当前位置:文档之家› 4 信令系统

4 信令系统

第四章
信令系统

主要内容
? ? ? ? ?
信令与信令系统 信令 信令系 信令分类 No.7信令网与通信网 No.7信令系统 信令过程举例

信令
?
?
?
建立通信网的目的是为用户传递包括话音信息和 非话音信息在内的各种信息。 为做到这一点,就必须使通信网中的各种设备协 调动作,因此,各设备之间必须相互交流各设备 状态的监视和控制“信息”,以说明各自的运行 情况,提出对相关设备的接续要求,从而使各设 备之间协调运行。 在交换设备之间相互交换的“信息”必须遵守一 在交换设备之间相互交换的 信息 必须遵守 定的协议和规约,这些协议和规约称为信令

信令方式
?
信令方式:包括信令的结构形式、信令在多段路 由 的传送方式及控制方式 由上的传送方式及控制方式。 选择合适的信令方式,关系到整个通信网通信质 量的好坏及投资成本的高低。 量的好坏及投资成本的高低
?

信令系统
?
?
信令系统:交换局为完成特定信令方式的 信令系统 交换局为完成特定信令方式的 传递与控制所实现的功能实体。 任何通信网都离不开信令系统,信令系统 是通信网的重要组成部分。
?
可以指导终端、交换系统及传输系统协同运行, 在指定的终端之间建立/释放临时的通信信道, 释放临时的通信信道 维护网络本身的正常运行。
?

信令方式的基本要求
? ? ? ?
信息量大 信息 大 快速 可靠 适应性强

主叫用户 用户线
市话 发端局
局间中继线
市话 收端局
被叫用户 用户线
主叫摘机 拨号音 拨号
线路占用信令 占用证实 被叫号码(路由信令) 被叫状态
回铃音 应答信号 通话 忙音 主叫挂机 后向拆线信号 前向拆线信号 后向拆线证实 用户线信令 局间信令
振铃 摘机 被叫挂机
信 令 过 程 举 例
用户线信令

信令分类(1)——按功能
?
监视信令具有监视功能,用来监视主、被叫的摘、 挂机状态及设备忙闲 表示用户线与中继线的当前 挂机状态及设备忙闲,表示用户线与中继线的当前 状态。 路由信令具有选择路由功能,指主叫所拨的被叫号 码、局间记发器信号等,用来选择路由,找到被叫。 管理信令具有操作功能.用于电话网的管理和维护。 如检测和传送网路拥塞信息 呼叫计费信息 提供 如检测和传送网路拥塞信息、呼叫计费信息,提供 远距离维护信令,局间中继的闭塞等信息。
?
?

信令分类(2)——按传输区域
?
用户信令
? ?
模拟用户信令 数字用户信令 DSS1 随路信令No.1 共路信令No.7
?
局间信令
? ?

用户信令
?
用户信令是用户和交换机之间的信令,在用 户线上传送。
模拟用户信令:主要包括用户向交换机发送的监视 模拟用户信令 主要包括用户向交换机发送的监视 信令和选择信令,交换机向用户发送的铃流和忙音 等音信号。用于PSTN。
?
?
? ?
状态信令:用户线的忙闲状态,如主、被叫的摘、挂机 状态。 地址信令:主叫所拨的被叫号码,直流脉冲或双音频 铃流和信号音:交换机向用户发送的信号。振铃信号, 信号音 来电显示的FSK信号; 信号音,来电显示的 信号
?
数字用户信令:通过消息的形式传送以上信息,用 于ISDN用户。例如: 用户 例如 DSS1,DSS2

局间信令
?
局间信令是交换机之间(市--市、市--长、 长--长)、交换机与网管中心、数据库 (HLR、VLR)之间的信令。在局间中继线 上传送,用来控制呼叫接续和拆线,以及 与通信网管理和维护相关的信息。

信令分类(3)——按传输方向
?
前向信令
?
信令沿着从主叫到被叫的方向传送,发端局到收端局。
?
后向信令
?
信令沿着从被叫到主叫的方向传送,收端局到发端局。

信令分类(4)——按信令技术
?
随路信令
?
呼叫接续过程中的各种信令均在该呼叫所占用的 传 令 话路中传送(或信令通路与话路存在对应关系)
?
共路信令(公共信道信令)
?
信令通路与话音通路分开,且一条信令通路可以 为多条话音通路 务 为多条话音通路服务

随路信令方式
交换设备
出局线路 设备
话路
入局线路 设备
交换设备
信令设备
信令设备

随路信令举例:中国No.1 No 1信令
中国1号信令是随路信令,它是由线路信令和多 频互控信令(MFC,也叫记发器信令)构成的。 多频互控信令是路由信令,用于传递被叫号码、 主叫号码、主叫用户类别等信息,它是在此次通话 所占用的话路中传送的。 线路信令是监视信令,用于传递中继电路空闲、 占用、被叫应答、主被叫摘挂机等状态。它是在局 间PCM中继系统的TS16中传送的,该信令虽然不在 话路中传送,但是信令传送通道与话路之间存在着 时间位置上的一一对应关系。

随路信令举例:中国No.1 No 1信令

公共信道信令方式
话路群 交换设备 出局线路 设备 信令链路 控制设备
?
入局线路 设备
交换设备
信令终端
信令终端
控制设备
?
?
公共信道信令的优点是信令传送速度快、信号容量大、可靠 公共信道信令的优点是信令传送速度快 信号容量大 可靠 性高; 不仅可以传送与电路接续有关的信号 还可以传送各种与电 不仅可以传送与电路接续有关的信号,还可以传送各种与电 路接续无关的传令信息; 在通话时可随时处理信令;具有改变或增加信令的灵活性 在通话时可随时处理信令;具有改变或增加信令的灵活性, 便于开放新业务;

