当前位置:文档之家› Modeling uncertainty in cutter wear prediction for tunnel boring machines(2012)-C.Frenzel

Modeling uncertainty in cutter wear prediction for tunnel boring machines(2012)-C.Frenzel

Modeling uncertainty in cutter wear prediction for tunnel boring machines(2012)-C.Frenzel
Modeling uncertainty in cutter wear prediction for tunnel boring machines(2012)-C.Frenzel

Modeling uncertainty in cutter wear prediction for tunnel boring machines

C. Frenzel 1

1Department of Mining Engineering, Colorado School of Mines, 1600 Illinois St,

Golden, CO, 80401; PH (303) 273-3714; FAX (303) 273-3719; email:

cfrenzel@https://www.doczj.com/doc/0b17370344.html,

ABSTRACT

Wear of cutting tools and the excavation performance of tunnel boring

machines (TBM) is influenced by a number of geotechnical parameters. The

prediction model of the Colorado School of Mines uses Uniaxial Compressive

Strength, Brazilian Tensile Strength, and Cerchar Abrasivity Index. Due to the

complex nature of rock each of these parameters shows variance and there are

correlations between these parameters.

The usual approach to performance and wear prediction is to use average

input parameters to estimate the “average” result. It is shown that this is not always

correct because of the statistical nature of the input parameters.

The approach described in this paper establishes a statistical model for the

performance and wear prediction based on the previously developed model. Since an

analytical solution for variance prediction is not possible for this model a Monte-

Carlo simulation is used.

PREDICTION OF DISC CUTTER WEAR

A broadly used model for prediction tunnel boring machine performance and disc

cutter wear has been developed at the Colorado School of Mines. Its first version was

published by Ozdemir et al. 1977 and the last version was published by Rostami

1997.

To predict the wear of disc cutters two steps need to be followed:

1. Prediction of the penetration rate

2. Prediction of disc cutter life

The reason is that cutter life has been shown to be proportional to the rolling distance

of a disc cutter (Frenzel 2010).

Penetration Rate. The prediction of the penetration rate is an iterative process since

there are three basic limitations:

? Thrust limit: Depending on the size of the disc cutter the bearing capacity of the disc cutters varies and limits the maximum thrust force that a disc cutter

can withstand.

? Torque limit: The main drive of a tunnel boring machine can overcome only a certain maximum torque at a given rotational speed.

? Geometrical limit: The geometry of disc cutter rings does not support infinite penetration rates because the shoulders of the cutter ring will eventually touch

the rock surface.

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

Based on geometrical considerations the opening angle ? of the contact area between

the disc cutter and the rock can be calculated by

where R is the radius of the disc cutter and p is the penetration rate.

The average stress P* in the contact area can be estimated by

where σc is the uniaxial compressive strength, σt is the Brazilian Tensile Strength

(BTS), S is the spacing between adjacent disc cutter positions on the cutterhead, and

T is the width of the tip of the cutter ring.

The resulting cutting force F on the disc cutter is given by

This resulting force can be separated into a normal and a rolling component. The

rolling component is critical because the sum of all rolling forces times their distance

from the center of the cutterhead yields the required torque for the main drive of the

TBM:

where nc is the number of disc cutters on the cutterhead and Dc is the excavation

diameter of the cutterhead.

These calculations are repeated until one of the three limits as shown above

has been reached.

Disc Cutter Life. The maximum rolling distance until a disc cutter has to be changed

due to primary wear is

where CAI is the Cerchar Abrasivity index and R the radius of the disc cutter in mm.

The average rolling distance of a disc cutter during one revolution of the cutterhead

can be approximated by

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

where D c is the diameter of the cutterhead. Further analysis by Frenzel 2010

revealed that actual cutter life was less than the expected value based on primary

wear. Hence, a correction

is introduced where g i are the relative weights of the number of disc cutters in the

center, face, and gage area. The corrections k k and k v can be determined from

Table 1.

Table 1. Correction factors for cutter life at different cutterhead positions

Correction k k Correction k v

Centre cutters 0.56

1.0

Face cutters 0.76 1.0

Gage cutters 0.92 0.54

The maximum number of cutterhead revolutions U c

until a cutter change

occurs can be calculated by

and net cutter life V c is computed to be

where S is the spacing of the disc cutters. Based on net cutter life the number of disc

cutter changes for a given tunnel can be predicted.

INPUT PARAMETERS

Rock Strength. Due to inhomogeneity repeated tests for rock strengths yield

different results. If the number of tests is large enough (sufficient sample size) the

results can be used to estimate the (unknown) statistical distribution. That includes

the type of distribution and its parameters.

Of course, measuring rock strengths already introduces a certain bias since

any damage or imperfection of the sample will reduce its (apparent) strength. By

definition UCS should be the intact rock strength which means that there is a bias

towards underestimating rock strengths using standard laboratory tests.

Examples for histograms of UCS tests of rock samples from Hong Kong are

shown in figures 1 and 2.

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

Figure 1: Histogram of Uniaxial Compressive Strength of Hong Kong granite (after: Frenzel 2010).

Figure 2: Histogram of Uniaxial Compressive Strength of Hong Kong tuff (after: Frenzel 2010).

Neither of these two examples represents a normal distribution, but both show

a distinct asymmetry. That could be explained by geology: The Hong Kong granite

had its highest strength after being created and weathering started to degrade the fresh

rock which led to lower rock strength. That results in a skew towards the left (i.e.

lower rock strengths).

On the other hand the Hong Kong tuff is metamorphic which eventually

increased its strength, but not in a perfectly homogenous manner. That explains the

skew towards the right (i.e. higher rock strengths).

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

The difficulty to estimate statistical distributions is to obtain a sufficient

sample size. This could be substituted by a small number of tests if the type of

distribution was linked to the geology of the rock. That should be subject of further

research.

Cerchar Abrasivity Index. Abrasivity of rock can be characterized by index tests or

by its mineralogy. The most common index test is the Cerchar Abrasivity Index

(CAI). However, since its results are influenced by a number of rock properties like:

? Mineralogy ? Strength of grain bounds

? Grain size ? Shape of grains

there is an inherent variability to this parameter as well. In addition, several issues have been identified and discussed in regards to the test itself (Plinninger 2002,

Rostami 2005, K?sling et al. 2007).

Correlations. UCS and BTS are correlated for many specific rock types and this has

been shown as a ratio (Gunsallus & Kulhawy 1987, Heyne 1980). Since the ratio

between UCS and BTS easily ranges from as low as 5 up to 20 there is the question

how strong this correlation is.

A correlation analysis for UCS, BTS, and CAI has been conducted to evaluate

variances and correlations between these parameters. The data were taken from 20

different tunneling projects including a range of different rock types. The results are

depicted in table 2.

Table 2: Empirical standard deviations and correlation coefficient for UCS,

BTS, and CAI from 20 tunneling projects.

