当前位置:文档之家› 三极管

三极管

三极管
三极管

三极管

三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件.其作用是把微弱信号放大成辐值较大的电信号, 也用作无触点开关。

电子三极管Triode (俗称电子管的一种)

双极型晶体管BJT (Bipolar Junction Transistor)

J型场效应管Junction gate FET(Field Effect Transistor)

金属氧化物半导体场效应晶体管MOS FET ( Metal Oxide Semi-Conductor Field Effect Transistor)英文全称

V型槽场效应管VMOS (Vertical Metal Oxide Semiconductor )

工作原理

晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有N PN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b 点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)极基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:

Ie=Ib+Ic

这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:

β1=Ic/Ib

式中:β1--称为直流放大倍数,

集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:

β= △Ic/△Ib

式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。

三极管放大时管子内部的工作原理

1、发射区向基区发射电子

电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。

2、基区中电子的扩散与复合

电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。

3、集电区收集电子

由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。

三极管的分类:

a.按材质分: 硅管、锗管

b.按结构分: NPN 、PNP。如图所示

c.按功能分: 开关管、功率管、达林顿管、光敏管等.

贴片三极管

d. 按功率分:小功率管、中功率管、大功率管

e.按工作频率分:低频管、高频管、超频管

f.按结构工艺分:合金管、平面管

g.按安装方式:插件三极管、贴片三极管

插件三极管

三极管的主要参数

a. 特征频率fT

:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作.

b. 工作电压/电流

用这个参数可以指定该管的电压电流使用范围.

c. hFE

电流放大倍数.

d. VCEO

集电极发射极反向击穿电压,表示临界饱和时的饱和电压.

e. PCM

最大允许耗散功率.

f. 封装形式

指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现.

判断基极和三极管的类型

三极管的脚位判断,三极管的脚位有两种封装排列形式,如右图:

三极管是一种结型电阻器件,它的三个引脚都有明显的电阻数据,测试时(以数字万用表为例,红笔+,黒笔-)我们将测试档位切换至二极管档(蜂鸣档)标志符号如右图:

正常的NPN结构三极管的基极(B)对集电极(C)、发射极(E)的正向电阻是430Ω-680Ω(根据型号的不同,放大倍数的差异,这个值有所不同)反向电阻无穷大;正常的PNP 结构的三极管的基极(B)对集电极(C)、发射极(E)的反向电阻是430Ω-680Ω,正向电阻无穷大。集电极C对发射极E在不加偏流的情况下,电阻为无穷大。基极对集电极的测试电阻约等于基极对发射极的测试电阻,通常情况下,基极对集电极的测试电阻要比基极对发射极的测试电阻小5-100Ω左右(大功率管比较明显),如果超出这个值,这个元件的性能已经变坏,请不要再使用。如果误使用于电路中可能会导致整个或部分电路的工作点变坏,这个元件也可能不久就会损坏,大功率电路和高频电路对这种劣质元件反应比较明显。

尽管封装结构不同,但与同参数的其它型号的管子功能和性能是一样的,不同的封装结构只是应用于电路设计中特定的使用场合的需要。

要注意有些厂家生产一些不规范元件,例如C945正常的脚位是BCE,但有的厂家出的此元件脚位排列却是EBC,这会造成那些粗心的工作人员将新元件在未检测的情况下装入电路,导致电路不能工作,严重时烧毁相关联的元器件,比如电视机上用的开关电源。

在我们常用的万用表中,测试三极管的脚位排列图:

先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极.

当基极确定后,将黑表笔接基极,红表笔笔接其它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP.

判断集电极C和发射极E,以NPN为例:

把黑表笔接至假设的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头所示C,E电阻值,然后将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立.