随路信令与公共信道信令
CAS 与公共信道信令相比,随路信令的传送速度慢,
信令容量小,传递与呼叫无关的信令能力有限, 不便于信令功能的扩展,支持通信网中新业务的 能力较差。
CCS 公共信道信令的传送速度快、信令容量大、可
传递大量与呼叫无关的信令,便于信令功能的扩 展,便于开放新业务,可适应现代通信网的发展。

信令分类(5)——按信令结构
?
未编码信令
? ?
信号音 回路通断状态 DTMF MFC No.7信令
?
编码信令
? ? ?
多频编码的优点: 编码丰富、传送速度快、可靠性高、有自检能力。

信令在多段路由上的传递
?
端到端方式
?
?
转接局只接收用于选择路由的信令,并进行路由选择, 接通话路。然后,转接局提供透明传输,由发端局向 终端局直接传送信令。 终端局直接传送信令 用于优质电路的记发器信令。 转接局全部接收上级局送来的信令,经过必要的校正 后,转发至下级局,直至终端局。 用于劣质电路的记发器信令,线路信令,共路信令。 在优质电路上使用端到端方式,在劣质电路上使用逐 段转发方式,即为混合方式。
?
逐段转发方式 转发 式
?
?
?
混合方式
?

LTE信令流程详解

L T E信令流程详解集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

LTE信令流程 目录

概述 本文通过对重要概念的阐述,为信令流程的解析做铺垫,随后讲解LTE中重要信令流程,让大家熟悉各个物理过程是如何实现的,其次通过异常信令的解读让大家增强对异常信令流程的判断,再次对系统消息的解析,让大家了解系统消息的特点和携带的内容。最后通过实测信令内容讲解,说明消息的重要信元字段。 第一章协议层与概念 1.1控制面与用户面 在无线通信系统中,负责传送和处理用户数据流工作的协议称为用户面;负责传送 和处理系统协调信令的协议称为控制面。用户面如同负责搬运的码头工人,控制面就相 当于指挥员,当两个层面不分离时,自己既负责搬运又负责指挥,这种情况不利于大货 物处理,因此分工独立后,办事效率可成倍提升,在LTE网络中,用户面和控制面已明 确分离开。 1.2接口与协议 接口是指不同网元之间的信息交互时的节点,每个接口含有不同的协议,同一接口 的网元之间使用相互明白的语言进行信息交互,称为接口协议,接口协议的架构称为协 议栈。在LTE中有空中接口和地面接口,相应也有对应的协议和协议栈。

信令流数据流 图1 子层、协议栈与流 图2 子层运行方式 LTE系统的数据处理过程被分解成不同的协议层。简单分为三层结构:物理层、数据链路层L2和网络层。图1阐述了LTE系统传输的总体协议架构以及用户面和控制面数据信息的路径和流向。用户数据流和信令流以IP包的形式进行传送,在空中接口传送之前,IP包将通过多个协议层实体进行处理,到达eNodeB后,经过协议层逆向处理,再通过S1/X2接口分别流向不同的EPS实体,路径中各协议子层特点和功能如下:

七号信令详解

七号信令基础

第1章 GSM信令系统简介 我们已经知道,数字蜂窝移动通信系统由NSS、BSS、OSS三大子系统和 MS组成,但这只是根据功能划分的物理上的组合,大多数功能是分布在不同 的设备中的,这样在执行任务时就需要交换信息,协调动作:分散的设备需要 相互配合才能完成某项任务,设备或各个子系统之间必须通过各种接口按照规 定的协议实现互连。在通信系统中,我们把协调不同实体所需的信息称为信令。 信令系统指导系统各部分相互配合,协同运行,共同完成某项任务。GSM系 统中,信令消息具体体现在接口的协议和规范上,我们先从子系统互连和接口 的分层模式来说明GSM系统中主要协议的结构和相互关系。 1.1 接口和协议 接口代表两个相邻实体之间的连接点,而协议是说明连接点上交换信息需要遵 守的规则。两个相邻实体要通过接口传送特定的信息流,这种信息流必须按照 一定的规约,也就是双方应遵守某种协议,这样信息流才能为双方所理解。不 同的实体所传送的信息流不同,但其中也可能有一些共同性,因此,某些协议 可以用在不同的接口上,同一接口会用到多种协议。图1-1表示了在无线接口 (Um接口)上存在的不同协议,其中SS规程用于移动台对HLR设置补充业 务的参数;MM和CM用于移动台和MSC/VLR之间交换用户移动性管理信息 和通信接续信息;RR用于移动台和BSC之间交换无线资源分配信息。 图1-1通过无线接口的各种协议 一种协议在传送过程中可以通过若干个接口,例如上述MM和CM协议在移 动台传送到MSC/VLR过程中至少要通过无线接口、Abis接口和A接口。

图1-2表示了GSM 系统的信令结构,横向是根据物理的设备从最左边移动台开始顺次接入系统的各种系统的各种地面设施;纵向对应于各个功能层面,从最低的传输层开始,逐步到各种高层面。 MS BTS BS C MS C/VLR HLR GMS C 传输层 RR MM CM 图1-2 GSM 系统的信令结构 让我们先来看无线接口,它们涉及到GSM 系统中的许多重要协议。最底层是BTS 和MS 之间的传输层,然后是无线接口第二层的数据链路层和第三层的应用层,其中包括协议RR (无线资源管理),此协议也出现在“Abis ”接口和“A ”接口上。从这里可以看出,BTS 和BSC 这些设备对有些信令的交换是透明的,它们的作用只是传递信息,并不做处理。 对于网络一侧的内部连接,各设备都具备单一的接口,即用CCS7信令网支持相互间的信令交换。 1.2 GSM 系统中的接口和协议 在GSM 系统中,信令消息在不同的接口有不同的形式,也就是有不同的信令协议。为什么采用不同的协议呢?比较直观的原因之一是为了得到优化,这一点表现在无线接口上;另一个原因就是迁就已经存在的标准。 图1-3表示GSM 系统的信令模型:

第四章 信令系统课后答案

1、什么是信令? 信令是通信网中规范化的命令,它的作用是控制通信网中各种通 信连接的建立,维护通信网的正常运行。 信令是各交换局在完成呼叫接续中使用的一种通信语言,它是控 制交换机产生动作的命令。 2、什么是信令方式?它包含哪三方面的内容? 信令在传送过程中所要遵守的规约和规定,就是信令方式。 包括信令的结构形式、信令在多段路由上的传送方式及控制方式。 3、试比较端到端和逐段转发两种信令传送模式的不同,并分析它们应 用的环境有什么不同。 端到端:对线路传输质量要求较高,信令传送速度快,接续时间短,信令在多段路由上的类型必须相同。 逐段转发:对线路传输质量要求不高,信令传送速度慢,话路接 续时间长,在多段路由上传送信令的类型可以不同。 在优质电路上使用端到端方式,在劣质电路上使用逐段转发方式。 4、画图说明全互动方式的过程。 Page:138 图4.9 5、什么是随路信令?它的基本特征是什么? 随路信令:信令和话音在同一条话路中传送的信令方式。 基本特征:(1)共路性:信令和用户信息在同一通信信道上传送 (2)相关性:信令通道与用户信息通道在时间位置上 具有相关性。 6、什么是公共信道信令?它的基本特征是什么? 公共信道信令(共路信令):信令通路与话音通路分开,且一条 信令通路可以为多条话音通路服务。 基本特征:(1)分离性:信令和用户信息在各自的通信信道上传

送; (2)独立性:信令通道与用户信息通道之间不具有时 间位置的关联性,彼此相互独立。 7、No.7信令的技术特点是什么? (1)No.7信令采用公共信道方式。 (2)No.7信令是基于分组交换的数据报方式,其信息传送的最小单位是信令单元(SU),基于统计时分复用方式。 (3)由于话路与信令通道分开,所以必须要对话路进行单独的导通检验。 (4)必须要设置备用设备,以保证可靠性。 8、画出面向OSI七层协议的No.7信令协议栈,并说明各部分完成的功能。 MTP:消息传递部分 TUP:电话用户部分

GSM信令流程(超详细)

Issue 3.3 课程说明 课程介绍 GSM通信流程包括两方面的内容:呼叫基本流程,信令基本流程。其中,呼叫流程主要包含:移动主叫流程,移动被 叫流程,汇接呼叫流程。信令基本流程主要包含:鉴权流程,位置登记流程,呼叫重建流程,BSC内部切换流程,BSC 间切换流程,MSC间切换流程,移动始发短消息流程,移动终结短消息流程,定向重试流程。 这些流程从系统的角度描述了移动用户经常发生的行为,描述了GSM的几个组成部分在呼叫流程、信令流程中的相互 关系,对移动性特征做重点说明。 课程目标 本课程的重点是介绍GSM系统的协同工作过程,涉及内容包含:呼叫、位置更新、切换、短消息。对流程的介绍突出 了移动特征,具体的信令细节本课程不做描述,可以参考ETSI的GSM规范获得更加详细的内容。 通过学习本课程,可以基本掌握: ?移动用户做位置登记的信令过程; ?移动用户做主叫的信令过程; ?移动用户做被叫的信令过程; 1

Issue 3.3 ?MSC做汇接呼叫的信令过程; ?BSC内切换信令过程; ?BSC间切换的信令过程; ?MSC间切换的信令过程; ?呼叫重建的信令过程; ?定向重试的信令过程。 对这些信令流程学习之后,对GSM系统的原理会有更加深刻的了解,对每个功能实体(MS,BTS,BSC,MSC,VLR, HLR)的功能有更加深刻的体会。 相关资料 ETSI关于GSM的规范,主要是:GSM0408,GSM0808,GSM0902。 2

Issue 3.3 第一节呼叫过程的信令分析 对一次发生在移动用户间的呼叫来说,信令流程可以分为三个相对独立的部分: ?主叫移动用户部分 ?被叫移动用户部分 ?拆线部分 1.1 主叫信令流程 移动用户做主叫时的信令过程从MS向BTS请求信道开始,到主叫用户TCH指配完成为止。一般来说,主叫经过几个大 的阶段:接入阶段,鉴权加密阶段,TCH指配阶段,取被叫用户路由信息阶段。 ?接入阶段主要包括:信道请求,信道激活,信道激活响应,立即指配,业务请求等几个步骤。经过这个阶段,手机 和BTS(BSC)建立了暂时固定的关系。 ?鉴权加密阶段主要包括:鉴权请求,鉴权响应,加密模式命令,加密模式完成,呼叫建立等几个步骤。经过这个阶 段,主叫用户的身份已经得到了确认,网络认为主叫用户是一个合法用户,允许继续处理该呼叫。 ?TCH 指配阶段主要包括:指配命令,指配完成。经过这个阶段,主叫用户的话音信道已经确定,如果在后面被叫 接续的过程中不能接通,主叫用户可以通过话音信道听到MSC的语音提示。 3

TD-LTE测试内容和信令解析

TD-LTE测试内容和信令解析 1.测试内容 现阶段通常涉及到的测试按测试模式来分可分为室外测试与室内测试,按测试内容来分通常可分为覆盖测试与业务测试。由于室外与室内的覆盖测试及业务测试大部分操作都相同,所以本节以室外测试为例,介绍覆盖测试与业务测试的操作流程。 1.1覆盖测试 覆盖测试主要是通过CNT测试软件了解记录覆盖区域的信号强度、信号质量、信干噪比(SINR)。 1.1.1覆盖测试操作 通常进行覆盖测试时终端处于空闲状态,测试时先按上述文档介绍的内容进行正确的设备连接,开始记录测试文件,然后按既定路线进行路测,记录路线上的信号覆盖情况。 1.1.2覆盖测试关注指标 进行覆盖测试时,我们通常关注以下三个问题。第一,测试路段是哪个小区覆盖;第二,该路段覆盖信号强度如何;第三,该路段覆盖信号质量如何。 首先,从测试软件的LTE Cell Information窗口我们可以看到当前的主覆盖小区,如下图。 图15 LTE Cell Information窗口 正确导入小区信息数据后,我们可以在上图窗口中看到当前服务小区的名称,CellID和PCI,这些参数都能标识当前为终端提供服务的是哪个小区。更进一步,我们打开测试软件主菜单Presentation->LTE->LTE Server Cell Information窗口可以看到更详细的服务小区信息,如下图。

