须按一定要求绕制,才能使之获得频率相同、幅值相等、相位互差120°的三相电动势。 3.整流器、端盖 整流器的作用是将定子绕组的三相交流电变为直流电。 端盖一般用铝合金铸造,一是可有效的防止漏磁,二是铝合金散热性能好。 四.交流发电机的电压调节器 交流发电机的转子由发动机通过皮带驱动旋转的,且发动机和交流发电机的速比为~3左右,因此交流发电机转子的转速变化范围非常大,这样将引起发电机的输出电压发生较大变化,无法满足汽车用电设备的工作要求。 为了满足用电设备恒定电压的要求,交流发电机必须配用电压调节器,使其输出电压在发动机所有工况下几本保持恒定。 1.交流发电机电压调节器按工作原理可分为: a.触点式电压调节器 b.晶体管调节器 c.集成电路调节器

变压器有载调压的原理

变压器有载调压的原理: 变压器的高压绕组终端区隔一些线匝就抽出一个接头,电源接在不同的抽头上,高压绕组的实际线匝数就不同,而低压绕组的线匝数是固定的,这样,变化的高压绕组匝数和不变的低压绕组匝数就构成了不同的变比,根据变压器变压的原理,低压绕组就可以随高压绕组接不同的抽头而变出不同的电压;高压绕组的抽头可以在线圈的电源侧,也可以在中心点侧,这都能不能改变其基本原理。所以220KV以下的变压器抽头一般设在电源侧,更高电压的变压器抽头就设在高压绕组的中心点侧了; 变压器一般都带抽头,以便现场根据实际电压来调整电压值。但是无载调压占多数,主要是一般地区的电压变化不是那么频繁和幅度那么大,可以不用时时调整;但是有些地方对于电压要求比较严,有些地方的电压常常变化,就得使用有载调压了。 有载调压就是将上述绕组抽头都接在有灭弧能力的开关上,在外部通过远方控制手的或自动调节电源好这些抽头的连接,从而达到随时调整低压绕组输出电压的目的。调整时,这些开关先与需要的那个抽头接上,然后断开原来接通的抽头,因为有电压好运行电流的存在,所以跳开的开关与我们使用的其他电源开关一样,要灭弧后断开。 什么情况下不允许调整变压器有载调压装置的分接头? (1)变压器过负荷运行时(特殊情况除外); (2)有载调压装置的轻瓦斯动作报警时; (3)有载调压装置的油耐压不合格或油标中无油时; (4)调压次数超过规定时;

(5)调压装置发生异常时。 500kV变压器也是用的有载调压?厉害! 单从有功潮流方向还不能确切判断如何调整,还得看无功方向,我仅凭经验简单说明一下,但还得进行深层分析,以500kV侧CT为参考点: 第一相限:即有功、无功由500kV流向220kV,500侧电压高说明500kV侧无功过剩,可根据电网运行数据计算需方的无功需量,这种情况一般来讲,调底有载开关档位起不到多大作用,应降低500kV侧系统(发电机无功出力)或投电抗器来实现; 第二相限:即有功由220流向500,无功由500流向220,500侧电压高还是说明500kV侧无功过剩,调节方式同上; 第三相限:即有功、无功均由220流向500,这种情况一般不会导致500kV 过压,除非220侧电压超得太多,也可以调高有载开关档位(类似升压变);第四相限:即有功由500流向220,无功由220流向500,说明220侧无功过剩,也可以调高有载开关档位,或投电抗器或降低220侧系统无功; 有载开关调节都很困难,500kV一般都由电容、电抗器来调节或调发电机AVR,很方便。 以上内容仅为鄙人观点,若有错误,尽请谅解,能力有限,请多指教。 主变压器的有载调压开关操作规程 6.1??110kV主变使用的ZY-I-III300/110-±8有载调压分接开关是镶入型的,具有单独油箱和小油枕的开关。 6.2 有载分接开关的油温不得高于100℃,不低于-25℃。触头中各单触头的接触电阻不大于 500μΩ。 6.3 检修后及新安装的有载调压开关投入使用前,必须进行下述程序进行操作试验检查。 1. 投入使用前必须熟悉使用说明书的各项要求,先手动操作后电动操作。 2. 操作试验:在电动机控制回路施加电压之前,检查供给电源的额定值是否与所要求的数值一致。检查电动机的电源相序是否正确,若电源相序错,则断路器跳闸后再扣不上,或者断路器再扣后机构