体三极管的结构和类型

晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PN P和NPN两种,

从三个区引出相应的电极,分别为基极b发射极e和集电极c。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和N PN型两种类型。

三极管的封装形式和管脚识别

常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,

底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。

目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。

晶体三极管的电流放大作用

晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb 的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。

晶体三极管的三种工作状态

截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。

饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。

根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。

使用多用电表检测三极管

三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。

三极管类型的判别:三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN 型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。

三极管的基本放大电路

基本放大电路是放大电路中最基本的结构,是构成复杂放大电路的基本单元。它利用双极型半导体三极管输入电流控制输出电流的特性,或场效应半导体三极管输入电压控制输出电流的特性,实现信号的放大。本章基本放大电路的知识是进一步学习电子技术的重要基础。

基本放大电路一般是指由一个三极管或场效应管组成的放大电路。从电路的角度来看,可以将基本放大电路看成一个双端口网络。放大的作用体现在如下方面:1.放大电路主要利用三极管或场效应管的控制作用放大微弱信号,输出信号在电压或电流的幅度上得到了放大,输出信号的能量得到了加强。

2.输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。

共射组态基本放大电路的组成

共射组态基本放大电路是输入信号加在加在基极和发射极之间,耦合电容器C1和Ce视为对交流信号短路。输出信号从集电极对地取出,经耦合电容器C2隔除直流量,仅将交流信号加到负载电阻RL之上。放大电路的共射组态实际上是指放大电路中的三极管是共射组态。

在输入信号为零时,直流电源通过各偏置电阻为三极管提供直流的基极电流和直流集电极电流,并在三极管的三个极间形成一定的直流电压。由于耦合电容的隔直流作用,直流电压无法到达放大电路的输入端和输出端。

当输入交流信号通过耦合电容C1和Ce加在三极管的发射结上时,发射结上的电压变成交、直流的叠加。放大电路中信号的情况比较复杂,各信号的符号规定如下:由于三极管的电流放大作用,ic要比ib大几十倍,一般来说,只要电路参数设置合适,输出电压可以比输入电压高许多倍。uCE中的交流量有一部分经过耦合电容到达负载电阻,形成输出电压。完成电路的放大作用。

由此可见,放大电路中三极管集电极的直流信号不随输入信号而改变,而交流信号随输入信号发生变化。在放大过程中,集电极交流信号是叠加在直流信号上的,经过耦合电容,从输出端提取的只是交流信号。因此,在分析放大电路时,可以采用将交、直流信号分开的办法,可以分成直流通路和交流通路来分析。

放大电路的组成原则:

1.保证放大电路的核心器件三极管工作在放大状态,即有合适的偏置。也就是说发射结正偏,集电结反偏。

2.输入回路的设置应当使输入信号耦合到三极管的输入电极,形成变化的基极电流,从而产生三极管的电流控制关系,变成集电极电流的变化。

3.输出回路的设置应该保证将三极管放大以后的电流信号转变成负载需要的电量形式(输出电压或输出电流)。

三极管的选型与替换:

1.首先要进行参数对比,如果不知道参数可以先在网络收搜索他的规格书,了解其参数。行业里大家用的多的是https://www.doczj.com/doc/0b18074454.html,一个英文网站;

2.知道参数,尤其是BVCBO,BVCEO,BVEBO,HFE,ft,VCEsat参数。通过各个参数的比较,找相似的产品。即使知道了参数以后也不好找,一些书籍都过时了,没有收集新的产品进去。最近看到一个创意不错的网站,半导体百事通网有个参数选型栏目,可以针对半导体器件的参数对照组合筛选来选型https://www.doczj.com/doc/0b18074454.html, 测判三极管的口诀

三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。

1:三颠倒,找基极

大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。

2:PN结,定管型

找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

3:顺箭头,偏转大

找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致顺箭头,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。

4:测不出,动嘴巴

若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。

三极管在电路中的使用(超详细 有实例)

一种三极管开关电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturatiON)。 1 三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为: 因此,基极电流最少应为:

三极管输入输出特性测试(—)

电路分析实验报告 三极管输入输出特性测试(—) 一、实验摘要 通过对三极管输入回路和输出回路电压和电流的测量,得到三极管的输入特性和输出特性数据。 二、实验环境 三极管电阻电位器直流电源万用表 三、实验原理