图16 LTE Server Cell Information窗口 确认了主服务小区之后,我们可以看到该小区在测试路段的覆盖强度,就是参数RSRP(参考信号接收功率),在图15和图16的两个窗口中均可以看到这个参数,更直观的方法,则是在MAP窗口通过路测覆盖图显示出来,如下图所示。 图17 RSRP覆盖图 现阶段道路覆盖要求RSRP尽量保持在-110dbm以上,为保证业务质量,作为优化的目标,我们尽可能的通过调整,使RSRP尽量保持在-105dbm以上。 对于覆盖路段的信号质量,目前软件不能采样较合适的参数直观显示。由于LTE小区间的干扰对信号质量影响较大,我们可以通过LTE Cell Information窗口的邻区信息间接获知信号质量的大概情况。根据LTE道路覆盖的要求,除正常的切换带外,最好LTE Cell Information 窗口只显示一个服务小区的信息(该窗口对邻区信号的显示有一定阀值控制,当主服务小区较邻区信号强很多的时候邻区信号不显示)。若该窗口中显示了几个小区的信号(如下图),信号强度相差不大,则表示该路段信号覆盖不纯净,信号质量较差。另外,对处于业务状态的终端,我们可以通过下行的BLER或上行的发射功率间接认识该处无线环境的信号质量。

EPC基本原理-正常呼叫信令详解

EPC系统原理-正常呼叫信令详解鲜枣课堂

目录 EPC系统原理-正常呼叫信令详解 (2) 1LTE的背景 (2) 2EPC系统的网络结构 (2) 3EPC系统的基本呼叫信令流程 (4) 3.1附着流程 (4) 3.2分离流程 (5) 3.2.1UE发起的分离流程 (6) 3.2.2MME发起的分离流程 (7) 3.2.3HSS发起的分离流程 (8) 3.3跟踪区位置更新流程 (8) 3.3.1SGW改变的跟踪区更新流程 (9) 3.3.2SGW不变的跟踪区更新流程 (10) 3.4业务请求流程 (11) 3.4.1UE触发业务请求流程 (11) 3.4.2网络侧触发业务请求流程 (12) 3.4.3网络侧下行数据触发业务请求流程 (13) 3.5寻呼流程 (14) 3.6专有承载业务流程 (15) 3.6.1专有承载建立流程 (15) 3.6.2专有承载修改流程 (16) 3.6.3专有承载删除流程 (18) 3.7切换流程 (19) 3.7.1SGW没有改变的X2口切换 (20) 3.7.2SGW改变的X2口切换 (20) 3.7.3基于S1的切换 (21) 4名词术语及缩略语 (23)

EPC系统原理-正常呼叫信令详解 1 L TE的背景 随着移动通信技术的不断成熟和用户需求的不断提升,宽带无线接入的概念开始被越来越多的运营商和用户关注。相比较于WiFi(Wireless Fidelity,无线保真)和WiMAX(Worldwide Interoperability for Microwave Access,全球微波接入互操作性)等无线接入方案的迅猛发展,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)组织制定的WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、HSDPA(HighSpeed Downlink Packet Access,高速下行分组接入)、HSUPA(High Speed Uplink PacketAccess,高速上行分组接入)虽然在支持移动性和QoS(Quality of Service,服务质量)方面有较大优势,但是在无线频谱利用率和传输时延等方面有所落后。此外,一方面目前的数据类业务种类繁多且数据量大,对空口的数据传输数率提出了更高的要求;另一方面OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)技术为核心的无线接入技术逐渐成熟,大幅度提升空口速率可以变为现实。目前WCDMA提供的2 Mbit/s,HSDPA提供的14.4 Mbit/s峰值速率已经无法满足需求。为此3GPP 在2004年底决定使用现在为3G分配的频段,采用新的技术来进行网络演进,并为此制定了长期演进计划LTE(Long Term Evolution,长期演进)。 2 EPC系统的网络结构 图2-1EPC的网络结构

非常详细的LTE信令流程

LTE信令流程

目录 第一章协议层与概念 (5) 1.1控制面与用户面 (5) 1.2接口与协议 (5) 1.2.1NAS协议(非接入层协议) (7) 1.2.2RRC层(无线资源控制层) (7) 1.2.3PDCP层(分组数据汇聚协议层) (8) 1.2.4RLC层(无线链路控制层) (8) 1.2.5MAC层(媒体接入层) (9) 1.2.6PHY层(物理层) (10) 1.3空闲态和连接态 (12) 1.4网络标识 (13) 1.5承载概念 (14) 第二章主要信令流程 (16) 2.1 开机附着流程 (16) 2.2随机接入流程 (19) 2.3 UE发起的service request流程 (23) 2.4寻呼流程 (26) 2.5切换流程 (27) 2.5.1 切换的含义及目的 (27) 2.5.2 切换发生的过程 (28) 2.5.3 站内切换 (28) 2.5.4 X2切换流程 (30) 2.5.5 S1切换流程 (32) 2.5.6 异系统切换简介 (34) 2.6 CSFB流程 (35) 2.6.1 CSFB主叫流程 (36) 2.6.2 CSFB被叫流程 (37) 2.6.3 紧急呼叫流程 (39) 2.7 TAU流程 (40) 2.7.1 空闲态不设置“ACTIVE”的TAU流程 (41)

