当前位置:文档之家› 数学实验与数学建模 田忌赛马问题 课程大作业

数学实验与数学建模 田忌赛马问题 课程大作业

数学实验与数学建模 田忌赛马问题 课程大作业
数学实验与数学建模 田忌赛马问题 课程大作业

Mathematica解决田忌赛马问题

学院:电子信息工程学院

专业:通信工程

姓名:王斯宇

学号:11211116

指导老师:范秉理老师

完成时间:2013年6月3日

一、问题描述

我国古代有“齐王赛马”的典故,说的是战国时代的齐王与其大将田忌赛马,双方约定各出上、中、下3个等级的马匹进行比赛,这样共赛马3次,每次比赛的败者付给胜者一百金。已知在同一等级马的比赛中,齐王之马稳操胜券,但田忌的上、中等级的马可以分别胜齐王的中、下等级的马。还是同样的马匹,由于调换一下比赛的出场顺序,就得到转败为胜的结果。

二、问题分析

通过对比发现,齐王获胜机会有5次,而田忌仅仅只有一次,此为运筹学对策论解释。。

三、问题求解

在mathematica里,编写一下程序:

上马= 3;

中马= 2;

下马= 1; (“比赛时就是比马的速,大者获胜”)

单挑[甲马_Integer, 乙马_Integer] :=

Which[甲马> 乙马, 甲胜, 甲马< 乙马, 乙胜, True, 平局]; (“齐威王、田忌决定的赛马出场次序”)

齐威王队= {上马, 中马, 下马};

田忌队= {下马, 上马, 中马};

MapThread[单挑, 齐威王队, 田忌队]

(“完整的比赛函数,它给出最然是哪个齐获胜”)

比赛[{甲队名称_String, 甲队_}, {乙队名称_String, 乙队_}] :=

Module[{结果}, 结果= MapThread[单挑, 甲队, 乙队];

Which[Count[结果, 甲胜] > Count[结果, 乙胜], 甲队名称<> "胜利!", Count[结果, 甲胜] < Count[结果, 乙胜], 乙队名称<> "胜利!", True, "平局"]]; 比赛[{"田忌队", 田忌队}, {"齐威王队", 齐威王队}]

运行程序及结果如截图:

最终用mathematica求出比赛结果。

数学建模大作业

兰州交通大学 数学建模大作业 学院:机电工程学院 班级:车辆093 学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题 1 实验案例 (2) 1.1 高速公路问题(简化) (2) 1.1.1 问题分析 (3) 1.1.2 变量说明 (3) 1.1.3 模型假设 (3) 1.1.4 模型建立 (3) 1.1.5 模型求解 (4) 1.1.6 求解模型的程序 (4) 1实验案例 1.1 高速公路问题(简化) A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。 你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢? A B 图8.2 高速公路修建地段

1.1.1 问题分析 在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌 中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。 1.1.2 变量说明 i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标) x=[x 1,x 2,x 3,x 4]T l i :第i 段南北方向的长度(i =1,2, (5) S i :在第i 段上地所建公路的长度(i =1,2, (5) 由问题分析可知, () ()() () 2 542552 432442 322332212 222 1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+= C 1:平原每公里的造价(单位:万元/公里) C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设 1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比; 2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少, 当然实际中一般达不到。 1.1.4 模型建立 在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。 () 4,3,2,1300. .)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模作业及结课评分要求