三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。 四、实验步骤 在面包板上搭建电路 设定直流电源输入/输出电流和 5v 0.1A 0V/1V/2V 0.1A 电压 调节电位器改变分压 记录电压电流得到三极管特性曲线

五、实验数据 VCE=0V V/v 0.5 0.625 0.628 0.648 0.652 0.659 0.664 0.706 I/A 0.00337 0.04928 0.06074 0.1208 0.14025 0.17675 0.20929 0.84831 VCE=1V V/v 0.613 0.755 0.756 0.763 0.773 0.779 0.784 0.788 I/A 0.00709 0.5514 0.61795 0.6531 0.7683 0.7836 0.85145 1.14519

VCE=2V V/v 0.757 0.762 0.774 0.781 0.783 0.786 0.791 0.793 I/A 0.54868 0.58846 0.86204 0.9535 1.10292 1.55215 1.56623 2.48202 六、实验总结 在本次实验中了解到了三极管的输入特性和输出特性以及 三极管的特性曲线。但是自己数据取的不好,特性图画出来不是很好。

三极管的学习

我想‘三极管是在饱和状态下集电极正偏’,这句话是必要条件,是三极管在饱和导通状态下得出的结果,不能用他在电路里判断。 那怎么判断三极管是宝盒导通的呢?我是这样理解的,如上图,基极电流ib=(5v(引脚高电平时)-vbe)/r22,比如算的电流为3ma,而如果三极管的β值为100,流过此三极管的集电极电流最大为200ma,此时若按照ic=βibe算得,电流为300ma,很显然大于200ma,三极管不在放大状态,此时ic已经不在随ibe线性变化,此时ic电流已饱和,基极基本无电流流过。流过ice电流大,vce间电压拉低,压差大约在0.3v左右。我是这样理解的,不知道是否正确 ----------------------------------------------------------------------- 我一直都是这么理解的。

,你上面的射随用法是不正确的,单片机的IO口带负载不好吧。正确的接法是把负载接到c极和3.3v之间。你想确定是否饱和的话,测出Ic和Vce再对比曲线图不就知道了。 其实经验之谈,给Ib提供10几毫安左右的电流,再结合不是太小的负载,一般都是工作在饱和了。

积分:86 派别: 等级:------ 来自:哈哈同志们都不会猜到我竟然把板子焊错了我把两个电容的正接在了R1和D1接点和R2和D2接点那了就出现了两个灯常亮的效果了现在两个灯闪的效果出来了我把两个电容改成1UF的时候,两个灯闪的比较快了 看你怎么用了,,,,NPN , PNP 都可以驱动,,,如果你用的是NPN,如果你驱动是5V ,,,那么你把负载放在发射极,,那么IB = 多少呢?没有了IB 也就没有了IC ,,怎么去驱动,,,但是把负载放在集电极,,,就可以驱动,,,,,, 至于为什么单片机系统中,,,都喜欢用PNP,,,因为有很多单片机的吸入电流,比输出电流更大,,,故,,

二极管及三极管电路符号大全

二极管及三极管符号大全【图】二极管符号参数二极管符号意义

CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比 CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管。硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二

极管极限电流。 IH---恒定电流。维持电流。 Ii---发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流

三极管MOS管原理(很详细)

双极型晶体管
双极型晶体管又称三极管。电路表示符号: B J T 。根据功率的不同具有不同的外形结构。
(a )小功率管 (b )小功率管 (c )中功率管 (d )大功率管
1
双极型晶体管的几种常见外形

一. 基本结构
由两个掺杂浓度不同且背靠背排列的PN结组成, 根据排列方式的不同可分为NPN型和PNP型两种,每个 PN结所对应区域分别称为发射区、基区和集电区。
C NPN型 B
基极
集电极
集电极
C P N P E
2
N P N E 发射极
PNP型
B
基极 发射极