2.7.2 空闲态设置“ACTIVE”的TAU流程 (43) 2.7.3 连接态TAU流程 (45) 2.8专用承载流程 (46) 2.8.1 专用承载建立流程 (46) 2.8.2 专用承载修改流程 (48) 2.8.3 专用承载释放流程 (50) 2.9去附着流程 (52) 2.9.1 关机去附着流程 (52) 2.9.1 非关机去附着流程 (53) 2.10 小区搜索、选择和重选 (55) 2.10.1 小区搜索流程 (55) 2.10.1 小区选择流程 (56) 2.10.3 小区重选流程 (57) 第三章异常信令流程 (60) 3.1 附着异常流程 (61) 3.1.1 RRC连接失败 (61) 3.1.2 核心网拒绝 (62) 3.1.3 eNB未等到Initial context setup request消息 (63) 3.1.4 RRC重配消息丢失或eNB内部配置UE的安全参数失败 (64) 3.2 ServiceRequest异常流程 (65) 3.2.1 核心网拒绝 (65) 3.2.2 eNB建立承载失败 (66) 3.3 承载异常流程 (68) 3.3.1核心网拒绝 (68) 3.3.2 eNB本地建立失败(核心网主动发起的建立) (68) 3.3.3 eNB未等到RRC重配完成消息,回复失败 (69) 3.3.4 UE NAS层拒绝 (70) 3.3.5上行直传NAS消息丢失 (71) 第四章系统消息解析 (72) 4.1 系统消息 (73) 4.2 系统消息解析 (74) 4.2.1 MIB (Master Information Block)解析 (74) 4.2.2 SIB1 (System Information Block Type1)解析 (75) 4.2.3 SystemInformation消息 (77) 第五章信令案例解析 (83) 5.1实测案例流程 (84)

程控交换机系统(华为)

第十二章程控交换机系统 12.1 系统概述 数字程控交换系统立足于我国当前通信发展的实际情况,为满足智能化酒店、智能化综合大楼等智能化建筑对现代IP通讯技术的特殊需要,根据ITU-T标准及中国信息产业部相关的行业标准,综合先进的计算机技术、数字程控IP交换技术进行研制、开发和设计的。采用IP交换技术,选用先进的通信专用器件,具有体积小、性能强、可靠性高、维护方便、便于扩容和性能升级等特点, IP语音采用国际通用标准的SIP、ITU-T-H.323(MGCP option)协议栈,符合中国信息产业部《YD/T1046-2000IP网关设备互通技术规》标准,可以和国际、国主流VoIP厂商产品互连互通。系统融IP、交换技术于一体,适用于在电信、电力、水力、钢铁、公安、石化、油田、冶金、交通、部队等宽带接入设备接入Internet/Intranet网的IP交换业务,也可满足于机关、学校、金融等事业单位和酒店饭店的IP交换业务。 1、设计依据 《邮电部交换设备总技术规书》(YDN 065-1997) 《中国电信交换机99版容说明》 《中国电信互联互通点交换设备技术要求》 《开放呼叫前转,语音,卡等业务的技术要求》(GF009-94) 《中国网随路信号方式技术规》 《中国国网NO.7信号方式技术规》(GF001-9001) 《中国国网NO.7信令方式综合数字业务网用户部分(ISUP)技术规》(YDN-038-1997) 《ISDN用户--网络接口基本呼叫控制技术规》 《ISDN用户--网络接口数据链路层技术规》 《ISDN用户--网络接口补充业务技术规及一致性测试》 《本地交换机和接入网V5.1接口技术规》 《本地交换机和接入网V5.2接口技术规》 《国NO.7信令方式技术规――信令连接控制部分(SCCP)》(GF-010-95) 《国NO.7信令方式技术规――事物处理能力部分(TC)》(GF-010-95) 《中国智能网应用规----INAP》 《中国智能网业务交换点(SSP)设备技术规》

WCDMA信令详解之系统消息

DINGLI WCDMA信令解析 系统消息参数 LuoCheng 2012-3-14 本文档主要针对WCDMA信令的系统消息参数给出详细解析和说明,系统消息截图为鼎利Navigator 5.8

第一部分系统消息介绍 1.1 系统消息的简介 系统消息在3G系统中非常重要的,它默默无闻且永不停息的为UE服务直到小区被删除。系统消息中包含着大量的参数,这些参数主要包括网络属性信息,UE所需的定时器、公共信道信息、小区选择与重选和测量信息。这些参数决定了UE在小区中的驻留,重选以及呼叫。只有UE接收全了必要的系统消息,UE才能在这个小区驻留。 1.2 系统消息的广播过程 1、RNC通过发送SYSTEM INFORMATION UPDATE REQ消息发送给NODEB,其中带有所有 需要更新的系统消息的编码码流,NODEB收到后通过简单的检查调度顺序,就发送SYSTEM INFORMATION UPDATE RESPONSE给RNC。通知RNC系统消息更新成功,同时NODEB 开始广播SYSTEM INFORAMATION消息给小区中的所有UE。 2、系统消息是NODEB通过BCH发送给UE的。BCH传输信道的TTI为20ms,所以NODEB 每20ms发送一次SYSTEM INFORAMATION。 1.3 系统消息更新过程 对于使用V alue Tag的系统信息块,若发生改变,需把IE BCCH modification info中MIB的V alue Tag设为新值,并以以下两种方式通知UE: 1、UE处于Idle、Cell_PCH、URA_PCH状态下,UTRAN通过发送Paging Type1消息通知UE 重新读取新的系统消息。 2、UE处于Cell_FA CH状态下,UTRA N发送系统消息变更指示System Information Change Indication消息通知UE重新读取新的系统消息。

信令流程(图+介绍)