UCS BTS CAI

UCS s =63.3 MPa R =

0.79 R =

0.75

BTS s = 5.6 MPa R =0.75

CAI s = 1.5

Although the dataset included many different rock types ranging from

sedimentary through metamorphic to igneous and volcanic there are clear positive

correlations. This means that there is a bigger probability that a sample with a high

UCS value also exhibits a high BTS and a high CAI value. The opposite also holds

true. This has implications on the prediction of cutter life since using average values

would underestimate the probability of extreme combinations of UCS, BTS, and CAI.

STOCHASTIC EXTENSION OF THE PREDICTION MODEL

The stochastic model of cutter life prediction can be expressed as the following

function

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

where the penetration p and abrasivity CAI are the random variables. Random

variables are printed in grey to distinguish them from non-random input parameters.

In addition, the penetration p can be expressed as a function of the random variables

UCS and BTS:

The stochastic model reflects the variances σ and correlations ρ of the random variables and assumes normal distributions as an approximation:

For linear problems an analytical approach can be taken to predict the

variance of the results. However, in this specific case the prediction model is iterative

and non-linear which requires a different approach.

Monte-Carlo-Simulation. A numerical solution to calculate the characteristics of

such a problem is the Monte-Carlo-Method. It is based on generating a large number

of input data sets and to calculate the result for each input data set. The results can

then be characterized using descriptive statistics.

Generating input data sets requires some specific steps to ensure that the data

sets exhibit the correct distribution functions and show the correct correlations.

Typically, programming language only provide functions for pseudo-random number

generation that follow an equal distribution. Three of these random numbers are

converted into normal-distributed random numbers using the central limit theorem.

Finally, correlations are introduced by using a Cholesky repartition of the variance-

covariance matrix and transformation by the mean.

Example. To analyze the consequences of the considerations above an example has

been studied. The input parameters are summarized in table 3.

Table 3: Input parameters for cutter life prediction

Mean UCS 150 MPa

Excavation diameter 9.0 m

Mean BTS 10 MPa Disc cutter diameter 432 mm

Mean CAI 3.8 Max cutter load 267 kN

Variance of UCS 50 MPa Spacing 90 mm

Variance of BTS 3 MPa Disc cutter tip width 19 mm

Variance of CAI 0.5 Number of disc cutters 57

Covariance UCS-BTS 0.78 Cutterhead speed 5.3 1/min

Covariance UCS-CAI 0.7 Cutterhead torque 5.77 MNm

Covariance BTS-CAI 0.7

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

The simulation was run using 10,000 iterations. The resulting distribution of

penetration and cutter life is shown in figures 3 and 4.

Figure 3: Histogram of penetration rate of Monte-Carlo-Simulation

Figure 4: Histogram of cutter life of Monte-Carlo-Simulation

Both histograms show a right-skewed distribution which is a result of the non-

linearity of the prediction model. The peak at a penetration rate of 10 mm in figure 3

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

can be explained by the transition between thrust and torque limitation as discussed

earlier. For comparison purposes table 4 shows the comparison between a prediction

using average values versus the results obtained through Monte-Carlo simulation.

Table 4: Comparison of Monte-Carlo simulation and static prediction using

mean input values

Penetration Rate [mm] Cutter Life [m 3]

Monte-Carlo simulation 9.1 486 Mean values without simulation 8.3 398

DISCUSSION

The differences between the Monte-Carlo simulation and the static prediction show a

difference of 10% for the average penetration rate and a difference of 22% for cutter

life. The difference for penetration rate prediction is probably neglectable for

practical purposes. However, the difference of 22% for cutter life is significant and

cannot be disregarded easily. However, it is important to run the simulation on both

values because the penetration rate influencing the cutter life.

CONCLUSION

Based on the prediction model for penetration rate and cutter life prediction for tunnel

boring machines developed at the Colorado School of Mines a methodology

accounting for the inherent uncertainties of rock is introduced. The model uses

Uniaxial Compressive Strength, Brazilian Tensile Strength, and the Cerchar

Abrasivity Index as geotechnical input parameters.

Through extensive testing the statistical distribution of these parameters can

be determined. Typically, the type of distribution is a normal distribution, but

depending on geology this may be skewed significantly as shown on the example of

granite and tuff from Hong Kong.

In addition, there are high correlations between these three parameters which

mean that there is a higher probability of a high UCS value occurring along with a

high BTS value and a high CAI value. This leads to an increased variance of the

resulting penetration rate and cutter life compared to the variance of the input

parameters.

The existing prediction model can be used as the basis for a Monte-Carlo

simulation which incorporates the random nature of the input parameters and which

allows to study the characteristics of the results.

Through a calculated example it becomes clear that although the differences

between a simulation and a static calculation using average input values may lead to

significant differences for predicted cutter life.

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v

e d .

REFERENCES

Frenzel, Christian (2010): Verschleisskostenprognose für Schneidrollen bei

maschinellen Tunnelvortrieben in Festgesteinen , Münchner Geowissenschaftliche

Abhandlungen, Reihe B, Dr. Friedrich Pfeil, München

Gunsallus, K.L.; Kulhawy, F. H. (1987): “A comparative evaluation of rock strength

measures.” International Journal of Rock Mechanics and Mining Sciences , 24 (3),

193–196.

Heyne, K.-H. (1980): “Mathematisch-statistische Zusammenh?nge zwischen

gesteinsmechanischen und gesteinsphysikalischen Kennwerten.“ Zeitschrift für

angewandte Geologie, 26 (10), 519–523

K?sling, Heiko; Thiele, Inke; Thuro, Kurosch (2007): "Abrasivit?tsuntersuchungen

mit dem Cerchar-Test - eine Evaluierung der Versuchsbedingungen.“ 16. Tagung für

Ingenieurgeologie und Forum "Junge Ingenieurgeologen", Bochum, 229–235

Ozdemir, Levent; Miller, Russell; Wang, Fun-Den (1977): Mechanical tunnel boring

prediction and machine design . Annual report , Colorado School of Mines, National

Science Foundation, Washington, DC

Plinninger, Ralf J. (2002): Klassifizierung und Prognose von Werkzeugverschlei? bei

konventionellen Gebirgsl?sungsverfahren im Festgestein. Münchner geologische

Hefte, Reihe B, München

Rostami, Jamal (1997): Development of a force estimation model for rock

fragmentation with disc cutters through theoretical modeling and physical

measurement of crushed zone pressure, PhD thesis, Colorado School of Mines,

Golden.

Rostami, Jamal (2005): “CAI testing and its implications.” Tunnels & Tunnelling

International , October, 43–45

D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y T o n g j i U n i v e r s i t y o n 04/13/14. C o p y r i g h t A S C

E .

F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .

铣刀的设计说明书

四、铣刀的设计 (一)齿形的设计计算 1.前角为零时,工件法剖面截形就是铣刀的齿形。 2.前脚大于零时 铣刀有了前角以后,其刀齿在径向截面的齿形和前刀面上的齿形,就与工件法剖面的截形不同了。设γf为铣刀外圆处的纵向前角,当γf较大时,铣刀径向截面和前刀面上的齿形需进行修正计算。 下图所示的是工件齿形和铣刀齿形得关系,其中(b)为给定的工件齿形;(c)为铣刀径向截面应具有的齿形,即铲刀应具有的齿形;(d)为铣刀前刀面的齿形,即样板应具有的齿形。 图8 (二)结构参数的选择及计算 1.铣刀齿形高度h 设被切工件成形部分高度为hw,则成形铣刀齿形高度应为: h=hw+(1-2)mm 2.铣刀宽度B 设被切工件阔形宽度为Bw,则铣刀宽度B可取为稍大于B。 3.容屑槽底形式 铲齿成形铣刀容屑槽底形式通常有两种,即平地形式和中间有凸起或槽底倾

斜的加强形式。在铲削深度较小和刀齿强度足够的情况下,应采用平底形式。在铣削深度较大时,宜采用加强形式。 4.铣刀的孔径d 铣刀的孔径d应根据铣削宽度和工作条件选取,可以按刚度,强度条件计算,也可根据生产经验选取。 5.铣刀的外径do 对于平底形式的容屑槽,铣刀外径可按下面公式计算:do=d+2m+2H 式中:d-铣刀孔径 m-壁厚,一般取(0.3-0.5)d H-全齿高 由于全齿高的计算又需依据外径do,因此,用上式直接计算铣刀外径是困难的,我国一些工厂采用下式估算铣刀外径: do=(2-2.2)d+2.2h+(2-6) 根据上面公式的计算结果再取外径的推荐值。 6.铣刀的圆周齿数Zk 铲齿成形铣刀的圆周齿数Zk可按下式计算 Zk=Πdo/S 式中S为铣刀的圆周齿距,粗加工时,可取S=(1.8-2.4)H 精加工时,可取S=(1.3-1.8)H,式中H为容屑槽的高度。 但是在设计成形铣刀时,直接按公式计算圆周齿数是困难的,因为式中H 尚未确定,而确定它时,又要反过来依据铣刀的圆周齿数。因而在设计时,可根据生产经验按铣刀外圆直径的大小预先选定圆周齿数,在设计计算出铣刀的其他结构参数后再反过来校验圆周齿数设计得是否合适。 7.铣刀的后角及铲削量K 设铲齿成形铣刀的顶刃径向后角为αf,一般取αf=10o-15o。相应的铲削量可按下式计算:K=tgαfΠdo/Zk,式中do为铣刀外径,Zk为圆周齿数。求出铲削量后,应按附录表40所列的铲床凸轮的升距选取相近的K值。 初步选定径向后角和计算出铲削量以后,需验算刀齿侧刃上一点x的主剖面后角αox,验算应选ψx最小处的x点,验算公式可按下面公式: tgαox=tgαf sinψx

船舶原理

1.什么是船舶的浮性? 船舶在各种装载情况下具有漂浮在水面上保持平衡位置的能力 2.什么是静水力曲线?其使用条件是什么?包括哪些曲线?怎样用静水力曲线查某一吃水时的排水量和浮心位置? 船舶设计单位或船厂将这些参数预先计算出并按一定比例关系绘制在同一张图中;漂心坐标曲线、排水体积曲线;当已知船舶正浮或可视为正浮状态下的吃水时,便可在静水力曲线图中查得该吃水下的船舶的排水量、漂心坐标及浮心坐标等 3.什么是漂心?有何作用?平行沉浮的条件是什么? 船舶水线面积的几何中心称为漂心;根据漂心的位置,可以计算船舶在小角度纵倾时的首尾吃水;船舶在原水线面漂心的铅垂线上少量装卸重量时,船舶会平行沉浮;(1)必须为少量装卸重物(2)装卸重物p的重心必须位于原水线面漂心的铅垂线上 4.什么是TPC?其使用条件如何?有何用途? 每厘米吃水吨数是指船在任意吃水时,船舶水线面平行下沉或上浮1cm时所引起的排水量变化的吨数;已知船舶在吃水d时的tpc数值,便可迅速地求出装卸少量重物p之后的平均吃水变化量,或根据吃水的改变量求船舶装卸重物的重量 5.什么是船舶的稳性? 船舶在使其倾斜的外力消除后能自行回到原来平衡位置的性能。 6.船舶的稳性分几类? 横稳性、纵稳性、初稳性、大倾角稳性、静稳性、动稳性、完整稳性、破损稳性 7.船舶的平衡状态有哪几种?船舶处于稳定平衡状态、随遇平衡状态、不稳定平衡状态的条件是什么? 稳定平衡、不稳定平衡、随遇平衡 当外界干扰消失后,船舶能够自行恢复到初始平衡位置,该初始平衡状态称为稳定平衡当外界干扰消失后,船舶没有自行恢复到初始平衡位置的能力,该初始平衡状态称为不稳定平衡 当外界干扰消失后,船舶依然保持在当前倾斜状态,该初始平衡状态称为随遇平衡8.什么是初稳性?其稳心特点是什么?浮心运动轨迹如何? 指船舶倾斜角度较小时的稳性;稳心原点不动;浮心是以稳心为圆心,以稳心半径为半径做圆弧运动 9.什么是稳心半径?与吃水关系如何? 船舶在小角度倾斜过程中,倾斜前、后的浮力作用线的交点,与倾斜前的浮心位置的线段长,称为横稳性半径!随吃水的增加而逐渐减少 10.什么是初稳性高度GM?有何意义?影响GM的因素有哪些?从出发港到目的港整个航行过程中有多少个GM? 重心至稳心间的距离;吃水和重心高度;许多个 11.什么是大倾角稳性?其稳心有何特点? 船舶作倾角为10°-15以上倾斜或大于甲板边缘入水角时点的稳性 12.什么是静稳性曲线?有哪些特征参数? 描述复原力臂随横倾角变化的曲线称为静稳性曲线;初稳性高度、甲板浸水角、最大静复原力臂或力矩、静稳性曲线下的面积、稳性消失角 13.什么是动稳性、静稳性? 船舶在外力矩突然作用下的稳性。船舶在外力矩逐渐作用下的稳性。 14.什么是自由液面?其对稳性有何影响?减小其影响采取的措施有哪些? 可自由流动的液面称为自由液面;使初稳性高度减少;()减小液舱宽度(2)液舱应

船舶原理及结构课程教学大纲

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码:NA325 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。 2

设计说明书完整

目录 序言 (2) 一、零件的分析 (一)零件的作用 (2) (二)零件的工艺分析 (2) 二、工艺规程设计 (一)确定毛坯的制造形式 (3) (二)基面的选择 (3) (三)制定工艺路线 (3) (四)机械加工余量、工序尺寸及毛坯尺寸的确定 (5) (五)确定切削用量及基本工时 (5) 三、夹具设计 (一)、加工工艺孔Φ25夹具设计 (12) (二)、粗精铣宽度为30mm的下平台夹具设计 (13) (三)、钻M8螺纹孔夹具设计 (16) 四、机械加工工序卡片(附) (18) 五、CA6140车床杠杆(831009)零件图(附) (18) 六、CA6140车床杠杆(831009)毛坯图(附) (18) 七、夹具装配图与夹具体零件图(附) (18) 八、参考文献 (18)