C B IB E
IC B IE IB
C
IC
E
IE
NPN型三极管
PNP型三极管
制成晶体管的材料可以为Si或Ge。
3

集电区: 面积较大
C N P N E
集电极
基区:较薄, 掺杂浓度低
基极
B
发射区:掺 杂浓度较高
4
发射极

C N P N E
集电极
集电结
B J T 是非线性元 件,其工作特性与其 工作模式有关: 当E B 结加正偏,C B 结 加反偏时, B J T 处于放 大模式;
基极
B
发射结 发射极
当E B 结和C B 结均加正偏时, B J T 处于饱和模式; 当E B 结加零偏或反偏、C B 结加反偏时, B J T 处于截止 模式。 B J T 主要用途是对变化的电流、电压信号进行放大, 饱和模式和截止模式主要用于数字电路中。
5

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

三极管的认识及了解

三极管的认识及了解 导体电子器件,有两个PN结组成,可以对电流起放大作用,有3个引脚,分别为集电极(c),基极(b),发射极(e).有PNP和NPN型两种,以材料分有硅材料和锗材料两种。 1.概念: 半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件. 作用:把微弱信号放大成辐值较大的电信号, 也用作无触点开关. 2.三极管的分类: a.按材质分: 硅管、锗管 b.按结构分: NPN 、 PNP c.按功能分: 开关管、功率管、达林顿管、光敏管等. 3.三极管的主要参数: a. 特征频率fT:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作. b. 工作电压/电流:用这个参数可以指定该管的电压电流使用范围. c. hFE:电流放大倍数. d. VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压. e. PCM:最大允许耗散功率. f. 封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在.

4.判断基极和三极管的类型: 先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极. 当基极确定后,将黑表笔接基极,红表笔笔接基它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP. 判断集电极C和发射极E,以NPN为例: 把黑表笔接至假充的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头所示C,E电阻值,然后将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立. 体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN 结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。

三极管常用应用电路

三极管常用电路 1.三极管偏置电路_固定偏置电路 如上图为三极管常用电路中的固定偏置电路:Rb的作用是用来控制晶体管的基极电路Ib,Ib称为偏流,Rb称为偏流电阻或偏置电阻.改变Rb的值,就可以改变Ib的大小.图中Rb 固定,称为固定偏置电阻. 这种电路简单,使用元件少,但是由于晶体管的热稳定性差,尽管偏置电阻Rb固定,当温度升高时,晶体管的Iceo急剧增加,使Ie也增加,导致晶体管工作点发生变化.所以只有在温度变化不大,温度稳定性不高的场合才用固定偏置电路 2.三极管偏置电路_电压负反馈偏置电路 如上图为三极管常用电路中的电压负反馈偏置电路:晶体管的基极偏置电阻接于集电极. 这个电路好象与固定偏置电路在形式上没有多大差别,然而正是这一点,恰恰起到了自动补偿工作点漂移的效果.从图中可见,当温度升高时,Ic增大,那么Ic上的压降也要增大,使得Uce下降,通过Rb,必然Ib也随之减小,Ib的减小导致Ic的减小,从而稳定了Ic,保证了

Uce基本不变. 这个过程,称为负反馈过程,这个电路就是电压负反馈偏置电路. 2.三极管偏置电路_分压式电流负反馈偏置电路 如上图为三极管常用电路中的分压式电流负反馈偏置电路:这个电路通过发射极回路串入电阻Re和基极回路由电阻R1,R2的分压关系固定基极电位以稳定工作点,称为分压式电流负反馈偏置电路.下面分析工作点稳定过程. 当温度升高,Iceo增大使Ic增加.Ie也随之增加.这时发射极电阻Re上的压降Ue=Ie*Re 也随之升高.由于基极电位Ub是固定的,晶体管发射结Ube=Ub-Ue,所以Ube必然减小,从而使Ib减小,Ic和Ie也就减小了. 这个过程与电压负反馈类似,都能起到稳定工作点的目的.但是,这个电路的反馈是Ue=Ie*Re,取决于输出电流,与输出电压无关,所以称电流负反馈. 在这个电路中,上,下基极偏置电阻R1,R2的阻值适当小些,使基极电位Ub主要由它们的分压值决定.发射极上的反馈电阻Re越大,负反馈越深,稳定性越好.不过Re太大,在电源电压不变的情况下,会使Uce下降,影响放大,所以Re要选得适当. 如果输入交流信号,也会在Re上引起压降,降低了放大器的放大倍数,为了避免这一点,Re 两端并联了一个电容Ce,起交流旁路作用. 这种电路稳定性好,所以应用很广泛. 一、采用仪表放大器还是差分放大器 尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解 届别 系别 专业 班级 姓名 指导老师