电压调节器的调压原理

电脑控制调节器是现在轿车采用的一种新型调节器,由电负载检测仪测量系统总负载后,向发电机电脑发送信号,然后由发动机电脑控制发电机电压调节器,适时地接通和断开磁场电路,即能可靠地保证电器系统正常工作,使蓄电池充电充足,又能减轻发动机负荷,提高燃料经济性。下面就让艾驰商城小编对电压调节器的调压原理来一一为大家做介绍吧。 由交流发电机的工作原理我们知道,交流发电机的三相绕组产生的相电动势的有效值Eφ==CeФn(V) 这里Ce为发电机的结构常数,n为转子转速,Ф为转子的磁极磁通,也就是说交流发电机所产生的感应电动势与转子转速和磁极磁通成正比。 当转速升高时,Eφ增大,输出端电压UB升高,当转速升高到一定值时(空载转速以上),输出端电压达到极限,要想使发电机的输出电压UB不再随转速的升高而上升,只能通过减小磁通Ф来实现。又磁极磁通Ф与励磁电流If成正比,减小磁通Ф也就是减小励磁电流If。 所以,交流发电机调节器的工作原理是:当交流发电机的转速升高时,调节器通过减小发电机的励磁电流If来减小磁通Ф,使发电机的输出电压UB保持不变。 触点式电压调节器通过触点开闭,接通和断开磁场电路,来改变磁场电流If 大小;晶体管调节器、集成电路调节器等利用大功率三极管的导通和截止,接通和断开磁场电路,来改变磁场电流If大小。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/0518105344.html,/

减压阀的工作原理

减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。 1.调节手柄; 2.调压弹簧; 3.溢流阀; 4.膜片; 5.阀杆; 6.反馈导管; 7.进气阀门; 8.复位弹簧 上图所示为一种常用的直动式减压阀结构。 压力为P1的压缩空气,由左端输入经进气阀门节流后,压力降为P2输出。P2的大小可由调压弹簧2进行调节。若顺时针旋转调节手柄,调压弹簧被压缩,推动膜片和阀杆下移,进气阀门打开,在输出口有气压输出。同时,输出气压经反馈导管作用在膜片上产生向上的推力。该推力与调压弹簧作用力相平衡时,阀便有稳定的压力输出。 若输出压力超过调定值,则膜片离开平衡位置而向上变形,使得溢流阀打开,多余的空气经溢流口排入大气。当输出压力降至调定值时,溢流阀关闭,膜片上的受力保持平衡状态。若逆时针放置手柄,调压弹簧放松,作用在膜片上的气压力大于弹簧力,溢流阀打开,输出压力降低直到为零。台湾DPC气动提醒您,反馈导管的作用是提高减压阀的稳压精度。另外,能改善减压阀的动

态性能,当负载突然改变或变化不定时,反馈导管起着阻尼作用,避免振荡现象发生。 若输入压力瞬时升高,输出将随之升高,使膜片气室内压力升高,在膜片上产生的推力相应增大,此推力破坏了原来力的平衡,使膜片向上移动,有少部分气流经溢流孔、排气孔排出。在膜片上移的同时,因复位弹簧的作用,使阀芯也向上移动,关小进气阀口,节流作用加大,使输出压力下降,直至达到新的平衡为止,输出压力基本又回到原来值。 若输入压力瞬时下降,输出压力也下降、膜片下移,阀芯随之下移,进气阀口开大,节流作用减小,使输出压力也基本回到原来值。逆时针旋转旋钮。使调节弹簧放松,气体作用在膜片上的推力大于调压弹簧的作用力,膜片向上曲,靠复位弹簧的作用关闭进气阀口。再旋转旋钮,进气阀芯的顶端与溢流阀座将脱开,膜片气室中的压缩空气便经溢流孔、排气孔排出,使阀处于无输出状态。 二、减压阀的基本性能 (1)?调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 (2)?压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。