序 言 机械制造技术基础课程设计是在我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的。这是我们在进行毕业设计之前对所学各课程的一次深入的综合性总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要的地位。 就个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后参加祖国的“四化”建设打下一个良好的基础。 由于能力有限,设计尚有许多不足之处,恳请各位老师给予指教。 一、 零件的分析 (一) 零件的作用 题目所给定的零件是CA6140车床的杠杆。它位于车床制动机构中,主要起制动作用。杠杆一端与制动带连接,另一端通过刚球与齿条轴的凸起(或凹槽)相接触,当离合器脱开时,齿条轴与杠杆下端接触,是起逆时针方向摆动,将制动带拉紧;当左右离合器中任一个接合时,杠杆都顺时针方向摆动,使制动带放松,从而达到制动的目的。 (二) 零件的工艺分析 所加工零件立体图如下图所视: 1、主要加工面: (1)、钻Φ0.023 025+孔以及与此孔相通的Φ14阶梯孔、M8螺纹孔; (2)、钻Φ0.1012.7+锥孔及铣Φ0.1012.7+锥孔表面; (3)、钻2—M6螺纹孔及其上表面;

2020年研究生入学考试考纲

武汉理工大学交通学院2020年研究生入学考试大纲 2020年研究生入学考试考纲 《船舶流体力学》考试说明 一、考试目的 掌握船舶流体力学相关知识是研究船舶水动力学问题的基础。本门考试的目的是考察考生掌握船舶流体力学相关知识的水平,以保证被录取者掌握必要的基础知识,为从事相关领域的研究工作打下基础。 考试对象:2020年报考武汉理工大学交通学院船舶与海洋工程船舶性能方向学术型和专业型研究生的考生。 二、考试要点 (1)流体的基本性质和研究方法 连续介质概念;流体的基本属性;作用在流体上的力的特点和表述方法。 (2)流体静力学 作用在流体上的力;流体静压强及特性;压力体的概念,及静止流体对壁面作用力计算。 (3)流体运动学 研究流体运动的两种方法;流体流动的分类;流线、流管等基本概念。 (4)流体动力学 动量定理;伯努利方程及应用。 (5)船舶静力学 船型系数;浮性;稳性分类;移动物体和液舱内自由液面对船舶稳性的影响;初稳性高计算。 (6)船舶快速性 边界层概念;船舶阻力分类;尺度效应,及船模阻力换算为实船阻力;方尾和球鼻艏对阻力的影响;伴流和推力减额的概念;空泡现象对螺旋桨性能的影响;浅水对船舶性能的影响。 三、考试形式与试卷结构 1. 答卷方式:闭卷,笔试。 2. 答题时间:180分钟。 3. 试卷分数:总分为150分。 4. 题型:填空题(20×1分=20分);名词解释(10×3分=30分);简述题(4×10分=40分);计算题(4×15分=60分)。 四、参考书目 1. 熊鳌魁等编著,《流体力学》,科学出版社,2016。 2. 盛振邦、刘应中,《船舶原理》(上、下册)中的船舶静力学、船舶阻力、船舶推进部分,上海交通大学出版社,2003。 1

《船舶原理与结构》课程教学提纲

《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码: 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。

2019年上海交通大学船舶与海洋工程考研良心经验

2019年上海交通大学船舶与海洋工程考研良心经验 我本科是武汉理工大学的,学的也是船舶与海洋工程,成绩属于中等偏上吧,也拿过两次校三等奖学金,六级第二次才考过。 由于种种原因,我到了8月份才终于下定决心考交大船海并开始准备,只有4个多月,时间比较紧迫。但只要你下定决心,什么时候开始都不算晚,也不要因为复习得不好,开始的晚了就降低学校的要求,放弃了自己的名校梦。每个人情况不一样,自己好好做决定,即使暂时难以决定,也要早点开始复习。决定是在可以在学习过程中做的,学习计划也是可以根据自己的情况更改的。所以即使不知道考哪,每天学习多久,怎样安排学习计划,那也要先开始,这样你才能更清楚学习的难度和量。万事开头难,千万不要拖。由于准备的晚怕靠个人来不及,于是在朋友推荐下我报了新祥旭专业课的一对一,个人觉得一对一比班课好,新祥旭刚好之专门做一对一比较专业,所以果断选择了新祥旭,如果有同学需要可以加卫:chentaoge123 上交船海考研学硕和专硕的科目是一样的,英语一、数学一、政治、船舶与海洋工程专业基础(801)。英语主要是背单词和刷真题,我复习的时间不多,背单词太花时间,就慢慢放弃了,就只是刷真题,真题中出现的陌生单词,都抄到笔记本上背,作文要背一下,准备一下套路,最好自己准备。英语考时感觉着超级简单,但只考了65分,还是很郁闷的。数学是重中之重,我八月份开时复习,直接上手复习全书,我觉得没有必要看课本,毕竟太基础,而且和考研重点不一样,看了课本或许也觉得很难,但是和考研不沾边。计划的是两个月复习一遍,开始刷题,然后一边复习其他的,可是计划跟不上变化,数学基础稍差,复习的较慢,我又不想为了赶进度而应付,某些地方掌握多少自己心里有数,若是只掌握个大概,也不利于后面的学习。所以自打复习开始,我就没放下过数学,期间也听一些网课,高数听张宇、武忠祥的,线代肯定是李永乐,概率论听王式安,课可以听,但最主要还是自己做题,我只听了一些强化班,感觉自己复习不好的地方听了一下。我真题到了11月中旬才开始做,实在是太晚,我8月开始复习时网上就有人说真题刷两遍了,能不慌吗,但再慌也要淡定,不要因此为了赶进度而自欺欺人,做什么事外界的声音是一回事,自己的节奏要自己把握好,不然

刀具设计

机械设计制造及其自动化专业 设计说明书 (高速切断刀) 题目: 高速切断刀设计说明书 学院:机械工程学院 专业:机械设计制造及其自动化 姓名:李学健 完成日期:2015年5月 机械工程学院 2015年5月

目录 第1章原始条件 ................................................................................................................ .1 第2章设计计算过程 ........................................................................................................ .1 2.1高速切断刀的设计要点及工作特点............................................... ......... ..1 2.1刀片夹固结构的选择 ....................................................................................... . (2) 2.2选择刀片材料 ................................................................................................... . (2) 2.3选择车刀合理角度 ........................................................................................... . (2) 2.4选择刀片型号和尺寸 ....................................................................................... . (2) 2.5选择硬质合金刀垫型号和尺寸 ....................................................................... . (3) 2.6计算刀槽角度 ................................................................................................... .. (4) 2.7选择刀杆材料和尺寸 ................................................................................................... .4 2.8技术要求 ....................................................................................................................... .4 第3章绘图 ................................................................................................................. . (5) 参考文献 (5)