二零一二年十月 晶体管的输入输出特性曲线详解 学生姓名:指导老师: 摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。 根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。 生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值 晶体管是一种半导体器件,放大器或电控开关常用。晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。由于

其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。 关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。 【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis. 一、晶体管的基本结构 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图 1-1(a)、(b)所示。从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。当前国内生产的锗管多为PNP型(3A

使用三极管应该注意的几个问题

使用三极管时需要注意的几个问题 按照现代的制造工艺来说,根据不同的掺杂方式在同一个硅片上制造出三个掺杂区域,并形成两个PN结,由此就构成了一个晶体管。 晶体管最大的优点就是能够放大信号,它是放大电路的核心元件,能够控制能量的转换,将输入的任何微小变化量不失真地进行放大输出。 以下是我们在电路设计中使用三极管时需要注意的几个问题,还是老样子——“看图说话”: (1)需注意旁路电容对电压增益的影响: 这个电路在国内各种模拟电路教材书上是司空见惯的了,也算比较经典的了。由于这个旁路电容的存在,在不同频率环境中会有不同的情况发生: a、当输入信号频率足够高时,X C将接近于零,即射极对地短路,此时共射的电压增益 为:

b、当输入信号频率比较低时,X C将远大于零,即相当于开路,此时共射的电压增益 为: 由此可以看出,在使用三极管设计电路时需要掂量旁路电容对电压增益带来的影响。(2)需注意三极管内部的结电容的影响: 由于半导体制造工艺的原因,三极管内部不可避免地会有一定容值的结电容存在,当输入信号频率达到一定程度时,它们会使得三极管的放大作用“大打折扣”,更糟糕的是,它还会因此引起额外的相位差。 a、 由于C be的存在,输入信号源的内阻R S和X Cbe形成了一个鲜为人知的分压器,也可以看成是一个LPF,当输入信号的频率过高时,三极管基极的电位就会有所下降,此时电压增益就随之减小。 b、

由于C bc的存在,当输入信号的频率过高时,V out的一部分会经过C bc反馈到基极,又因为此反馈信号和输入信号有180°的相位差,所以,这样也会降低基极的电位,电压增益也由此下降。 (3)需明确把握三极管的截止频率: 这个电路图是一个等效过后的图,其中C L是集电极到发射极、集电极到基极之间的结电容以及负载电容的等效电容。当输入信号的频率达到

三极管三种电路的特点

三极管三种电路的特点 1.共发射极电路特点 共射极电路又称反相放大电路,其特点为电压增益大,输出电压与输入电压反相,低频性能差,适用于低频、和多级放大电路的中间级 共发射极放大电路 共发射极的放大电路,如图2所示。 图2 共发射极放大电路 因具有电流与电压放大增益,所以广泛应用在放大器电路。其电路特性归纳如下: 输入与输出阻抗中等(Ri约1k~5k ;RO约50k)。 电流增益: 电压增益: 负号表示输出信号与输入信号反相(相位差180°)。 功率增益: 功率增益在三种接法中最大。 共发射极放大电路偏压

图4自给偏压方式 又称为基极偏压电路,最简单的偏压电路,稳定性差,容易受β值的变动影响,温度每升高10℃时,逆向饱和电流ICO增加一倍。温度每升高1℃时,基射电压VBE减少2.5mV ,β随温度升高而增加(影响最大) 。