触点式电压调节器

一、概述 发电机在汽车上是按固定的传动比由发动机驱动的,因此它的转速完全由发动机的转速决定。汽车在行使中发动机的转速是经常改变的,致使发电机的转速也随之改变。故发电机的电压也必然随着转速的变化而变化。这与用电设备和蓄电池充电要求电压恒定相矛盾。因此,发电机必须具有调节电压的装置,以便当发电机转速变化时,自动调节发电机的电压,使电压保持一定或保持在某一允许范围内,以防发电机电压过高或者过低,烧坏用电设备,使蓄电池过充电或者使蓄电池充电不足。 交流发电机的硅二极管具有单向导电特性,有阻止反向电流作用,它决定了蓄电池不可能向发电机放电而出现逆电流,所以无需设置逆电流截断器;又因为交流发电机具有自身限制输出电流不超过最大值的能力,故也不必配用电流限制器,仅需要一个电压调节器。 二、电压调节器调压的基本原理 由式(2—9)可得 U=1.35UL=2.34UΦ U=CnΦ 式中:U是发电机输出电压;C是电机常数;n是发电机转速;Φ是磁极的磁通量;所以,在发电机转速变化时,要使电压保持一定,只有相应地改变磁极的磁通,即当n增高时减少声使电压保持一定。而磁通声的大小取决于磁场电流,所以在转速变化时只要自动调节磁场电流就能使电压保持一定。电压调节器就是根据这一原理进行电压调节。 三、FT61型双触点式电压调节器 1.结构 FT61型双级触点式电压调节器用于东风EQl090型汽车上,其结构原理如图2—17所示。

动触点在两个静触点中间形成一对常闭的低速触点K1,另一对常开的高速触点K2,能调节两级电压,故称为双级触点式。高速静触点与金属底座直接搭铁。对外只有点火(或“火线”、“电 枢”、“A”、“S”、“+”)和磁场(或“F”)两个接线柱。

有载调压变压器工作原理及注意事项

有载调压变压器工作原理及注意事项 北极星电力网技术频道作者: 2012-1-16 15:00:59 (阅572次) 所属频道: 电网关键词: 有载调压变压器 有载调压变压器可根据系统运行情况,在带负荷的条件下随时切换分接头开关,保证电压质量,而且分接头数目多、调节范围比较大,采用有载调压变压器时,可以根据最大负荷和最小负荷时分接头电压来分别选择各自合适的分接头。这样就能缩小二次(侧)电压的变化幅度,甚至改变电压变化的趋势。 为了防止可动触头在切换过程中产生电弧使变压器绝缘油劣化,甚至烧毁有载分接开关,调压绕组通过并联触头Q1、Q2与高压主绕组串联。可在带负荷的情况下进行分接头的切换。在可动触头Q1、Q2回路接入接触器KM1、KM2的工作触头并放在单独的油箱里。在调节分接头时,先断开接触器KM1,将可动触头Q1切换到另一分接头上,然后接通KM1。另 一可动触头Q2也采用同样的步骤,移到这个相邻的分接头上,这样进行移动,直到Q1和 Q2都接到所选定的分接头位置为止。当切换过程中Q1、Q2分别接在相邻的两个分接头位置时,电抗器L限制了回路中流过的环流大小。110kV及以上电压等级变压器的调压绕组 放在中性点侧,使调节装置处于较低电位。 1、有载分接开关运行一年或切换2000~4000次后,应取切换开关油箱中的抽样进行工频耐压试验(不低于30KV),试验应合格,否则更换合格变压器绝缘油。 2、新投入的分接开关,在切换5000次后,应将切换开关吊出检查,以后可按实际情况确定检查周期。 3、运行中的分接开关动作5000次后或绝缘油的击穿电压低于25kV时,应更换切换开关油箱的绝缘油。 4、为了防止分接开关在严重过负荷或系统短路时进行切换,宜在有载分接开关控制回 路中加装电流闭锁装置,其整定值不超过变压器额定电流的1.5倍。 5、电动操作机构应经常保持良好状态,有载分接开关配备的瓦斯保护及防爆装置均应 运行正常。当保护装置动作时应查明原因。 6、分接开关的切换开关箱应严格密封,不得渗漏。如发现其油位升高异常或满油位, 说明变压器与有载分接开关切换箱窜油。应保持变压器油位高于分接开关的油位,防止开关箱体油渗入变压器本体,影响其绝缘油质,并及时安排停电处理。电工之家 在变压器有载分接开关操作过程中,应遵守如下规定:

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

电压调节器分类及调压原理简介

电压调节器分类及调压原理简介电压调节器的分类 1.交流发电机电压调节器按工作原理可分为: (1)触点式电压调节器 触点式电压调节器应用较早,这种调节器触点振动频率慢,存在机械惯性和电磁惯性,电压调节精度低,触点易产生火花,对无线电干扰大,可靠性差,寿命短,现已被淘汰。 (2)晶体管调节器 随着半导体技术的发展,采用了晶体管调节器。其优点是:三极管的开关频率高,且不产生火花,调节精度高,还具有重量轻、体积小、寿命长、可靠性高、电波干扰小等优点,现广泛应用于东风、解放及多种中低档车型。 (3) 集成电路调节器 集成电路调节器除具有晶体管调节器的优点外,还具有超小型,安装于发电机的内部(又称内装式调节器),减少了外接线,并且冷却效果得到了改善,现广泛应用于桑塔纳。奥迪等多种轿车车型上。 (4) 电脑控制调节器 电脑控制调节器是现在轿车采用的一种新型调节器,由电负载检测仪测量系统总负载后,向发电机电脑发送信号,然后由发动机电脑控制发电机电压调节器,适时地接通和断开磁场电路,即能可靠地保证电器系统正常工作,使蓄电池充电充足,又能减轻发动机负荷,提高燃料经济性。如上海别克、广州本田等轿车发电机上使用了这种调节器。 2.电子调节器按所匹配的交流发电机搭铁型式可分为: (1)内搭铁型调节器:适合于与内搭铁型交流发电机所匹配的电子调节器称为内搭铁型调节器; (2)外搭铁型调节器:适合于与外搭铁型交流发电机所匹配的电子调节器称为外搭铁型调节器。 在使用过程中,对于晶体管调节器,最好使用汽车说明书中指定的调节器,如果采用其他型号替代,除标称电压等规定参数与原调节器相同外,代用调节器必须与原调节器的搭铁形式相同,否则,发电机可能由于励磁电路不通而不能正常工作。对于集成电路调节器,必须是专用的,是不能替代的。 电压调节器的调压原理 由交流发电机的工作原理我们知道,交流发电机的三相绕组产生的相电动势的有效值 Eφ==CeФn(V) 这里Ce为发电机的结构常数,n为转子转速,Ф为转子的磁极磁通,也就是说交流发电机所产生的感应电动势与转子转速和磁极磁通成正比。 当转速升高时,Eφ增大,输出端电压UB升高,当转速升高到一定值时(空载转速以上),输出端电压达到极限,要想使发电机的输出电压UB不再随转速的升高而上升,只能通过减小磁通Ф来实现。又磁极磁通Ф与励磁电流If成正比,减小磁通Ф也就是减小励磁电流If。 所以,交流发电机调节器的工作原理是:当交流发电机的转速升高时,调节器通过减小发电机的励磁电流If来减小磁通Ф,使发电机的输出电压UB保持不变。