船舶原理整理资料,名词解释,简答题,武汉理工大学

第一章 船体形状 三个基准面(1)中线面(xoz 面)横剖线图(2)中站面(yoz 面)总剖线图(3) 基平面 (xoy 面)半宽水线图 型线图:用来描述(绘)船体外表面的几何形状。 船体主尺度 船长 L 、船宽(型宽)B 、吃水d 、吃水差t 、 t = dF – dA 、首吃水dF 、尾吃水dA 、平均吃水dM 、dM = (dF + dA )/ 2 } 、型深 D 、干舷 F 、(F = D – d ) 主尺度比 L / B 、B / d 、D / d 、B / D 、L / D 船体的三个主要剖面:设计水线面、中纵剖面、中横剖面 1.水线面系数Cw :船舶的水线面积Aw 与船长L,型宽B 的乘积之比。 2.中横剖面系数Cm :船舶的中横剖面积Am 与型宽B 、吃水d 二者的乘积之比值。 3.方型系数Cb :船舶的排水体积V,与船长L,型宽B 、吃水d 三者的乘积之比值。 4. 棱形系数(纵向)Cp :船舶排水体积V 与中横剖面积Am 、船长L 两者的乘积之比值。 5. 垂向棱形系数 Cvp :船舶排水体积V 与水线面积Aw 、吃水d 两者的乘积之比值。 船型系数的变化区域为:∈( 0 ,1 ] 第二章 船体计算的近似积分法 梯形法则约束条件(限制条件):(1) 等间距 辛氏一法则通项公式 约束条件(限制条件):(1)等间距 (2)等份数为偶数 (纵坐标数为奇数 )2m+1 辛氏二法则 约束条件(限制条件)(1)等间距 (2)等份数为3 3m+1 梯形法:(1)公式简明、直观、易记 ;(2)分割份数较少时和曲率变化较大时误差偏大。 辛氏法:(1)公式较复杂、计算过程多; (2)分割份数较少时和曲率变化较大时误差相对较小。 第三章 浮性 船舶(浮体)的漂浮状态:(1 )正浮(2)横倾(3)纵倾(4)纵横倾 排水量:指船舶在水中所排开的同体积水的重量。 平行沉浮条件:少量装卸货物P ≤ 10 ℅D 每厘米吃水吨数: TPC = 0.01×ρ×Aw {指使船舶吃水垂向(水平)改变1厘米应在船上施加的力(或重量) }{或指使船舶吃水垂向(水平)改变1厘米时,所引起的排水量的改变量 } (1)船型系数曲线 (2)浮性曲线 (3)稳性曲线 (4)邦金曲线 静水力曲线图:表示船舶正浮状态时的浮性要素、初稳性要素和船型系数等与吃水的关系曲线的总称,它是由船舶设计部门绘制,供驾驶员使用的一种重要的船舶资料。 第四章 稳性 稳性:是指船受外力作用离开平衡位置而倾斜,当外力消失后,船能回复到原平衡位置的能力。 稳心:船舶正浮时浮力作用线与微倾后浮力作用线的交点。 稳性的分类:(1)初稳性;(2)大倾角稳性;(3)横稳性;(4)纵稳性;(5)静稳性;(6)动稳性;(7)完整稳性;(8)非完整稳性(破舱稳性) 判断浮体的平衡状态:(1)根据倾斜力矩与稳性力矩的方向来判断;(2)根据重心与稳心的 相对位置来判断 浮态、稳性、初稳心高度、倾角 B L A C w w ?=d B A C m m ?=d V C ??=B L b L A V C m p ?=d A V C w vp ?=b b p vp m w C C C C C C ==, 002n n i i y y A l y =+??=-????∑[]012142...43n n l A y y y y y -=+++++[]0123213332...338n n n l A y y y y y y y --=++++++P D ?= P f P f x = x y = y = 0 ()P P d= cm TPC q ?= m g b g b g GM = z z = z BM z = z r z -+-+-

船舶原理题库

船舶原理试题库 第一部分船舶基础知识 (一)单项选择题 1.采用中机型船的是 A. 普通货船 C.集装箱船D.油船 2.油船设置纵向水密舱壁的目的是 A.提高纵向强度B.分隔舱室 C.提高局部强度 3. 油船结构中,应在 A.货油舱、机舱B.货油舱、炉舱 C. 货油舱、居住舱室 4.集装箱船的机舱一般设在 A. 中部B.中尾部C.尾部 5.需设置上下边舱的船是 B.客船C.油船D.液化气体船 6 B.杂货船C.散货船D.矿砂船 7 A. 散货船B.集装箱船C.液化气体船 8.在下列船舶中,哪一种船舶的货舱的双层底要求高度大 A.杂货船B.集装箱船C.客货船 9.矿砂船设置大容量压载边舱,其主要作用是 A.提高总纵强度B.提高局部强度 C.减轻摇摆程度 10 B.淡水舱C.深舱D.杂物舱 11.新型油船设置双层底的主要目的有 A.提高抗沉性B.提高强度 C.作压载舱用 12.抗沉性最差的船是 A.客船B.杂货船C散货船 13.横舱壁最少和纵舱壁最多的船分别是 B.矿砂船,集装箱船 C.油船,散货船D.客船,液化气体船 14.单甲板船有 A. 集装箱船,客货船,滚装船B.干散货船,油船,客货船 C.油船,普通货船,滚装船 15.根据《SOLASl974 A.20 B.15 D.10 16 A. 普通货船C.集装箱船D.散货船17.关于球鼻首作用的正确论述是 A. 增加船首强度

C.便于靠离码头D.建造方便 18.集装箱船通常用______表示其载重能力 A.总载重量B.满载排水量 C.总吨位 19. 油船的______ A. 杂物舱C.压载舱D.淡水舱 20 A. 集装箱船B,油船C滚装船 21.常用的两种集装箱型号和标准箱分别是 B.40ft集装箱、30ft集装箱 C.40ft集装箱、10ft集装箱 D.30ft集装箱、20ft集装箱 22.集装箱船设置双层船壳的主要原因是 A.提高抗沉性 C.作为压载舱 D. 作为货舱 23.结构简单,成本低,装卸轻杂货物作业效率高,调运过程中货物摇晃小的起货设备是 B.双联回转式 C.单个回转式D.双吊杆式 24. 具有操作与维修保养方便、劳动强度小、作业的准备和收尾工作少,并且可以遥控操 作的起货设备是 B.双联回转式 D.双吊杆式 25.加强船舶首尾端的结构,是为了提高船舶的 A.总纵强B.扭转强度 C.横向强度 26. 肋板属于 A. 纵向骨材 C.连接件D.A十B 27. 在船体结构的构件中,属于主要构件的是:Ⅰ.强横梁;Ⅱ.肋骨;Ⅲ.主肋板;Ⅳ. 甲板纵桁;Ⅴ.纵骨;Ⅵ.舷侧纵桁 A.Ⅰ,Ⅱ,Ⅲ,ⅣB.I,Ⅱ,Ⅲ,Ⅴ D.I,Ⅲ,Ⅳ, Ⅴ 28.船体受到最大总纵弯矩的部位是 A.主甲板B.船底板 D.离首或尾为1/4的船长处 29. ______则其扭转强度越差 A.船越长B.船越宽 C.船越大 30 A.便于检修机器B.增加燃料舱 D.B+C 31