GSM 信令流程(菜鸟多看看,不要到处跑) GSM 系统使用类似OSI 协议模型的简化协议,包括物理层(L1)、数据链路层(L2)和应用层(L3)。L1是协议模型最底层,提供物理媒介传输比特流所需的全部功能。L2保证正确传递消息及识别单个呼叫。在GSM 系统中,无线接口(Um )上的L1和L2分别是TDMA 帧和LAPDm 协议。在网络侧,Abis 接口和A 接口使用的L1均为E1传输方式,L2分别为LAPD 和MTP 协议。在Um 接口,MS 每次呼叫时都有一个L1和L2层的建立过程,在此基础上再与网络侧建立L3上的通信。在网络侧(A 和Abis 接口),其L1和L2(SCCP 除外)始终处于连接状态。L3层的通信消息按阶段和功能的不同,分为无线资源管理(RR )、 G C H ) C C H )H )

移动性管理(MM)和呼叫控制(CC)三部分。 1、建立RR连接 RR的功能包括物理信道管理和逻辑信道的数据链路层连接等。 在任何情况下,MS向系统发出的第一条消息都是CH-REQ(信道请求),要求系统提供一条通信信道,所提供的信道类型则由网络决定。CH-REQ有两个参数:建立原因和随机参考值(RAND)。建立原因是指MS发起这次请求的原因,本例的原因是MS发起呼叫,其它原因有紧急呼叫、呼叫重建和寻呼响应等。RAND是由MS确定的一个随机值,使网络能区别不同MS所发起的请求。RAND有5位,最多可同时区分32个MS,但不保证两个同时发起呼叫的MS的RAND值一定不同。要进一步区别同时发起请求的MS,还要根据Um接口上的应答消息。 CH-REQ消息在BSS内部进行处理。BSC收到这一请求后,根据对现有系统中无线资源的判断,分配一条信道供MS使用。该信道是否能正常使用,还需BTS作应答证实,Abis接口上的一对应答消息CHACT(信道激活)和CHACK(信道激活证实)完成这一功能。CHACT指明激活信道工作所需的全部属性,包括信道类型、工作模式、物理特性和时间提前量等。 网络准备好合适的信道后,就通知MS,由IMMASS(立即指配)消息完成这一功能。在IM-MASS中,除包含CHACT中的信道相关信息外,还包括随机参考值RA、缩减帧号T、时间提前量TA等。RA值等于BSS系统收到的某个MS发送的随机值。T是根据收到CH-REQ时的TD-MA帧号计算出的一个取值范围较小的帧号。RA和T值都与请求信道的MS直接相关,用于减少MS之间的请求冲突。TA是根据BTS收到RACH信道上的CH -REQ信息进行均衡时,计算出来的时间提前量。MS根据TA确定下一次发送消息的时间提前量。 IMMASS的目的是在Um接口建立MS与系统间的无线连接,即RR连接。MS收到IM -MASS后,如果RA值和T值都符合要求,就会在系统所指配的新信道上发送SABM帧,其中包含一个完整的L3消息(MP-L3-INF),这条消息在不同的接口有不同的作用。在Um接口,SABM帧是LAPDm层上请求建立一个多帧应答操作方式连接的消息。系统收到SANM帧后,回送一个UA帧,作为对SABM帧的应答,表明在MS与系统之间已建立了一条LAPDm通路;另外,此UA帧的消息域包含同样一条L3消息,MS收到该消息后,与自己发送的SABM帧中相应的内容比较,只有当完全一样时,才认为被系统接受。L3消息中包含MS的IMSI,IMSI对每个MS是唯一的,这可保证在该信道上只有一个MS可接入系统。在Abis接口,这条消息是ESTIND(建立指示),用来通知已建立LAPDm连接,作为对IMMASS消息的应答。 在SANM帧中,透明传输到MSC的L3消息是A接口的第1条L3消息。尽管A接口

TDD-LTE信令详解

1 概述 本文主要就TDD-LTE信令解码进行详细介绍(上篇:主要介绍系统消息),主要包括信令主要作用、信令包含字段、各个字段生效方式、字段配置场景以、字段含义和字段作用。由于TDD-LTE系统本身也在不断完善,部分信令涉及字段会随着LTE系统需求出现变更,因此此文档将不断进行更新调整。

2 Master Information Block 2.1 发送场景 UE会在下述过程之后接收系统信息: 1)小区选择(开机后)和小区重选 2)切换 3)从其它RAT进入E-UTRA 4)重回服务区 5)接收到系统信息改变通告 6)接收到ETWS通告指示 7)接收到CDMA2000上层请求 8)系统信息超出最大有效期-周期性的 补充点:LTE中之所以要在切换后接受系统消息,是因为LTE系统设计扁平化以后取消了RNC网元,也就是LTE中切换的测量配置下发、判决都是eNodeB完成,在当前不支持X2口切换前提下,切换完成后UE对于该小区下的系统消息配置是不清楚,所以会接收系统消息;如果支持X2口切换的话,在切换前源eNodeB和目标eNodeB之间会交互配置信息,则不用接收系统消息。 2.2 发端网元处理 组装消息内容 2.3 收端网元处理 接收到MasterInformationBlock后,UE将: 1)应用phich-Config中携带的无线资源配置信息; 1)当T311正在运行,UE处于RRC_IDLE或者RRC_CONNECTED状态:

2)如果UE没有相关小区的有效系统信息: 3)将ul-Bandwidth 设置为dl-Bandwidth,直到接收到 SystemInformationBlockType2。 2.4 字段解释 2.4.1dl-bandwidth 1) 字段类型:BIT STRING (SIZE (4)) 2) 字段描述:下行带宽。参数配置为:传输带宽配置,下行N RB ,[参见TS 36.101 ]。如 n6与6个资源块对应,n15对应15个资源块等等 Channel bandwidth BW Channel[MHz] 1.4 3 5 10 15 20 Transmission bandwidth configuration N RB 6 15 25 50 75 100 3) 现网举例:n100 。载波带宽20M,传输信道可用资源块100个。 【RB为transport block,一个RB包含12个子载波,每个子载波15K,一个RB为15*12=180K。考虑频谱间的隔离,每个RB定义为200K,20M带宽为100个RB,1200个子载波】 一个RB。时域上占7个OFDM符号,频域上占12个子载波。 2.4.2PHICH Configuration 2.4.2.1 phich-Duration 1) 字段类型:ENUMERATED {normal, extended} 2) 字段描述:物理HARQ指示信道持续时间[参考36.211中table6.9.3-1] PHICH持续时 间 非MBSFN子帧MBSFN子帧 帧结构类型2中的子帧1和 子帧6 其他情况同时支持PDSCH和 PMCH的载波 Normal 1 1 1 Extended 2 3 2 单位:OFDM符号 3) 现网举例:Normal 补充点: OFDM符号,从时域角度讲,一个时隙下有7个OFDM符号(常规CP),或6个OFDM 符号,如果在MBSFN情况下,有3个OFDM符号。在频域上,OFDM符号占据系统带宽下所有子载波。一个OFDM符号到底含有多少bit数据,是与系统配置的资源块(RB)数有关

非常详细的LTE信令流程

LTE信令流程 目录 第一章协议层与概念 (7) 1.1控制面与用户面 (7) 1.2接口与协议 (7) 1.2.1................................. N AS协议(非接入层协议) 8 1.2.2................................. R RC层(无线资源控制层) 8 1.2.3............................ P DCP层(分组数据汇聚协议层) 9 1.2.4................................. R LC层(无线链路控制层) 10 1.2.5..................................... M AC层(媒体接入层) 11 1.2.6......................................... P HY层(物理层) 12 1.3空闲态和连接态 (13) 1.4网络标识 (15) 1.5承载概念 (16) 第二章主要信令流程 (18) 2.1 开机附着流程 (18) 2.2随机接入流程 (21)

2.3 UE发起的service request流程 (26) 2.4寻呼流程 (28) 2.5切换流程 (29) 2.5.1 切换的含义及目的 (29) 2.5.2 切换发生的过程 (30) 2.5.3 站内切换 (30) 2.5.4 X2切换流程 (31) 2.5.5 S1切换流程 (34) 2.5.6 异系统切换简介 (36) 2.6 CSFB流程 (36) 2.6.1 CSFB主叫流程 (37) 2.6.2 CSFB被叫流程 (38) 2.6.3 紧急呼叫流程 (40) 2.7 TAU流程 (41) 2.7.1 空闲态不设置“ACTIVE”的TAU流程 (42) 2.7.2 空闲态设置“ACTIVE”的TAU流程 (43)

TD-LTE信令流程及信令解码详解

TD-LT 信令流程及信令解码 第1页共80页 TD-LTE 信令流程及信令解码 本文主要就PS 业务建立流程和LTE 系统内切换的信令及信令解码进行重点IE 分析,并加以标注。所有信令为eNB 侧跟踪的信令。 PS 业务建立流程: 1.1 RRC Connection Request UE 上行发送一条RRC Connection Request 消息给eNB,请求建立一条RRC 连接,该消息携带主要IE 有:

TD-LT 信令流程及信令解码 第2页共80页 - ue-Identity :初始的UE 标识。如果上层提供S-TMSI ,侧该值为S-TMSI ;否则从0…240-1中抽取一个随机值,设置为ue-Identity 。 - establishmentCause :建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : | |_randomValue : ----'0011000101001001011110110111100011000011'B(31 49 7B 78 C3 ) ---- |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 1.2 RRC Connection Setup eNB 在下行方向发送RRCConnectionSetup 消息给UE ,包含建立SRB1承载和无线资源配置信息。该消息携带主要IE 详细见信令解码。 信令解码如下: -RRC-MSG : |_msg : |_struDL-CCCH-Message : |_struDL-CCCH-Message : |_message : |_c1 : |_rrcConnectionSetup : UE 初始标识,此处因为上层没有提供S-TMSI,所 建立原因,此处highPriorityAccess

NO.7信令系统在C&C08交换机上的实现

NO.7信令系统在C&C08交换机上的实现 一、信令系统的概念 信令就是各交换局在完成呼叫接续中的一种通信语言。在两个或两个以上的交换局之间来完成呼叫接续任务 时,就要求交换局之间传递各种消息,例如:主叫用户号 码、被叫用户号码、被叫用户状态、选定的中继路由等, 这种包含各种信息的消息就是信令。而完成上述信令的发 送、接收、处理等的任务就由信令系统来完成。 二、NO.7信令网 随着通信网的不断发展,我国相应规定了中国NO.1和中国NO.7信令方式。目前由于NO.7信令有信息容量大、传递速度快、应用范围广、传输误码率低等优点,在我国 通信网中得到了广泛的应用。NO.7信令网由信令点SP、 信令转接点STP和信令链路Link组成。信令网是独立于电 话网的一个支撑网,我国NO.7信令网由三级结构构成,包 括高级信令转接点HSTP、低级信令转接点LSTP和信令点 SP. 三、NO.7信令系统在C&C08交换机上的实现结构 1、C&C08交换机信令系统的硬件 在C&C08交换机中,实现NO.7功能的硬件包括数字中继板、网板、LAP信令协议板和MPU处理板等。 硬件结构如下图:

从对方信令点来的NO.7链路经过TUP板和HW线到达网板BNET,再经过网板的半永久连接和HW总线连接到NO.7协议板LPN7.这条通路构成了NO.7系统的第一功能级,即数据链路级。 NO.7协议板完成NO.7系统的第二功能级,即链路控制级。 NO.7协议板通过内部总线与MPU板相连,MPU板完成NO.7的第三、第四功能级,即信令网功能和电话用户部分。 2、C&C08交换机信令在软件上的实现