ABB主变有载调压开关机构 二次 原理的研究与分析

ABB主变有载调压开关机构二次 原理的研究与分析 ABB主变有载调压开关机构二次原理图大多数都为英文版,且大多 设计图纸仅对其升降停回路进行简单注释,本文对该原理进行研究和阐述,并对控制部分进行较详的分析,提出分配的观点,对具体的应用具有参考的价值。 1有载调压开关的相关说明 ABB有载调压开关共分为17档,中间档为9B档。9A至9C档为触头换向时滑过的档位,中间档只停留在9B档而不会停留在9A和9C档。ABB将从1档滑行向 17档称为降档(或?档),反之,称为升档(或?档)。 有载调压开关档位触头滑行时不希望停留在两档中间,ABB图纸将这种情况称为滑档不到位(滑档运转中),并通过凸轮开关的行程接点识别有载开关处于哪种状态:滑档运转中或滑档到位。 有载调压开关允许由于某种原因暂时停留在滑档不到位的状态,但当处于滑档不到位有载调压开关重新获取电源时,电动机构将向着到位的方向自保持进行滑档,这种自保持的驱动力来自凸轮开关的行程接点,是不依赖于电磁的自保持。 有载调压开关不允许同时接受升降两个方向的调档任务。因为这种情况将有可能造成电机回路的相间短路。调档回路中必须设计有升降档的互排斥接点。 有载调压开关电机电源空开配有脱扣线圈。就地急停、远方急停、超时急停都接到该脱扣线圈使电机电源空开脱扣,从而切断电机电动回路,但不切断调档的控制回路。 有载调压开关不允许同时连续进行调档任务,调档必须一级一级的进行。因为调档把手的意外粘死或调档命令未返回造成的连续误调档,导致电压过调节。. 主变过负荷时将闭锁有载调压。闭锁接点取自主变保护的常闭接点。该闭锁接点只闭锁调档的启动回路,即闭锁远方及就地调档,而不会去闭锁调档的保持回路。2机构二次元件 F2:控制回路电源开关。可切断控制回路远方就地启动电源、零线端及自保持电源。启动电源和自保持电源可以是不同来源的交流电源。 K2:降档接触器。 K3:升档接触器。 K1:步控接触器。控制档位调节时一档一档的进行,防止因就地或远方的接点粘

PWM整流电路概述

PWM整流电路概述 1引言 在电力系统中,电压和电流应是完好的正弦波。但是在实际的电力系统中,由于非线性负载的影响,实际的电网电压和电流波形总是存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题,因而就有必要采取措施限制其对电网和其它设备的影响。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,采用二极管整流方式的整流器存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。采用相控方式的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变等缺点。这些整流器从电网汲取电流的非线性特征,给周围用电设备和公用电网都会带来不利影响。 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。本文主要对与PWM整流器相关的功率开关器件、主电路拓扑结构和控制方式等进行详细说明,在此基础上对PWM整流技术的发展方向加以探讨。 2功率开关器件 PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt 和dv/dt。目前在PWM整流器中得到广泛应用的电力电子器件主要有如下几种:

汽车发电机电子调节器的详细工作原理

汽车发电机电子调节器的 详细工作原理 The final edition was revised on December 14th, 2020.

电子调节器的详细工作原理 (1)电子调节器有多种型式,其内部电路各不相同,但工作原理可用基本电路工作原理去理解 (2)工作原理 ① 点火开关SW刚接通时,发动机不转,发电机不发电,蓄电池电压加在分压器R1、R2上,此时因U R1较低不能使稳压管VS的反向击穿,VT1截止, VT 1截止使得VT 2 导通,发电机磁场电路接通,此时由蓄电池供给磁场电流。随 着发动机的启动,发电机转速升高,发电机他励发电,电压上升。 ② 当发电机电压升高到大于蓄电池电压时,发电机自励发电并开始对外蓄电池充电,如果此时发电机输出电压U B<调节器调节上限U B2,VT1继续截止,

VT 2 继续导通,但此时的磁场电流由发电机供给,发电机电压随转速升高迅速升高。 ③ 当发电机电压升高到等于调节上限U B2 时,调节器对电压的调节开始。此时VS导通,VT1导通,VT2截止,发电机磁场电路被切断,由于磁场被断路,磁通下降,发电机输出电压下降。 ④ 当发电机电压下降到等于调节下限U B1时,VS截止,VT 1 截止,VT 2 重新 导通,磁场电路重新被接通,发电机电压上升。周而复始,发电机输出电压U B 被控制在一定范围内,这就是外搭铁型电子调节器的工作原理。 (3)内搭铁型电子调节器的基本电路 内搭铁型电子调节器基本电路的特点是晶体管VT1、VT2采用PNP型,发电机的励磁绕组连接在VT2的集电极和搭铁端之间,与外搭铁型电路显著不同,电路工作原理和结构与外搭铁型电子调节器类似。