图5带电流反馈的基极偏压方式 三极管发射极加上电流反馈电阻,特性有所改善,但还是不太稳定。 图6分压式偏置电路 此为标准低频信号放大原理图电路,其R1(下拉电阻)及R2为三极管偏压电阻,为三极管基极提供必要偏置电流,R3为负载电阻,R4为电流反馈电阻(改善特性),C3为旁路电容,C1及C3为三极管输入及输出隔直流电容(直流电受到阻碍),信号放大值则为R3/R4倍数.设计上注意: 三极管Ft值需高于信号放大值与工作频率相乘积,选择适当三极管集电极偏压、以避免大信号上下顶部失真,注意C1及C3的容量大小对低频信号(尤其是脉波)有影响.在R4并联一个C2,放大倍数就会变大。而在交流时C2将R4短路。 为什么要接入R1及R4? 因为三极管是一种对温度非常敏感的半导体器件,温度变化将导致集电极电流的明显改变。温度升高,集电极电流增大;温度降低,集电极电流减小。这将造成静态工作点的移动,有可能使输出信号产生失真。在实际电路中,要求流过R1和R2串联支路的电流远大于基极电流IB。这样温度变化引起的IB的变化,对基极电位就没有多大的影响了,就可以用R1和R2的分压来确定基极电位。采用分压偏置以后,基极电位提高,为了保证发射结压降正常,就要串入发射极电阻R4。 R4的串入有稳定工作点的作用。如果集电极电流随温度升高而增大,则发射极对地电位升高,因基极电位基本不变,故UBE减小。从输入特性曲线可知,UBE的减小基极电流将随之下降,根据三极管的电流控制原理,集电极电流将下降,反之亦然。这就在一定程度上稳定了工作点。分压偏置基本放大电路具有稳定工作点的作用,这个电路具有工作点稳定的特性。当流过R1和R2串联支路的电流远大于基极电流IB(一般大于十倍以上)时,可以用下列方法计算工作

认知三极管与扬声器

认知三极管与扬声器 1、导入 2、认识电路中的三极管 ●活动1:自学(内容:课本P54页“电路图中的三极管、三极管的测量”)。 归纳:三极管的特性与用途。 3、三极管的测量 ●活动2:学生分为2人一组,随机提供一些三极管。 测量要求:将测得的三极管正反向电阻阻值填入课本P55页表内,然后判断被测试的三极管是否可以使用。 ●活动3:交流与归纳判别三极管好坏的方法。 4、认识三极管的放大作用 ●活动4:自学(内容:课本P56页“认识三极管放大作用”)。 ●活动5:师生对话交流。 对话的重点: (1)三极管实现放大作用的条件 三极管要实现放大作用是有条件的,这就是要给它设立偏置电压(提供直流电源),建立偏置电压的规律是基极与发射极之间要加正向电压,基极与集电极加反向电压,否则三极管没有放大作用。 (2)集电极、发射极和基极电流变化 集电极电流I c、发射极电流I e比基极电流I b大得多,并且基极微小电流变化引起集电极电流较大变化。 ●活动6:三极管放大作用的演示实验(三极管在电路中的作用)。 用演示实验(根据课本P56页图2-26电路),可形象说明三极管的放大作用。 演示操作: (1)先调小可变电阻RP阻值,观察基极电流与集电极电流的变化情况; (2)再反方向调节可变电阻RP阻值,观察基极电流与集电极电流表的变化情况。观察结果分析: 当基极电流I b从0.01毫安变化为0.02毫安,集电极电流I c从1毫安变化为2毫安。不难得出两者变化量之比为100倍。 得到结论:

(1)基极电流I b 有微小的变化,集电极电流I c 将有很大的变化。 (2)可变电阻RP 可以改变基极电流的大小,RP 阻值减小时,基极电流增大,集电极电流增大;RP 阻值增大,基极电流减小,集电极电流减小。基极电流的变化能控制集电极电流的变化。 教学参考 1、 三极管 三极管是一种能对电信号进行放大的电子器件。在两块P 型半导体中间加一层N 型半导体,构成PNP 型三极管,同样也可以在两块N 型半导体中间加一层P 型半导体,构成NPN 型三极管,见下图。不论是PNP 型还是NPN 型三极管,内部的三层半导体都形成了两个PN 结,好比存在着两个二极管,因此可以用测量二极管的方法,用万用表来测量三极管的性能好坏。 PNP 型与NPN 型三极管的主要区别是工作时内部的电流方向不同,这从三极管符号可以看出(箭头表示了电流的方向),PNP 型箭头是向里的,即电流由发射极流向集电极、基极,NPN 型箭头是向外的,电流由集电极、基极流向发射极。 2、三极管放大原理 三极管内部的工作过程和原理是十分复杂的,学生不必去深入探究。教学过程中,可从

三极管的基本知识讲解

三极管的初步认识 三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行讲解。三极管有 2 种类型,分别是 PNP 型和 NPN 型。先来认识一下,如下图所示。三极管一共有 3 个极,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极 e(emitter),剩下的一个引脚就是集电极 c(collector)。 三极管的原理 三极管有截止、放大、饱和三种工作状态。放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。三极管的类型和用法有个总结:箭头朝内 PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,电流控制。三极管的用法特点,关键点在于 b 极(基极)和 e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于 b 级以上(硅三极管的PN结道导通电压,如果是锗三极管,这个电压大概为),这个三极管 e 级和 c 级之间就可以顺利导通。也就是说,控制端在 b 和 e 之间,被控制端是 e 和 c 之间。同理,NPN 型三极管的导通电压是 b 极比 e 极高,总之是箭头的始端比末端高就可以导通三极管的 e 极和 c 极。这就是关于“导通电压顺箭头过,电压导通”的解释。 三极管的用法 以上图为例介绍一下三极管的用法。三极管基极通过一个 10K 的电阻接到了单片机的一个 IO口上,假定是,发射极直接接到 5V 的电源上,集电极接了一个 LED 小灯,并且串联了一个 1K 的限流电阻最终接到了电源负极 GND 上。如果由我们的程序给一个高电平 1,那么基极 b 和发射极 e 都是 5V,也就是说 e到 b 不会产生一个的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在

三极管开关电路工作原理解析

三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(Cutoff Region)、线性区 (Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中 (VBE = 0.7 V), I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE IB可被 IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,Ic 与 IB 无关了,因此时的IB大过线性放大区的IB 值, Ic

三极管的工作原理(经典)

三极管的工作原理(转载) 三极管的工作原理 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。 但三极管厉害的地方在于:它可以通过小电流去控制大电流。 放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 结构与操作原理

三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集 极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体, 和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中 性的p型区和n型区隔开。 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。 三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里 我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接 面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管 都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏 区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基 极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大, 故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形 下,电洞和电子的电位能的分布图。 三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在 于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例, 射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极 方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时, 会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流 到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小 关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入 射极的电子流InB? E(这部分是三极管作用不需要的部分)。 InB? E在射极与与电 洞复合,即InB? E=I Erec。pnp三极管在正向活性区时主要的电流种类可以清楚地 在图3(a)中看出。

(完整版)三极管的基本知识讲解

三极管的基本知识讲解 三极管的初步认识 三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行讲解。三极管有2 种类型,分别是PNP 型和NPN 型。先来认识一下,如下图所示。三极管一共有3 个极,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极 e(emitter),剩下的一个引脚就是集电极c(collector)。 三极管的原理 三极管有截止、放大、饱和三种工作状态。放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。三极管的类型和用法有个总结:箭头朝内PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,