数学建模作业 [具体问题] 1、某银行经理计划用一笔资金进行证券投资业务,可供购进的证券及其相应信息如下表所示,且有如下规定和限制: (1)市政证券的收益可以免税,其它证券的收益需要按50%的税率纳税; (2)政府及代办机构的证券总共至少购进400万元; (3)所购证券的平均信用等级不超过1.4(信用等级越小,信用程度越高); (4)所购证券的平均到期年限不超过5年; (1)若该经理有1000万资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元,该经理应该如何操作? (3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 注:为简化问题起见,题中的税前收益率和利率都与年限无关,即都为固定值。 基本模型 决策变量:设每种证劵分别投资A、B、C、D、E(万元),平均信用等级为X,平均到期年限为Y。 目标函数:设投资总金额为Q,投资的利润为W(万元), 根据条件有W=A×4.3%+B×5.4%×50%+C×5.0%×50%+D×4.4%×50%+E×4.5%=0.043×A+0.027×B+0.025×C+0.022×D+0.045×E 约束条件: 平均信用等级X=(2×A+2×B+C+D+5×E)/ Q≤1.4 平均到期年限Y=(9×A+15×B+4×C+3×D+2×E)/Q≤5 非负约束所有的证劵投资均为非负值 附加约束B+C+D≥400 模型分析与假设每种证劵投资资金均为连续变量取值,税前收益率和利率都与年限无关;每种证劵投资资金符合比例性、可加性、连续性。 模型求解根据题设的条件,针对问题一有如下函数关系及约束条件 W=0.043×A+0.027×B+0.025×C+0.022×D+0.045×E A+B+C+D+E=1000=Q B+C+D≥400 2×A+2×B+C+D+5×E≤1.4×Q=1400 9×A+15×B+4×C+3×D+2×E≤5×Q=5000 0≤A≤1000 0≤B≤1000 0≤C≤1000 0≤D≤1000 0≤E≤1000 模型求解,用LINGO软件求解,程序如下:

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

论数学建模思想教学(1)

论数学建模思想教学 1在线性代数教学中融入数学建模思想的意义 1.1激发学生的学习兴趣,培养学生的创新水平 教育的本质是让学生在掌握知识的同时能够学以致用。但是当前的线性代数教学重理论 轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不但能够激发学生学习线性代数的兴趣,而且能够调动学生使用线性代数的知识解决实际问题的积极性,使学生理解到线性代数的真正价值,从而改变线性代数无用的观点,同时还能够培养学生的创新水平。 1.2提升线性代数课程的吸引力,增加学生的受益面 数学建模是培养学生使用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这能够大大改善线性代数课堂乏味沉闷的现状,从而提升线性代数课程的吸引力。由数学建模的教学现状能够看到学生的受益面很小,不过任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。 1.3促动线性代数任课教师的自我提升 要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不但要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的水平,这就迫使线性代数任课教师要持续学习新知识和新技术,促动自身知识的持续更新,进而达到提升教 学和科研水平的效果。 2在线性代数教学中融入数学建模

数学建模作业、微分方程实验、北京工业大学

2微分方程实验 1、微分方程稳定性分析 绘出下列自治系统相应的轨线,并标出随 t 增加的运动方向,确定平■衡点, 并按稳定的、渐近稳定的、或不稳定的进行分类: 解:(1)由 f (x ) =x=0, f (y ) =y=0;可得平衡点为(0,0), ___ 1 0 系数矩阵A ,求得特征值入1=1,入2=1; 0 1 p=-(入1+入2)=-2<0 , q=入1入2=1>0;对照稳定性的情况表,可知平■衡点(0, 0) 是 不稳定的。 图形如下: (2)如上题可求得平衡点为(0,0 ),特征值入1=-1,入2=2; p=-(入1+入2)=-1<0 , q-入1入2=-2<0;对照稳定性的情况表,可知平■衡点(0, 0) 是 不稳定的。 其图形如下: dx ⑴dt dt x, y; dx dt dy dt dx x, ⑶尸 2y ;晋 dx y , (4) ? 2x;也 dt x+1, 2y.