冷凝压力调节阀的工作原理

冷凝压力调节阀的工作原理 冷凝压力调节阀用于调理介质的流量、压力和液位。依据调理部位旌旗灯号,主动节制阀门的开度,然后到达介质流量、压力和液位的调理。冷凝压力调节阀分电动冷凝压力调节阀、气动冷凝压力调节阀和液动冷凝压力调节阀等。 冷凝压力调节阀由电动执行机构或气动执行机构和冷凝压力调 节阀两局部构成。冷凝压力调节阀凡间分为纵贯单座式冷凝压力调节阀和纵贯双座式冷凝压力调节阀两种,后者具有流畅才能大、不服衡办小和操作不变的特点,所以凡间特殊合用于大流量、高压降和走漏少的场所。 流畅才能Cv是选择冷凝压力调节阀的首要参数之一,冷凝压力调节阀的流畅才能的界说为:当冷凝压力调节阀全开时,阀两头压差为0.1MPa,流体密度为1g/cm3时,每小时流径冷凝压力调节阀的流量数,称为流畅才能,也称流量系数,以Cv透露表现,单元为t/h,液体的Cv值按下式核算。 依据流畅才能Cv值巨细查表,就可以确定冷凝压力调节阀的公

称通径DN。 冷凝压力调节阀的流量特征,是在阀两头压差坚持恒定的前提下,介质流经冷凝压力调节阀的相对流量与它的开度之间关系。冷凝压力调节阀的流量特征有线性特征,等百分比特征及抛物线特征三种。三种注量特征的意义如下: (1)等百分比特征(对数)等百分比特征的相对行程和相对流量不成直线关系,在行程的每一点上单元行程转变所惹起的流量的转变与此点的流量成正比,流质变化的百分比是相等的。所以它的长处是流量小时,流质变化小,流量大时,则流质变化大,也就是在分歧开度上,具有一样的调理精度。 (2)线性特征(线性)线性特征的相对行程和相对流量成直线关系。单元行程的转变所惹起的流质变化是不变的。流量大时,流量相对值转变小,流量小时,则流量相对值转变大。 (3)抛物线特征流量按行程的二方成比例转变,大体具有线性和等百分比特征的中心特征。 从上述三种特征的剖析可以看出,就其调理功能上讲,以等百分比特征为最优,其调理不变,调理功能好。而抛物线特征又比线性特征的调理功能好,可依据运用场所的要求分歧,遴选个中任何一种流

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

PWM整流工作原理

PWM整流工作原理

图6-28 单相PWM 整流电路 整流电路也可分为电压型和电流型两大类,目前半桥电路直流侧电容必须由两个电容串联,其中点和交流电源单相半桥电路 交流侧电感电感和交流电源内部电感,是电全桥电路直流侧电容只要一个就可以。 单相全桥电路 6-8 电力电子技术 (1)单相全桥PWM 整流电路的工作原理 正弦信号波和三角波相比较的方法对图6-28b 中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。 u AB 中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。 由于L s 的滤波作用,谐波电压只使i s 产生很小的脉动。 当正弦信号波频率和电源频率相同时,i s 也为与电源频率相同的正弦波。 u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。 改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 6.4.1 PWM 整流电路的工作原理

6-12 电力电子技术 (2)对单相全桥PWM 整流电路工作原理的进一步说明 整流状态下: u s > 0时,(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s < 0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 6.4.1 PWM 整流电路的工作原理

交流发电机的电压调节器

由于交流发电机的转子是由发动机通过皮带驱动旋转的,且发动机和交流发电机的速比为1.7~3,因此交流发电机转子的转速变化范围非常大,这样将引起发电机的输出电压发生较大变化,无法满足汽车用电设备的工作要求。为了满足用电设备恒定电压的要求,交流发电机必须配用电压调节器,使其输出电压在发动机所有工况下基本保持恒定。