信令流程及信令解码详解

TD-LTE信令流程及信令解码 本文主要就PS业务建立流程和LTE系统内切换的信令及信令解码进行重点IE分析,并加以标注,所有信令为eNB侧跟踪的信令。 PS业务建立流程: 1.1RRC Connection Request UE上行发送一条RRC Connection Request消息给eNB,请求建立一条RRC连接,该消息携带主要IE有: -ue-Identity :初始的UE标识。如果上层提供S-TMSI,侧该值为S-TMSI;否则从0…240-1中抽取一个随机值,设置为ue-Identity。 -establishmentCause:建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt” 代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : UE初始标识,此处因为上层没有提供

|_ue-Identity : | |_randomValue : ----'0011000101001001011110110111100011000011'B(31 49 7B 78 C3 ) ---- |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 1.2 RRC Connection Setup eNB 在下行方向发送RRCConnectionSetup 消息给UE ,包含建立SRB1承载和无线资源配置信息。该消息携带主要IE 详细见信令解码。 信令解码如下: -RRC-MSG : |_msg : |_struDL-CCCH-Message : |_struDL-CCCH-Message : |_message : |_c1 : |_rrcConnectionSetup : |_rrc-TransactionIdentifier : ---- 0x1(1) ---- |_criticalExtensions : |_c1 : |_rrcConnectionSetup-r8 : 建立原因,此处highPriorityAcc 此处为建t-PollRetransmit : 发送端 发送某个Poll 的AMD PDU 后, 如果在该定时器超时后,还 没有收到响应,则重新触发 Poll. pollPDU : 轮询间隔SDU 数,

ZXJ10(V10)交换机系统篇 V5信令

V5信令系统 1、V5协议及原理 2、V5数据配置 3、V5接口调试(动态数据观察及探针观察) 4、V5信令跟踪 5、AB兼容V5飞线及改造 6、常见开局及维护问题处理 1.V5协议及原理 1.1.V5接口基本概念 1.1.1.术语 V5接口:将AN和LE相连接的V接口系列的一个通用术语。 指配:当Q接口具有核实和改变一参数的能力时,则认为该参数将被指配。这类参数可以有默契值和/或可以由本地接口来修改。 预定义:当一参数在V5接口内是当作预定义的,则该参数不需要通过Q接口提供给设备。这类参数通常是设备本身提供的,或是通过本地接口在安装该设备时或重新配置该设备时提供的。 通信路径(C-PATH):指在V5接口上,具有运载控制协议、链路控制协议、PSTN协议、保护协议和承载通路连接(BCC)协议等五种协议之一的第二层数据链路,或来自ISDN D通路上的信令(Ds类型)数据、分组(p类型)数据和帧中继(f类型)数据。 通信通路(C-CHANNEL):V5接口上指配用来运载通信路径(C路径)的64Kbit/s时隙。 逻辑通信通路(LOGICAL C-CHANNEL):一个或多个具有不同类型C路径的组合(但不包括用于保护协议的C路径)。 物理通信通路(PHYSICAL C-CHANNEL):V5接口上一分配用于运载逻辑C通路的64Kbit/s时隙。主链路和次链路(当V5接口有多于一个以上的2048Kbit/s链路)中

主链路:多链路V5接口中的一个2048Kbit/s链路,其时隙16上的物理C通路运载用于保护协议的C路径,在V5接口初始化时,其时隙16也运载用于控制协议、链路控制协议和BCC协议的C路径。 次链路:多链路V5接口中的一个2048Kbit/s链路,其时隙16上的物理C通路运载用于保护协议的C路径,在V5接口初始化时,其时隙16也运载用于控制协议、链路控制协议和BCC协议的备用C通路和运载在主链路时隙16上的任何其它C路径。 1.2.V5接口支持的业务 V5接口是接入网和本地交换机之间的新型开放式数字接口,可以取代交换机原有的模拟接口和各种专线及ISDN用户接口。V5接口可以接入以下种类的用户。 图5.3-1 V5接口支持的业务 电话网(PSTN)用户的接入。模拟用户接入和用户交换机接入。信令可以是DTMF或信令状态信号,对于用户的附加业务没有任何影响,对于用户交换机可以支持直 接拨入功能(DDI)。 ISDN的接入。以无源总线配置的S/T参考点的基本(2B+D)方式接入,V5.2接口还支持以T参考点的基群(30B+D)方式接入。承载(B)通路的承载业务和补充业 务均不受限制,D通路的分组业务和补充业务也不受限制。 专线。用于没有带外信令的半永久租用线路或永久租用线路,可以是模拟用户,也可以是数字用户。半永久租用线路通过V5接口,永久线路旁通V5接口。

[整理]TDLTE信令流程及信令解码.

------------- ------------- TD-LTE信令流程及信令解码 (2013.03)

------------- ------------- 本文主要就PS 业务建立流程和LTE 系统内切换的信令及信令解码进行重点IE 分析,并加以标注。所有信令为eNB 侧跟踪的信令。 1. PS 业务建立流程: 1.1 RRC Connection Request UE 上行发送一条RRC Connection Request 消息给eNB,请求建立一条RRC 连接,该消息携带主要IE 有: - ue-Identity :初始的UE 标识。如果上层提供S-TMSI ,侧该值为S-TMSI ;否则从0…240-1中抽取一个随机值,设置为ue-Identity 。 - establishmentCause :建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : | |_randomValue : ----'0011000101001001011110110111100011000011'B(31 49 7B 78 C3 ) ---- |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 1.2 RRC Connection Setup eNB 在下行方向发送RRCConnectionSetup 消息给UE ,包含建立SRB1承载和无线资源配置信息。该消息携带主要IE 详细见信令解码。 信令解码如下: -RRC-MSG : |_msg : |_struDL-CCCH-Message : |_struDL-CCCH-Message : |_message : |_c1 : UE 初始标识,此处因为上层没有提供S-TMSI,所以为随机值。 建立原因,此处highPriorityAccess 指的是AC11~AC15

相关主题
文本预览
相关文档 最新文档