金属切削原理及刀具-课程设计说明书

圆孔拉刀与矩形花键铣刀的设计说明书 目录 1.前言 (2) 2.绪论 (3) 3.圆孔拉刀设计 (4) 4.矩形花键铣刀设计 (14) 5.总结 (18) 6.参考文献 (19)

1.前言 转眼之间大学四年的学习已过去多半,在我们完成本学期学业之前,通过课程设计来检查和考验我们在这半年所学,同时对于我们自身来说,这次课程设计很贴切地把一些实践性的东西引入我们的设计中和平时所学的理论知识相关联。为我们无论是在将来的工作或者是继续学习的过程中打下一个坚实的基础。 我的课程设计课题目是圆孔拉刀与矩形花键铣刀的设计。在设计过程当中,我通过查阅有关资料和运用所学的专业或有关知识,比如零件图设计、金属切削原理、金属切削刀具、以及所学软件AUTOCAD的运用,设计了零件的工艺、编制了零件的加工程序等。我利用此次课程设计的机会对以往所有所学知识加以梳理检验,同时又可以在设计当中查找自己所学的不足从而加以弥补,使我对专业知识得到进一步的了解和系统掌握。 由于水平有限,设计编写时间也仓促,在我们设计的过程中会遇到一些技术和专业知识其它方面的问题,再加上我们对知识掌握的程度,所以设计中我们的设计会有一些不尽如人意的地方, 为了共同提高今后设计设计的质量,希望在考核和答辩的过程中得到各位指导老师的谅解与批评指正。

2.绪论 金属切削刀具课程设计是学生在学完“金属切削原理及刀具”等有关课程的基础上进行的重要的实践性教学环节,其目的是使学生巩固和深化课堂理论教学内容,锻炼和培养学生综合运用所学知识和理论的能力,是对学生进行独立分析、解决问题能力的强化训练。 通过金属切削刀具课程设计,具体应使学生做到: (1) 掌握金属切削刀具的设计和计算的基本方法; (2) 学会运用各种设计资料、手册和国家标难; (3) 学会绘制符合标准要求的刀具工作图,能标注出必要的技术条件。 设计内容和要求 完成对矩形花键铣刀、圆孔拉刀两种刀具的设计和计算工作,绘制刀具工作图和必要的零件图以及编写一份正确、完整的设计说明书。 刀具工作图应包括制造及检验该刀具所需的全部图形、尺寸、公差、粗糙度要求及技术条件等;说明书包括设计时所涉及的主要问题以及设计计算的全部过程;设计说明书中的计算准确无误,所使用的尺寸、数据和计量单位,均符合有关标准和法定计量单位。

考试大纲-重庆交通大学知识交流

硕士生入学复试考试《船舶原理与结构》 考试大纲 1考试性质 《船舶原理》和《船舶结构设计》均是船舶与海洋工程专业学生重要的专业基础课。它的评价标准是优秀本科毕业生能达到的水平,以保证被录取者具有较好的船舶原理和结构设计理论基础。 2考试形式与试卷结构 (1)答卷方式:闭卷,笔试 (2)答题时间:180分钟 (3)题型:计算题50%;简答题35%;名词解释15% (4)参考数目: 《船舶原理》,盛振邦、刘应中,上海交通大学出版社,2003 《船舶结构设计》,谢永和、吴剑国、李俊来,上海交通大学出版社,2011年 3考试要点 3.1 《船舶原理》 (1)浮性 浮性的一般概念;浮态种类;浮性曲线的计算与应用;邦戎曲线的计算与应用;储备浮力与载重线标志。 (2)船舶初稳性 稳性的一般概念与分类;初稳性公式的建立与应用;重物移动、

增减对稳性的影响;自由液面对稳性的影响;浮态及初稳性的计算;倾斜试验方法。 (3)船舶大倾角稳性 大倾角稳性、静稳性与动稳性的概念;静、动稳性曲线的计算及其特性;稳性的衡准;极限重心高度曲线;IMO建议的稳性衡准原则;提高稳性的措施。 (4)抗沉性 抗沉性的概念;安全限界线、渗透率、可浸长度、分舱因数的概念;可浸长度计算方法;船舶分舱制;提高抗沉性的方法。 (5)船舶阻力的基本概念与特点 船舶阻力的分类;阻力相似定律;阻力(摩擦阻力、粘压阻力、兴波阻力)产生的机理和特性。 (6)船舶阻力的确定方法 船模阻力试验方法;阻力换算方法;阻力近似计算的概念及方法;艾尔法、海军系数法等。 (7)船型对阻力的影响 船型变化及船型参数,主尺度及船型系数的影响,横剖面面积曲线形状的影响,满载水线形状的影响,首尾端形状的影响。 (8)浅水阻力特性 浅水对阻力影响的特点;浅窄航道对船舶阻力的影响。 (9)船舶推进器一般概念 推进器的种类、传送效率及推进效率;螺旋桨的几何特性。

拉刀铣刀设计说明书..

一、金属切削刀具课程设计的目的 金属切削刀具课程设计是学生在学完“金属切削原理及刀具”等有关课程的基础上进行的重要的实践性教学环节,其目的是使学生巩固和深化课堂理论教学内容,锻炼和培养学生综合运用所学知识和理论的能力,是对学生进行独立分析、解决问题能力的强化训练。 通过金属切削刀具课程设计,具体应使学生做到: (1) 掌握金属切削刀具的设计和计算的基本方法; (2) 学会运用各种设计资料、手册和国家标难; (3) 学会绘制符合标准要求的刀具工作图,能标注出必要的技术条件。 二、设计内容和要求 完成矩形花键铣刀、矩形花键拉刀两种刀具的设计和计算工作,绘制刀具工作图和必要的零件图以及编写一份正确、完整的设计说明书。 刀具工作图应包括制造及检验该刀具所需的全部图形、尺寸、公差、粗糙度要求及技术条件等;说明书应包括设计时所涉及的主要问题以及设计计算的全部过程;设计说明书中的计算必须准确无误,所使用的尺寸、数据和计量单位,均应符合有关标准和法定计量单位;使用A4纸打印,语言简练,文句通顺。 具体设计要求见附页。 三、拉刀的设计 (一)选定刀具类型和材料的依据 1选择刀具类型: 对每种工件进行工艺设计和工艺装备设计时,必须考虑选用合适的刀具类型。事实上,对同一个工件,常可用多种不同的刀具加工出来。 采用的刀具类型不同将对加工生产率和精度有重要影响。总结更多的高生产率刀具可以看出,增加刀具同时参加切削的刀刃长度能有效的提高其生产效率。