(3) 如上题可求得平■衡点为(0,0 ),特征值入1=0 + 1.4142i,入2=0 -1.4142i; p=-(入1+入2)= 0, q-入1入2=1.4142>0;对照稳定性的情况表,可知平■衡点(0, 0)是不稳定的。 其图形如下: (4) 如上题可求得平衡点为(1,0 ),特征值入1=-1,入2=-2; p=-(入1+入2)= 3>0, q=入1入2=2>0;对照稳定性的情况表,可知平■衡点(1, 0) 是稳定的。 其图形如下:

2、种群增长模型 一个片子上的一群病菌趋向丁繁殖成一个圆菌落.设病菌的数目为N,单位 成员的增长率为r1,则由Malthus生长律有竺r1 N,但是,处丁周界表面的dt 那些病菌由丁寒冷而受到损伤,它们死亡的数量与N2成比例,其比例系数为r2, 求N满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的? 解:由题意很容易列出N满足的微分方程:坐r1N r2N; f(N) dt 令f(N)=O,可求得方程的两个平■衡点N1=0,N2=「22/r i2 1 1 d2N 1 5 5 2 (r1 r2N 2) (r1N r2N 2) dt 2 进而求得 A d2N 令r dt 2 2 0可求得N=r2 /4r〔 则N=N1 N=N2 N=r22/4r i2可以把第一象限划为三部分,且从下到上三部分中分 0,冬dt2 .2 2 c dN cdN c dN cdN 0, ;—0, —r 0; —0, ―r dt dt dt dt 则可以画出N (t) 的图形,即微分方程的解族,如下图所示:

数学建模论文大作业-打车软件竞争问题

打车软件的竞争问题 班级:电子科学与技术1102班组员: 二零一四年五月

打车软件的竞争问题 摘要:随着打车软件的日趋火热,越来越多的出行者使用打车软件预约出租车。基于移动互联网的打车软件相对于已往的传统的统一出租车电招平台庞杂的预定流程,显示出了很大的便捷优势,这种约车新形式服务正在悄然改变人们传统打车模式,它的新颖性、神奇性、创新性、高效性以及便利性在一定程度上迎合了人们现代化的生活方式。消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。打车软件给一部分人带来了便捷,同时也带来了很多的社会问题,如拒载、爽约、空车不停等。正是这些争议性问题使得人们对这种新事物的出现产生一些疑虑。因此,国内一些城市开始对这类打车软件紧急进行“叫停”,使得目前这些打车软件的发展陷入迷茫状态。 本文通过建立科学的数学模型,论述了打车软件目前发展模式和存在的问题,并阐述了如何对打车软件进行安全管理与标准化的建议;同时,通过模型分析讨论了打车软件之间的竞争问题;最后指出打车软件企业需要不断地完善自己的软件产品,提高用户体验,使打车软件更符合出租车营运行业市场的需求。 关键词:打车软件;软件补贴;竞争;发展前景

一、打车软件市场发展状况 随着移动互联网的飞速发展,打车软件开始变得异常的火热,开始成为了越来越多的年轻时尚人士出行必备的工具。随着竞争的深入,各家打车软件公司依托于背后强大的母公司支撑和金元的后盾,开始了现金补贴的营销战略,消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。如表1所示。 表1 补贴政策 时间事件 1月10日 嘀嘀打车软件在32个城市开通微信支付,使用微信支付,乘客车费立减10元、 司机立奖10元。 1月20日“快的打车”和支付宝宣布,乘客车费返现10元,司机奖励10元。 1月21日快的和支付宝再次提升力度,司机奖励增至15元。 2月10日嘀嘀打车宣布对乘客补贴降至5元。 2月10日快的打车表示奖励不变,乘客每单仍可得到10元奖励。 2月17日嘀嘀打车宣布,乘客奖10元,每天3次;北京、上海、深圳、杭州的司机每单奖10元,每天10单,其他城市的司机每天前5单每单奖5元,后5单每单奖10元。新乘客首单立减15元,新司机首单立奖50元。 2月17日支付宝和快的也宣布,乘客每单立减11元。司机北京每天奖10单,高峰期每单奖11元(每天5笔),非高峰期每单奖5元(每天5笔);上海、杭州、广州、深圳每天奖10单。 2月18日 嘀嘀打车开启“游戏补贴”模式:使用嘀嘀打车并且微信支付每次能随机获得 12至20元不等的补贴,每天3次。 2月18日快的打车表示每单最少给乘客减免13元,每天2次。 随之而来的是出租车行业的怪相:出租车司机的主要收入变成了软件公司的补贴,一个司机一个月保守的收入增加都在800~1800元;而消费者打车的费用也同样基本变由打车软件承担,有些短途的打车变成了免费甚至还赚钱。与此同时,问题和矛盾也出现了:不使用打车软件的消费者无法打到车,拒载、空车不停等投诉也比比皆是;司机开车时频频使用手机看打车软件,也产生了潜在交通