电流控制。三极管的用法特点,关键点在于b 极(基极)和e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于b 级0.7V以上(硅三极管的PN 结道导通电压,如果是锗三极管,这个电压大概为0.3V),这个三极管e 级和c 级之间就可以顺利导通。也就是说,控制端在b 和e 之间,被控制端是e 和c 之间。同理,NPN 型三极管的导通电压是b 极比e 极高0.7V,总之是箭头的始端比末端高0.7V就可以导通三极管的e 极和c 极。这就是关于“导通电压顺箭头过,电压导通”的解释。 三极管的用法 以上图为例介绍一下三极管的用法。三极管基极通过一个10K 的电阻接到了单片机的一个IO口上,假定是P1.0,发射极直接接到5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极GND 上。如果P1.0 由我们的程序给一个高电平1,那么基极b 和发射极e 都是5V,也就是说e到b 不会产生一个0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。如果程序给

三极管的作用:三极管放大电路原理

三极管的作用:三极管放大电路原理 一、放大电路的组成与各元件的作用 Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。 共射放大电路 Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE 二、放大电路的基本工作原理

静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。 基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集电极电流:IC=ICQ=βIBQ 集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:

放大电路对信号的放大作用是利用三极管的电流控制作用来实现,其实质上是一种能量转换器。 三、构成放大电路的基本原则 放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如 ic=β*ib)应能有效地转变为负载上的输出电压信号。 电压传输特性和静态工作点 一、单管放大电路的电压传输特性

图解分析法:

输出回路方程: 输出特性曲线: AB段:截止区,对应于输出特性曲线中iB<0的部分。 BCDEFG段:放大区 GHI段:饱和区 作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。 用于开关控制场合:工作在截止区和饱和区上。 二、单管放大电路静态工作点(公式法计算)

认识三极管

认识三极管 三极管的种类及作用 1、晶体三极管:我们的三极管统称为晶体三极管。(简称晶体管,当然二极管也是晶体管。)三极管的四种状态(饱和、截止、放大、倒置)可以让它有四种作用,而三极管的主要作用就是把微弱的电信号(电压、电流、电功率)加以放大,变成较大的电信号从而达到可以观察、控制和利用的程度。 2、稳压三极管:简称三端稳压器或稳压IC,一般是指有输入、输出和接地(或调节)三个脚的线性稳压器,其内部原理是比较复杂的,但工艺与三极管差别不大三端稳压管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。稳压管在反向击穿时,在一定的电流范围内(或者说在一定功率损耗范围内),端电压几乎不变,表现出稳压特性,因而广泛应用于稳压电源与限幅电路之中。 3、晶闸管:我们称之可控硅,是晶体闸流管的简称,又可称做可控硅整流器,晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和门极;晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。电气符号似二极管却又多出门极。一定要区分开来,它有单向、双向、光控三种基本管子。 4、场效应管:我们称为MOSFET,简称MOS管。MOS场效应管是

金属-氧化物-半导体场效应管,也是一种不同于单纯用半导体材料制作的工艺,特点是栅极的输入阻抗极高;用途最广的莫过于它的开关作用了,无论N型或者P型MOS管,其工作原理本质是一样的。MOS管是由加在输入端栅极的电压来控制输出端漏极的电流。MOS 管是压控器件它通过加在栅极上的电压控制器件的特性,不会发生像三极管做开关时的因基极电流引起的电荷存储效应,因此在开关应用中,MOS管的开关速度应该比三极管快。 5、达林顿管:达林顿管就是两个三极管接在一起,极性只认前面的三极管。具体接法如下,以两个相同极性的三极管为例,前面三极管集电极跟后面三极管集电极相接,前面三极管发射极跟后面三极管基极相接,前面三极管功率一般比后面三极管小,前面三极管基极为达林顿管基极,后面三极管发射极为达林顿管发射极,用法跟三极管一样,放大倍数是两个三极管放大倍数的乘积。以它的优点一般用作驱动电路,也常常与MOS管并肩作战。但大多用在电机、点阵屏、小型继电器等驱动上。 想了解更多三极管特性就自己搜吧。。。 本文由王徐思远搜集整理,仅供大家参考。

相关主题
文本预览
相关文档 最新文档