例如,用花键拉刀加工花键孔时,同时参加切削的刀刃长度l=B3n3Zi,其中B 为键宽,n为键数,Zi为在拉削长度内同时参加切削的齿数。若用插刀同时参加切削的刀刃长度比插刀大得多,因而生产率也高得多。 2正确选择刀具材料: 刀具材料选择得是否恰当对刀具的生产率有重要的影响。因为硬质合金比高速钢及其他工具钢生产率高得多,因此,在能采用硬质合金、的情况下应尽力采用。由于目前硬质合金的性能还有许多缺陷,如脆性大,极难加工等,使他在许多刀具上应用还很困难,因而,目前许多复杂刀具还主要应用高速钢制造。 拉刀结构复杂,造价昂贵,因此要求采用耐磨的刀具材料,以提高其耐用度;考虑到还应有良好的工艺性能,根据《刀具课程设计指导书》表29,选择高速工具钢,其应用范围用于各种刀具,特别是形状较复杂的刀具。根据表30,选择W18Cr4V。 (二)刀具结构参数、几何参数的选择和设计 1拉刀的结构 图1 表1

计算机辅助船舶制造(考试大纲)

课程名称:计算机辅助船舶制造课程代码:01234(理论) 第一部分课程性质与目标 一、课程性质与特点 《计算机辅助船体建造》是船舶与海洋工程专业的一门专业必修课程,通过本课程各章节不同教学环节的学习,帮助学生建立良好的空间概念,培养其逻辑推理和判断能力、抽象思维能力、综合分析问题和解决问题的能力,以及计算机工程应用能力。 我国社会主义现代化建设所需要的高质量专门人才服务的。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的计算机运用能力和综合运用所学知识去分析和解决问题的能力。 二、课程目标与基本要求 通过本课程学习,使学生对船舶计算机集成制造系统有较全面的了解,掌握计算机辅助船体建造的数学模型建模的思路和方法,培养计算机的应用能力,为今后进行相关领域的研究和开发工作打下良好的基础。 本课程基本要求: 1.正确理解下列基本概念: 计算机辅助制造,计算机辅助船体建造,造船计算机集成制造系统,船体型线光顺性准则,船体型线的三向光顺。 2.正确理解下列基本方法和公式: 三次样条函数,三次参数样条,三次B样条,回弹法光顺船体型线,船体构件展开计算的数学基础,测地线法展开船体外板的数值表示,数控切割的数值计算,型材数控冷弯的数值计算。 3.运用基本概念和方法解决下列问题: 分段装配胎架的型值计算,分段重量重心及起吊参数计算。 三、与本专业其他课程的关系 本课程是船舶与海洋工程专业的一门专业课,该课程应在修完本专业的基础课和专业基础课后进行学习。 先修课程:船舶原理、船体强度与结构设计、船舶建造工艺学 第二部分考核内容与考核目标 第1章计算机辅助船体建造概论 一、学习目的与要求 本章概述计算机辅助船体建造的主要体系及技术发展。通过对本章的学习,掌握计算机辅助制造的基本概念,了解计算机辅助船体建造的特点、造船计算机集成制造系统的基本含义和主要造船集成系统及其发展概况。 二、考核知识点与考核目标 (一)计算机辅助制造的基本概念(重点)(P1~P5) 识记:计算机在工业生产中的应用,计算机在产品设计中的应用,计算机在企业管理中的应用,计算机应用一体化。 理解:CIM和CIMS概念,计算机辅助制造的概念和组成 (二)造船CAM技术的特点(重点)P6~P8 识记:船舶产品和船舶生产过程的特点,造船CAM技术的特点 理解:船舶产品和船舶生产过程的特点与造船CAM技术之间的联系 应用:造船CAM技术应用范围 (三)计算机集成船舶制造系统概述(次重点)(P8~P11)

船舶维修技术实用手册

船舶维修技术实用手册》出版社:吉林科学技术出版社 出版日期:2005年 作者:张剑 开本:16开 册数:全四卷+1CD 定价:998.00元 详细介绍: 第一篇船舶原理与结构 第一章船舶概述 第二章船体结构与船舶管系 第三章锚设备 第四章系泊设备 第五章舵设备 第六章起重设备 第七章船舶系固设备 第八章船舶抗沉结构与堵漏 第九章船舶修理 第十章船舶人级与检验 第二篇现代船舶维修技术 第一章故障诊断与失效分析 第二章油液监控技术 第三章新材料、新工艺与新技术 第三篇船舶柴油机检修 第一章柴油机概述 第二章柴油机主要机件检修 第三章配气系统检修 第四章燃油系统检修 第五章润滑系统检修 第六章冷却系统检修 第七章柴油机操纵系统检修 第八章实际工作循环 第九章柴油机主要工作指标及其测定 第十章柴油机增压 第十一章柴油机常见故障及其应急处理

第四篇船舶电气设备检修 第一章船舶电气设备概述 第二章船舶常用电工材料 第三章船舶电工仪表及测量 第四章船舶常用低压电器及其检修 第五章船舶电机维护检修 第六章船舶电站维护检修 第七章船舶辅机电气控制装置维护检修第八章船舶内部通信及其信号装置检修第九章船舶照明系统维护检修 第五篇船舶轴舵系装置检修 第一章船舶轴系检修 第二章船舶舵系检修 第三章液压舵机检修 第四章轴舵系主要设备与要求 第五章轴舵系检测与试验 第六篇船舶辅机检修 第一章船用泵概述 第二章往复泵检修 第三章回转泵检修 第四章离心泵和旋涡泵 第五章喷射泵检修 第六章船用活塞空气压缩机检修 第七章通风机检修 第八章船舶制冷装置检修 第九章船舶空气调节装置检修 第十章船用燃油辅机锅炉和废气锅炉检修第十一章船舶油分离机检修 第十二章船舶防污染装置检修 第十三章海水淡化装置检修 第十四章操舵装置检修 第十五章锚机系缆机和起货机检修 第七篇船舶静电安全检修技术 第一章船舶静电起电机理 第二章舱内静电场计算 第三章船舶静电安全技术研究 第四章静电放电点燃估算 第五章船舶静电综合分析防治对策

金属切削刀具课程设计说明书

硬质合金可转位外圆车刀 设计说明书 机械设计制造及其自动化 [原始条件] 加工一批尺寸如图所示的零件,工件材料为45号钢, D=78mm,d=56mm,L=300mm,l=120,B=1.6。需分粗车、半精车两道工序完成其外圆车削,单边总余量为4mm,使用机床为CA6140普通车床。