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模创新思维大作业

数学建模创新思维课大作业 一、使用MATLAB 求解一下问题,请贴出代码. 1. cos 1000x mx y e =,求''y >>clear >>clc >> syms x m; >> y=exp(x)*cos(m*x/1000); >> dfdx2=diff(y,x,2) dfdx2 = exp(x)*cos((m*x)/1000) - (m*exp(x)*sin((m*x)/1000))/500 - (m^2*exp(x)*cos((m*x)/1000))/1000000 >> L=simplify(dfdx2) L = -(exp(x)*(2000*m*sin((m*x)/1000) - 1000000*cos((m*x)/1000) + m^2*cos((m*x)/1000)))/1000000 2.计算22 1100x y e dxdy +?? >> clear >> clc; >> syms x y >> L=int(int(exp(x^2+y^2),x,0,1),y,0,1) L = (pi*erfi(1)^2)/4 3. 计算4 224x dx m x +? >> clear; >> syms x m; >> f=x^4/(m^2+4*x^2); >> intf=int(f,x) intf =

(m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 >> L=simplify(intf) L = (m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 4. (10)cos ,x y e mx y =求 >> clear; >> syms x m; >> y=exp(x)*cos(m*x); >> L=diff(y,x,10); >> L=simplify(L) L = -exp(x)*(10*m*sin(m*x) - cos(m*x) + 45*m^2*cos(m*x) - 210*m^4*cos(m*x) + 210*m^6*cos(m*x) - 45*m^8*cos(m*x) + m^10*cos(m*x) - 120*m^3*sin(m*x) + 252*m^5*sin(m*x) - 120*m^7*sin(m*x) + 10*m^9*sin(m*x)) 5. 0x =的泰勒展式(最高次幂为4). >> clear; >> syms m x; >> y=sqrt(m/1000.0+x); >> y1=taylor(y,x,'order',5); >> L=simplify(y1) L = (10^(1/2)*(m^4 + 500*m^3*x - 125000*m^2*x^2 + 62500000*m*x^3 - 39062500000*x^4))/(100*m^(7/2)) 6. Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4, )n n n x x x n --=+=用循环语句编程 给出该数列的前20项(要求将结果用向量的形式给出)。 >> x=[1,1]; >> for n=3:20

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。 学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙 膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。 试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无

关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励, 俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹 角 应多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。 5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法, 使加工出尽可能多的圆盘。 6.动物园里的成年热血动物靠饲养的食物维持体温基本不变,在一些合理、简化的 假设下建立动物的饲养食物量与动物的某个尺寸之间的关系。 7.举重比赛按照运动员的体重分组,你能在一些合理、简化的假设下建立比赛成绩 与体重之间的关系吗。下面是一届奥员会的竞赛成绩,可供检验你的模型。

数学建模选修课第二次作业汇总

数学建模作业 一、回答以下问题 1.什么是数学模型? 答: 所谓数学模型,是指针对或参照现实世界中某类事物系统的主要特征、主要关系,经过简化与抽象,用形式化的数学语言概括或近似地加以表述的一种数学结构.一般表现为数理逻辑的逻辑表达式、各种数学方程(如代数方程、微分方程、积分方程等)及反映量与量之间相互关系的图形、表格等形式.它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策与控制.好的数学模型应具备可靠性和可解性(也叫适用性)两方面的特性:可靠性指在允许的误差范围内,能反映出该系统有关特性的内在联系;可解性指易于数学处理与计算.数学 模型方法将复杂的研究对象简单化、抽象化,撇开对象的一些具体特征,减少其参数,只抽取其主要量、量的变化及量与量之间的相互关系,在“纯粹”的形态上进行研究,突出主要矛盾,忽略次要矛盾,用数学语言刻画出客观对象量的规律性,简洁明了地描述现实原形,揭示出其本质的规律,并在对模型修正、求解的基础上使原问题得以解决.可以说,数学模型是对现实原形的一种理想化处理是一个科学的抽象过程,因而具有高度的抽象性与形式化特征.这一特征使其成为一种经典的数学方法,并随着科学技术的数学化趋势,超越数学范畴,广泛地应用于自然