一、电压调节器的分类 1.交流发电机电压调节器按工作原理可分为: (1)触点式电压调节器 触点式电压调节器应用较早,这种调节器触点振动频率慢,存在机械惯性和电磁惯性,电压调节精度低,触点易产生火花,对无线电干扰大,可靠性差,寿命短,现已被淘汰。 (2)晶体管调节器 随着半导体技术的发展,采用了晶体管调节器。其优点是:三极管的开关频率高,且不产生火花,调节精度高,还具有重量轻、体积小、寿命长、可靠性高、电波干扰小等优点,现广泛应用于东风、解放及多种中低档车型。 (3)集成电路调节器 集成电路调节器除具有晶体管调节器的优点外,还具有超小型,安装于发电机的内部(又称内装式调节器),减少了外接线,并且冷却效果得到了改善,现广泛应用于桑塔纳。奥迪等多种轿车车型上。 (4)电脑控制调节器 电脑控制调节器是现在轿车采用的一种新型调节器,由电负载检测仪测量系统总负载后,向发电机电脑发送信号,然后由发动机电脑控制发电机电压调节器,适时地接通和断开磁场电路,即能可靠地保证电器系统正常工作,使蓄电池充电充足,又能减轻发动机负荷,提高燃料经济性。如上海别克、广州本田等轿车发电机上使用了这种调节器。 2.电子调节器按所匹配的交流发电机搭铁型式可分为: (1)内搭铁型调节器:适合于与内搭铁型交流发电机所匹配的电子调节器称为内搭铁型调节器; (2)外搭铁型调节器:适合于与外搭铁型交流发电机所匹配的电子调节器称为外搭铁型调节器。 在使用过程中,对于晶体管调节器,最好使用汽车说明书中指定的调节器,如果采用其他型号替代,除标称电压等规定参数与原调节器相同外,代用调节器必须与原调节

电压调节器的原理及功能

电压调节器的原理 1、闭合电压的调整 用一节干电池与蓄电池、电流表串联起来,接在调理器的蓄电池接线柱上。启动发起机并逐步升高转速,在截流器触点闭应时察看迁延机上电流表指针。若电流表指针向“+”偏向摆动,透露表现闭合电压高,应该削弱弹簧拉力;若电流表指针向“-”偏向摆动,则透露表现闭合电压低,应该增大弹簧拉力。就如许重复调整,直到截流器触点闭应时电流表指针简直不摆动,则透露表现闭合电压适宜。 2、调压值的调整 用两节干电池与蓄电池、电流表串联,接在调理器的蓄电池接线柱上。启动发起机,逐步升高转速。在调压器起效果时,察看电流表的指针。若电流表指针向“+”偏向摆动,透露表现调压值高,应削减弹簧拉力;若电流表指针向“-”偏向摆动,透露表现调压值低,应该增大弹簧拉力。如许重复调整,直到调压器起效果时,电流表指针简直不摆动,则透露表现调压值适宜。 这种调整办法的道理是:干电池与蓄电池串联起来,有必然的电位,而发电机则宣布必然的电压,当两者不等时就要发生电流。前者电位高于后者,则电流表指针向“-”偏向,反之则向“+”偏向。只要两者电位差不多相等时,电流表指针才不摆动。 电压调节器的功能 可编程调节器属可编程调节器于调节器的一种,可编程调节器又称数字调节器或单回路调节器。它是以微处理器为核心部件的一种新型调节器。它的各种功能可以通过改变程序(编程)的方法来实现,故称为可编程调节器。 1、具有常规模拟仪表的安装的操作方式,可与模拟仪表兼容。 2、具有丰富的运算处理功能。 3、一机多能,可简化系统工程,缩小控制室盘面尺寸。 4、具有完整的自诊断功能,安全可靠性高。 5、编程方便,无须计算机软件即可操作,便于推广。 6、通信接口能与计算机联机,扩展性好。

自立式调节阀工作原理

工作原理 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀前压力。当阀后压力P1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。

3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。 4、自力式温度调节阀工作原理(冷却型)(如图4) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。

相关主题
相关文档 最新文档