试设计一把硬质合金可转位外圆车刀。 [设计步骤] ⑴ 选择刀片夹固结构。考虑到加工在CA6140普通车床上进行,且属于连续切削,参照表典型刀片夹固结构简图和特点,采用偏心式刀片夹固结构。 ⑵ 选择刀片材料。由原始条件给定:被加工工件材料为45号钢(正火),连续切削,完成粗车、半精车两道工序,按照硬质合金的选用原则,选取刀片材料(硬质合金牌号)为YT15。 ⑶ 选择车刀合理角度。根据刀具合理几何参数的选择原则,并考虑到可转位 车刀几何角度的形成特点,选取如下四个主要角度:①前角 140=γ;②后角 70=α;③主偏角?=90r κ;④刃倾角 5-=s λ。 后角0α的实际数值以及副后角0 α'和副偏角r κ'在计算刀槽角度时,经校验后确定。 ⑷ 选择切削用量。根据切削用量的选择原则,查表确定切削用量。 粗车时:背吃刀量mm a p 7=,进给量r mm f 6.0=,切削速度c v 如下得出: 242=v c 15.0=v x 35.0=v y 2.0=m 866.0735 .0637 .0== mv k 9.0=sv k 1=tv k 81.0=v r k κ 63.0=???=v tv sv mv v r k k k k k κ min 60=T min 04.6063.06 .0760242 135 .015.02.0m k f a T c v v y x p m v c v v =???= ???= min /64.612m k f a T c Vc v y x p m v v v =???=

可转位车刀课程设计说明书

可转位车刀课程设计说明书 课题名称: 可转位车刀设计 专业:机械设计制造及其自动化 班级:机械120 姓名: 学号: A071201

要求 工件材料35钢、GPa b /σ0.52、HB143-178、D70±0.1mm 、L250mm 、热处理状态正火处理 1.选择刀片夹固结构 工件的直径D 为70mm ,工件长度L=250mm 。因此可以在普通机床CA6140上加工。 表面粗糙度要求1.6μm ,为精加工,但由于可转为车刀刃倾角s λ通常取负值, 切屑流向已加工表面从而划伤工件,因此只能达到半精加工。 参照《机械制造技术基础课程补充资料》表2.1典型刀片结构简图和特点,采用偏心式刀片加固结构较为合适。 2.选择刀片结构材料 由原始给定条件:被加工工件材料为35钢,正火处理,按照硬质合金的选择原则,选取刀片材料为YT15。 3.刀具合理几何参数的选择和切削用量的选择 3.1刀具合理集合参数的选择 根据《机械制造技术基础》刀具合理几何参数的选择,并考虑可转位车刀几 何角度的形成特点,四个角度做如下选择: 1.前角0γ:根据《刀具课程设计指导书》图2.5,工件材料为35钢(正火),半精车,因此前角可选0γ=15°; 2.后角0?:根据《刀具课程设计指导书》图2.5,工件材料为35钢(正火),半精车,因此后角可选0?=5°; 3.主偏角γκ:主偏角γκ=75°; 4.刃倾角s λ:为获得大于0°的后角0?及大于0°的副刃后角'0?,刃倾角 s λ=-6°; 5.后角0?:后角0?的实际数值及副刃后角'0?和副偏角'γκ在计算刀槽角度时经校验确定。 3.2切削用量的选择 根据《刀具课程设计指导书》附录II :粗车时,背吃刀量p a =3mm ,进给量

船舶原理 名词解释啊

1长宽比L/B 快速性、操纵性 宽吃水比B/d 稳性、摇荡性、快速性、操纵性 深吃水比D/d 稳性、抗沉性、船体强度 宽深比B/D 船体强度、稳性 长深比L/D 船体强度、稳性 2船长:船舶的垂线间长代表船长,即沿设计夏季载重水线,由首柱前缘至舵柱后缘或舵杆中心线的长度 3型宽:在船体最宽处,沿设计水线自一舷的肋骨外缘量至另一舷的肋骨外缘之间的水平距离 4型表面:不包括船壳板和甲板板厚度在内的船体表面 5型深:在船长中的处,由平板龙骨上缘量至上甲板边线下缘的垂直距离 6型吃水:在船长中点处由平板龙骨上缘量至夏季载重水线的垂直距离 7型线图是表示船体型表面形状的图谱,由纵剖线图、横剖线图、半宽水线图和型值表组成; 8浮性:船舶在给定载重条件下,能保持一定的浮态的性能; 9平衡条件:作用在浮体上的重力与浮力大小相等、方向相反并作用于同一铅垂线上; 10净载重量NDW:指船舶在具体航次中所能装载货物质量的最大值 11漂浮条件:满足平衡条件,且船体体积大于排水体积; 12浮心:浮心是船舶所受浮力的作用中心,也是排水体积的几何中心; 13漂心:船舶水线面积的几何中心; 14平行沉浮:船舶装卸货物前后水线面保持平行的现象; 15每厘米吃水吨数(TPC):船舶吃水d每变化1cm,排水量变化的吨数,称为TPC。 16储备浮力:满载吃水以上的船体水密容积所具有的浮力 17干舷:在船长中点处由夏季载重水线量至上甲板边线上缘的垂直距离 18船舶稳性:船舶在外力(矩)作用下偏离其初始平衡位置,当外力(矩)消失后船舶能自行恢复到初始平衡状态的能力 19静稳性曲线:稳性力臂GZ或稳性力矩Ms随横倾角?变化曲线 20动稳性曲线:稳性力矩所做的功Ws或动稳性力臂I d随横倾角?变化的曲线 21吃水差比尺:是一种少量载荷变动时核算船舶纵向浮态变化的简易图表,它表示在船上任意位置加载100t后,船舶首、尾吃水该变量的图表 22最小倾覆力矩(力臂):船舶所能承受动横倾力矩(力臂)的极限 23进水角:船舶横倾至最低非水密度开口开始进水时的横倾角 24可浸长度:船舶进水后的水线恰与限界线相切时的货仓最大许可舱长称为可浸长度 25稳性衡准数K是指船舶最小倾覆力矩(臂)与风压倾侧力矩(臂)之比 26稳性的调整方法:船内载荷的垂向移动及载荷横向对称增减 27静稳性力臂的表达式:1)基点法2)假定重心法3)初稳心点法 28船体强度:为保证船舶安全,船体结构必须具有抵抗各种内外作用力使之发生极度形变和破坏的能力 29局部强度表示方法:①均布载荷;②集中载荷;③车辆甲板载荷;④堆积载荷 30MTC为每形成1cm吃水差所需的纵倾力矩值,称为每厘米纵倾力矩 31载荷纵向移动包括配载计划编制时不同货舱货物的调整及压载水、淡水或燃油的调拨等情况 32重量增减包括中途港货物装卸、加排压载水、油水消耗和补给、破舱进水等情况 33抗沉性:是指船舶在一舱或数舱破损进水后,仍能保持一定浮性和稳性,使船舶不致沉没或延缓沉没时间,以确保人命和财产安全的性能

相关主题
文本预览
相关文档 最新文档