2013数学建模选修课第二次作业 科学、工程技术和社会科学的一切领域.。 2.数学模型是如何分类的? 答: 用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。 3.建立数学模型一般应遵循什么原则? 答: 模型假设是整个建模的起点,是模型建立的基础,不同的人对同一事物的认识因其角度及深度不一致而产生不同的假设条件,从而导致不同的模型建立恰当进行模型假设是极为重要的。同时模型假设和模型建立是一个不易分离的整体过程。 . 在进行模型假设和模型建立的过程中,我们应遵从以下两个基本原则,并按两个基本原则的顺序进行反复的操作。 (1)分割原则分割成若干个独立的研究对象并说明对象间应有联系可用图来表示对象间联系。 (2)联系原则构造出对象之间的联系的具体方式或细节 分割的复杂性在于不存在绝对的客观分割的标准因为任何一个分割方式都带有一定的主观性, 分割问题不单纯是数学问题,还需要有其他学科的观点,这就构成模型假设的复杂性。对其复杂性我们有必要作深入探讨和研究。 2

2015年数学建模作业题

数学模型课程期末大作业题 要求: 1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。 2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。 3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题 某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1): 表 到6月底每种产品有存货50件。 工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。 在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何? 注意,可假设每月仅有24个工作日。 5、生产计划 某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示: 台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示: 量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求: (a)该厂如何安排计划,使总利润最大; (b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。 34、瓶颈机器上的任务排序 在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学建模期末大作业-2013年

期末大作业题目 一、小行星的轨道问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立了以太阳为原点的直角坐标系,在两坐标轴上取天文观测单位。在5个不同的时间对 (1 ) 建立小行星运行的轨道方程并画出其图形; (2) 求出近日点和远日点及轨道的中心(是太阳吗?); (3) 计算轨道的周长。 二、发电机使用计划 为了满足每日电力需求(单位:兆瓦),可以选用四种不同类型的发电机。每日电力需求如下所示: 一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于下表中。 电机不需要付出任何代价。我们的问题是: (1)在每个时段应分别使用哪些发电机才能够使每天的总成本最小? (2)如果增加表3中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小?

(3)如果增加表4中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小? 三、合理计税问题

所以此人一年上税为: 245×12+11445=14385元 在实际的执行过程中,每月的岗位津贴和年末一次性奖金实际上是放在一起结算给个人的,而具体每月发放多少岗位津贴和年末一次性发放多少奖金可以由职工本人在年初根据自己的需要进行选择。显然,不同的选择发放方式所缴纳的税是不同的,这就产生一个合理计税的问题。假定该事业单位一年中的津贴与奖金之和的上限是160000元,试解决下面这个问题: 四、光伏电池的选购问题 早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏特效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。据预测,太阳能光伏发电在未来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。 现有一家公司欲在面积为30平方米的一片向阳的屋顶安装光伏电池以解决部分电力紧张的问题。请你利用附件提供的数据通过建立数学模型解决下面三个问题: (1)如果该公司准备投资6万5千元购买A或者B两种类型的光伏电池,请你为该公司确定购买方案使得发电总功率最大。 (2)如果购买的光伏电池的开路电压之间的差不能超过2V,请你为该公司重新确定购买方案。 (3)实际中还要考虑电池串并联后并网发电的要求,即如果要购买两种或者两种类型以上的电池时,不同型号的电池的购买数量应该相等。请你在满足(1)

相关主题
文本预览
相关文档 最新文档